
First-exit model predictive control of fast discontinuous dynamics:
Application to ball bouncing

Paul Kulchenko and Emanuel Todorov

Abstract— We extend model-predictive control so as to make
it applicable to robotic tasks such as legged locomotion, hand
manipulation and ball bouncing. The online optimal control
problem is defined in a first-exit rather than the usual finite-
horizon setting. The exit manifold corresponds to changes in
contact state. In this way the need for online optimization
through dynamic discontinuities is avoided. Instead the effects
of discontinuities are incorporated in a final cost which is tuned
offline. The new method is demonstrated on the task of 3D ball
bouncing. Even though our robot is mechanically limited, it
bounces one ball robustly and recovers from a wide range of
disturbances, and can also bounce two balls with the same
paddle. This is possible due to intelligent responses computed
online, without relying on pre-existing plans.

I. INTRODUCTION

Numerical optimization is a powerful tool for automatic
control. The biggest challenge is the curse of dimensionality:
the state space of most interesting robotic systems is too large
to construct a control law that generates sensible (let alone
optimal) commands in all states. Yet such global control
laws are necessary if robots are to achieve rich and versatile
behavior in the presence of uncertainty. Model-predictive
control (MPC) is remarkably good at avoiding the curse of
dimensionality when it works [1], [2], [3]. The idea is simple:
run the optimization in real time as the behavior unfolds,
and compute an optimal trajectory up to some time horizon
at each step of the control loop. This trajectory always starts
at the current (measured or inferred) state, thus optimization
for all states is avoided. The initial portion of the trajectory
is used to control the system, the clock then advances, and
the process is repeated. The unused portion of the trajectory
is useful for initializing the (usually iterative) optimizer at
the next time step.

The main challenge in applying MPC is the require-
ment for real-time optimization. Indeed this challenge is so
formidable that MPC has rarely been used in robotics. Its
typical application is in the control of chemical processes
where the dynamics are sufficiently slow. The most impres-
sive robotics application we are aware of is the work [4] on
aerobatic helicopter flight. This problem is simpler than the
problems studied here in two important ways: the dynamics
are smooth, and the control objective can be formalized as
tracking a pre-specified trajectory.

This work is supported by the US National Science Foundation.
Paul Kulchenko is with the Department of Computer Science & Engi-

neering, University of Washington paul@kulchenko.com
Emanuel Todorov is with the faculty of the Departments of Applied Math-

ematics and Computer Science & Engineering, University of Washington
todorov@cs.washington.edu

Our goal is to develop MPC methods applicable to dis-
continuous (and in particular contact) dynamics arising in a
variety of robotic tasks: legged locomotion, hand manipula-
tion, ball bouncing. Apart from the above requirement for
fast optimization, this is a challenging application domain
because numerical optimization does not work well in the
presence of discontinuities, and also because such tasks
involve significant under-actuation and uncertainty, making
pre-specified trajectories rather useless.

This paper makes two contributions. First, we generalize
MPC from the usual finite horizon (or receding horizon)
setting to a first-exit setting, which allows us to avoid
dealing with discontinuities in the online optimization phase.
We also generalize our iterative linear quadratic Gaussian
(iLQG) algorithm [5] to first-exit settings and use it to handle
the online optimization. Second, we describe suitable cost
functions and an overall system design which enable us to
apply MPC to the problem of ball bouncing. Even though we
used a robot with significant mechanical limitations (small
workspace and no tilt control), we were able to bounce one
ball robustly under a wide range of disturbances, as well as
bounce two balls on the same paddle – see attached video.

Ball-bouncing has received considerable attention [6], [7],
[8], [9]. Most of that work has focused on analysis of (usually
passive) stability. Indeed one of the more remarkable find-
ings has been that passive stability in the vertical direction
requires hitting the ball with negative acceleration, and that
humans exploit this strategy [8], in general agreement with
the idea that the brain optimizes motor behavior [10]. While
we appreciate the elegance of simple control solutions, it
seems clear that complex real-world behaviors require rather
advanced feedback mechanisms. It remains to be seen what
the utility of simple solutions will be once such feedback
mechanisms are in place. For example, we found that sta-
bilization in lateral directions is harder than stabilization
in the vertical direction, and any controller smart enough
to achieve lateral stability also achieves vertical stability.
We also observed that if the paddle can only translate but
cannot rotate (due to mechanical constraints in the robot),
the task becomes much harder for a human – suggesting
that future psychophysics studies should perhaps look more
closely at paddle orientation in human data. Overall we do
not believe that any prior work on ball bouncing comes close
to our results in terms of recovering from large unmodeled
perturbations. Such recovery (and more generally the ability
to invent rich behavior on the fly) is a key selling point of
MPC, and ball-bouncing is a domain where it really makes
a difference.

II. FIRST-EXIT MODEL PREDICTIVE CONTROL

We describe our general control methodology in this
section, and specialize it to ball-bouncing in subsequent
sections.

A. Infinite-horizon and first-exit problems

MPC is normally applied to tasks that continue in-
definitely. Thus we formalize the task as an infinite-
horizon average-cost stochastic optimal control problem,
with dynamics given by the transition probability distribution
p (x′|x, u). Here x is the current state, u the current control,
and x′ the resulting next state. The states and controls can
be discrete or continuous. Let ` (x, u) be the immediate cost
for being in state x and choosing control u. It is known that
the differential1 optimal cost-to-go function ṽ (x) satisfies
the Bellman equation

c+ ṽ (x) = min
u

{
` (x, u) + Ex′∼p(·|x,u)ṽ (x

′)
}

where c is the average cost per step. The solution is unique
under suitable ergodicity assumptions.

Now consider a first-exit stochastic optimal control prob-
lem with the same dynamics p, immediate cost ̂̀(x, u), and
final cost h (x) defined on some subset T of terminal states.
In such problems the total cost-to-go v is finite and satisfies
the Bellman equation

v (x) = min
u

{̂̀(x, u) + Ex′∼p(·|x,u)v (x
′)
}

for x /∈ T , and v (x) = h (x) for x ∈ T .
We now make a simple but critical observation:
Lemma 1: If h (x) = ṽ (x) for x ∈ T and ̂̀(x, u) =

` (x, u)− c for all (x, u), then v (x) = ṽ (x) for all x.
This result follows from the fact that when ̂̀(x, u) =

` (x, u) − c the two Bellman equations are identical. Note
that the cost offset c affects the optimal cost-to-go function
but does not affect the optimal control law (i.e. the u that
achieves the minimum for each x).

Thus we can find the optimal solution to an infinite-
horizon average-cost problem by solving a first-exit problem
up to some set of terminal states T , and at the terminal states
applying a final cost h equal to the differential cost-to-go ṽ
for the infinite-horizon problem. Of course if we knew ṽ
the original problem would already be solved and we would
gain nothing from the first-exit reformulation. However, if
we only have an approximation to ṽ, choosing greedy actions
with respect to ṽ is likely to be worse than solving the above
first-exit problem. This is the spirit of MPC. There is no proof
that such a procedure will improve the control law, but in
practice it usually does.

There is an important difference between our proposal and
the way MPC has been used in the past. Traditionally MPC
solves (in real time) a finite-horizon problem rather than a

1The more traditional total cost-to-go function v is infinite in non-
discounted problems, which is why we work with ṽ. Loosely speaking,
if v (x, t) is the total cost-to-go at time t for a problem that starts at
t = −∞ and ends at t = 0, the relation to the differential cost-to-go
is v (x, t) ≈ ṽ (x)− ct.

first-exit problem. That is, at each time step it computes an
optimal trajectory extending N steps into the future, where
N is predefined. The final state of such a trajectory can be
any state; therefore the final cost h needs to be defined
everywhere. In contrast, our method always computes a
trajectory terminating at a state in T , and so our final cost
only needs to be defined for x ∈ T . This is advantageous
for two reasons: i. guessing/approximating ṽ is easier if we
have to do it at only a subset of all states; ii. in the case of
contact dynamics, if we define T as the set of states where
contacts occur, then the real-time optimization does not need
to deal with contact discontinuities; instead the effects of
such discontinuities are incorporated in h.

B. Tuning the final cost

One way to specify h is to use domain-specific heuristics.
We will see below that in the case of ball-bouncing, our
formulation of MPC makes it particularly easy to come up
with obvious heuristics – which basically define what is a
good way to hit a ball. In other tasks such as walking, the
heuristics may define what is a good way to place a foot on
the ground.

There are also two more principled approaches relying on
Reinforcement Learning. Both require a parametric function
approximator h (x;w) where w is a real-valued vector. The
first approach is policy gradient. The vector w defines a
function h, which in turn defines an MPC control law
(through some real-time optimization algorithm), which in
turn can be evaluated empirically (through sampling) on the
original infinite-horizon problem. In this way we can define
the average empirical cost c (w) for every possible w, and
perform gradient descent on it.

The second approach is approximate policy iteration. It
relies on the fact that at the optimal solution, the final cost
h coincides with the optimal differential cost-to-go ṽ for the
infinite-horizon problem. Thus h can be improved as follows.
For a set of starting states in T , run the MPC control law
corresponding to the current h (x;w), and obtain learning
targets for ṽ (x) on x ∈ T , using Temporal Difference
learning for example. Then adapt the parameters w so that
h (x;w) gets closer to these learning targets, and iterate.

Thus far we have only implemented the heuristic approach
(which worked surprisingly well for ball-bouncing) and are
now in the process of implementing and testing the latter
two approaches.

C. Solving the first-exit problem

Each iteration of iLQG starts with an open-loop control
sequence u(i) (t), and a corresponding state trajectory x(i) (t)
and includes the following steps (described in more detail
in [5]):

1) Build a local LQG approximation around x(i),u(i)

2) Design a control law for the linearized system, in the
form δuk = lk + Lkδxk.

3) Apply this control law forward in time to the linearized
system δxk+1 = Akδxk+Bkδuk, initialized at δx1 =
0.

4) Compute the new open-loop controls ũk = u
(i)
k +δuk,

enforcing ũ ∈ U .
5) Simulate the system to compute new trajectory and

cost. For each time step, check if the terminal event
condition is satisfied and adjust the number of time
steps and the final cost accordingly.

6) End the iteration if the costs for u(i) and ũ are
sufficiently close.

The original iLQG algorithm has been modified to handle
terminal events in the following way: in the forward pass
instead of running for a predefined number of time steps, the
algorithm runs until it hits a terminal state. If the terminal
state is not hit, then the algorithm behaves exactly like the
original one. Unlike the original algorithm, as the number
of steps can now vary between iterations (depending on
when exactly the terminal state has been reached), special
care needs to be taken not to abort subsequent iterations
prematurely. To achieve this, if during the forward pass a
terminal state is not hit in the number of steps used in the
last backward pass, the sequence of states is extended (and
the sequence of controls extended too using values from the
initial sequence if necessary) until a terminal state or the
limit on the number of states is reached.

III. APPLICATION TO BALL-BOUNCING

We have applied this method to the ball juggling system
that includes a paddle mounted on a robot and a table
tennis ball. The robot moves an effector with the paddle
in three dimensions inside a workspace defined by a
cylinder (with a center of the cylinder positioned at [0; 0;
0]); the paddle always stays in the horizontal plane. The
robot receives a control signal, which is limited by the
force that the robot can generate. Let px, py , and pz be
positions of the paddle in their respective coordinates; bx,
by , and bz be positions of one ball and ox, oy , and oz be
positions of the other ball. The state has 18 dimensions: x =[
px; py; pz; ṗx; ṗy; ṗz; bx; by; bz; ḃx; ḃy; ḃz; ox; oy; oz; ȯx; ȯy; ȯz

]
The dynamics are

ẋpp = xpv

ẋpv = u+ [0; 0;−g]
ẋbp = xbv

ẋbv = [0; 0;−g]− d‖xbv‖xbv

ẋop = xov

ẋov = [0; 0;−g]− d‖xov‖xov

where the state variables are xpp = [px; py; pz], xpv =

[ṗx; ṗy; ṗz], xbp = [bx; by; bz], xbv =
[
ḃx; ḃy; ḃz

]
, xop =

[ox; oy; oz], xov = [ȯx; ȯy; ȯz], g is the acceleration due
to gravity, and d is the coefficient calculated based on the
drag coefficient and other parameters (see Section Parameter
identification for details on how it is calculated). The goal is
to juggle the ball given its desired velocity after the contact
while keeping the paddle in the workspace (close to the
center of the workspace). The control objective is to find

the control u(t) that minimizes the performance index

J0 = h(x(T)) +

T−1∑
t=1

`(x (t) ,u (t))

` (x,u) = ‖u‖2 + ww‖pxy‖2 + wz (pz − ptarget)2

+ wp‖pxy − bxy‖2

h(x) = wv‖xcontact
bv − vtarget‖2 + wdH

(
ḃz

)
+ wp‖pxy − bxy‖2

where xcontact
bv is the ball velocity after the contact, vtarget

is the target ball velocity after the contact, ptarget is the target
z coordinate for the paddle, H is a unit step function, wv

is a weight on the velocity error, wd is the weight on the
direction of the velocity at the contact, ww is the weight
on the distance from the middle of the workspace in the xy
coordinates, wz is the weight on the distance from ptarget,
and wp is the weight on the distance from the ball projection
on the xy-plane. We used a time step of 10msec, T = 1sec,
and set the maximum control torque along each coordinate
to be |u| ≤ 50. As stated before, the final time T is adjusted
based on the result of the check for a terminal event.

A. Target identification for one-ball system

To send the incoming ball to its target position and its
target height we have to specify the desired return velocity.
For one ball system the target position/height are set to
specific values2 and the return velocity is calculated as
velocity needed to reach the desired height based on ball’s
position at contact using the system dynamics as described
in the previous section. For the velocity in xy-plane the
system calculates the time for the ball to fly up to the
target height and then down to the target position and then
uses the distance between the ball at the contact and the
target position to get the velocity. The drag is not taken into
account in the last operation as velocities in xy-plane are
small comparing to z-velocity.

B. Target identification for two-ball system

As noted by Schaal and Atkeson [6], ”In order to juggle
more than one ball, the balls must travel on distinct trajecto-
ries, and they should travel for a rather long time to facilitate
the coordination of the other balls.” To achieve this in our
setup with the hand-crafted cost function, the function that
calculates the return velocity has been modified in the follow-
ing way. In the one-ball configuration the return velocity is
calculated based on the desired height and the target position
(set to the center of the workspace), whereas in the two-
ball configuration the target position is calculated based on
where the other ball is expected to intersect z = 0 plane. The
target position is then set to be on the line that connect the
intersection point with the center of the workspace according

2Both targets can be modified at any time and the system will adapt to
the changes; the video submitted with the paper includes a segment where
the target height is randomly set to a value between 0.10m and 0.60m after
each contact and the system incorporates that value into the calculations to
hit the target.

to the formula: pt = p2 − dtargetp2/‖p2‖, where p2 is
the position of the other ball, dtarget is a desired distance
between the balls, and pt is the target position for the ball
at the contact. The target height is calculated in such a way
as to have one ball at the apex when the other ball is at
contact. After the targets are calculated, the same function
that calculates the desired return velocity for one ball system
is applied.

The advantage of this approach is its simplicity, but one
of its drawbacks is that the actual trajectory of the ball
is not taken into account. As can be seen from the video
submitted with the paper, the balls occasionally collide. One
improvement that we are considering to implement is to
analyze the trajectories and adjust the target if the projected
ball trajectories intersect or come too close.

Notice that all the other parameters of the cost func-
tion stayed exactly the same, which allowed for seamless
integration of one-ball and two-ball juggling behaviors as
demonstrated in the video. This permitted for one of the
balls to be removed from or added to the workspace at any
time (which also simplified the system setup).

C. System design

In this section we describe the design of the system we
used to run the experiments on. For the robot platform
we used the Delta Haptic robot [11] with three degrees of
freedom that is capable of high speed motion.

The robot has a regular table tennis paddle mounted on
its effector and interacts with regular table tennis balls;
both the paddle and the balls follow the ITTF rules3. The
balls are tracked by high-speed Vicon Bonita cameras4 with
frequency 240Hz and are covered with a reflective tape5

to enable tracking. The tape has been carefully applied to
avoid bulges and gaps to minimize the noise during contact
with the paddle. As Reist and D’Andrea [12] observed, ”the
main source of noise in the measured impact times and
locations are stochastic deviations of the impact parameters,
i.e. ball roundness and CR”; they also specifically called
out table tennis balls as generating too much noise in the
horizontal degrees of freedom at contact. In our case both of
the aspects–ball roundness and the coefficient of restitution–
have been affected by tape application, which introduced
more noise for the system to deal with.

Another aspect of the system that posed additional chal-
lenges was the limited size of the robot workspace: 0.36m
in diameter and 0.30m in height. Although ITTF rules do
not specify the size of the paddle, the majority of them are
about 15cm across, which is approximately the half of the
workspace diameter.

We have not made any modifications to the robot other
than attaching a paddle to its effector, but we have made two
configuration changes: disabled gravity compensation and
raised the velocity threshold to allow two-ball juggling. The
robot is capable of applying force of up to 25N , which, given

3International Table Tennis Federation; http://www.ittf.com/
4http://www.vicon.com/products/bonita.html
53MTM ScotchliteTM Reflective Tape 03456C

the mass of the effector with the paddle, roughly translates
to 110m/s2; however, in all our experiments the acceleration
has been limited to 50m/s2.

As the ball position is reported in the Vicon coordinates
and the paddle position is reported in the robot coordinates,
the two coordinate systems need to be merged together to
allow for proper calculations of ball positions and desired
return velocity. To avoid adding markers to the paddle or
limiting the robot to a particular position, we added a simple
calibration step to each experimental session. At the begin-
ning of the session the ball is placed on the paddle and the
paddle is moved to four different positions. The coordinates
reported by the cameras and the robot are recorded and
then the conversion matrices for the two coordinate systems
are generated based on four sets of coordinates. These
conversion matrices are used to map coordinates provided by
the cameras to the robot (workspace) coordinates in which
all the calculations are done.

D. Implementation details

All the code for the control loop and the iLQG algorithm
has been implemented in MATLAB. The initial implemen-
tation of the algorithm was taking up to 100ms to get a
solution (in simulation) and was too slow to be used inside
a 10ms control loop. Rewriting some of the components
to use vectorization instead of loops somewhat improved
performance, but still not sufficiently. After exploring sev-
eral options we decided to use Embedded MATLAB coder
that works with Real-Time Workshop for MATLAB6 and
provides an option of translating MATLAB code to C and
then compiling it to native code. To achieve the desired
performance we modified the original iLQG algorithm7 to
make it compatible with Embedded MATLAB and could
generate a solution in 3ms (on average in simulation with
one ball), which was sufficiently fast for our purposes. The
original algorithm had also been modified to implement
terminal events, as described in Section Solving the first-exit
problem.

IV. SYSTEM IDENTIFICATION AND MODELING

The system has several parameters that affect the model
and the cost function used in calculating the optimal solution.
Two coefficients used in the model –the coefficient of resti-
tution and the drag–have major impact on the performance
of the system and have been estimated from the experimental
data. Other parameters–like weights for components of the
cost function–have been selected based on results of running
one- and two-ball juggling algorithms in simulation.

A. Parameter identification

The coefficient of restitution (ez) was estimated from the
data recorded on the robot based on paddle and ball velocities
before and after impact according to the following formula:
ez = (ḃafterz − ṗafterz)/(ṗbeforez − ḃbeforez). The results lie in

6http://www.mathworks.com/products/rtw/
7As described in [5] and based on MATLAB implementation available at

http://www.cs.washington.edu/homes/todorov/

http://www.ittf.com/
http://www.vicon.com/products/bonita.html
http://www.mathworks.com/products/rtw/
http://www.cs.washington.edu/homes/todorov/

the interval ez ∈ [0.562, 0.700]. The large range of estimated
values is likely to be explained by the impact of the tape
applied to the balls. We used ez = 0.58 for most of our
experiments as this value produced the least deviation from
the target height for the different values of target height
tested. The coefficients of restitution for x and y impact
directions proved to be difficult to estimate consistently; we
hypothesized that this was caused by the effect of the spin,
that was difficult to measure and was ignored in the model.
These two coefficients of restitution (ex and ey) have been
set to 1 in the experiments.

The second parameter estimated from the data was the
d parameter, calculated according to the following for-
mula: d = cdρA/(2m), where cd is the coefficient of
drag for a smooth sphere (0.5), ρ is mass density of the
air (1.229kg/m3 at sea level), A is the reference area
(0.0012566 for 40mm table tennis ball) and m is the
ball mass (0.0027kg). As both the ball mass and, more
importantly, the coefficient of drag of the ball have been
affected by the application of reflective tape, this parameter
was estimated from the data based on the best fit with the
model that minimizes sum of squared errors. The value that
we used in the experiments was 0.4, whereas the value
calculated for a regular table tennis ball would be 0.143.

B. MATLAB simulation
In addition to implementing the core algorithm in MAT-

LAB, we also implemented the simulator that runs the
algorithm and also collects and presents the data for analysis
(including 3d representation of the paddle and the balls). This
simulation was used to estimate performance characteristics
under various conditions and optimize the code and also to
select weights for the components of the cost function. The
next section provides comparison for some of the results in
simulation with results on the real robot.

V. EXPERIMENTAL RESULTS

In this section we present and discuss experimental results
from the MATLAB simulator and the actual robot system.
The focus of these experiments has been on the performance
profile of the system as well as on suggesting ways to
improving accuracy in controlling the behavior of the system.

A. Execution time analysis
The simulation environment that we developed supported

two simulation modes: one that runs completely in simulation
and the other one that gets data from the robot, applies the
calculations, and sends control signals to the robot. The only
difference with running this on the robot is that the cameras
are not being queried and the algorithm is using ball positions
as provided by the simulation engine. We completed several
runs in the simulation environment and on the real system in
one- and two-ball setups and compared results for execution
times of the algorithm in each of the conditions8. The results
are presented in Fig. 1.

8All the calculations and experiments were performed on a desktop
computer with Intel R©CoreTM2 Duo Processor E8500 3GHz and 4GB RAM
with the robot and Vicon cameras connected to the same computer.

(a) One ball in simulation (b) One ball on the robot

(c) Two balls in simulation (d) Two balls on the robot

Fig. 1. Execution time histograms and fit Gaussians for one and two ball
juggling in simulation and on the real robot.

As can be seen from the diagrams, the mean execution
time on the robot is larger than in simulation; however the
mean time for two-ball setup is less than for one-ball setup in
simulation. This can be explained by the fact that because of
the more frequent contact events, the number of time-steps
is approximately twice less, and as the result, there are fewer
calculations to be done by the iLQG algorithm.

The diagrams also show that while most of the calculations
in all four conditions are done faster than 10ms, which is
the desired duration of the control loop, there is still a large
portion of them that take longer than 10ms. It turned out
that the steps that take most time have properties that can be
exploited to further reduce execution time without significant
impact on the quality of generated solutions. As can be
seen in Fig. 2, steps with the longest execution time are
the ones that are calculated shortly after the contact between
the paddle and the ball9.

One way to shorten the execution time is to increase the
time step for these initial steps, which should improve perfor-
mance and not adversely affect generated solutions. Another
way is to abort the iLQG algorithm if the threshold on the
execution time is exceeded even before the convergence is
reached. While this may return a sub-optimal solution, this
is less critical during the first (after contact) time steps;
the solution will be improved during the subsequent steps.
As the robot is capable of generating fast movements with
relatively large force (24N), we have implemented a fail-
safe mechanism that ignores the control signal if the cost
of the generated solution is too large and sends a signal to
the robot that only compensates for gravity, which helps to
avoid (potential) damage to the robot and the environment.

9The ball and the paddle trajectories do not touch on the diagrams because
the paddle position is the position of the effector it is mounted on. There
is expected to be approximately 0.0328m between the center of the ball
(0.040m in diameter) and the effector at contact.

Fig. 2. Positions of paddle (blue, dashed) and ball (red) during several
bounces with execution times (gray) of the control loop for each time step.

B. Response to perturbations

The investigation of how the system reacts to external
perturbations has been one of the most interesting aspects
of our research. After the system could robustly bounce one
ball10 we subjected it to various disturbances, which included
removing the ball and then throwing it back, holding the
paddle or limiting its movement, and pushing or pulling the
paddle in various directions. The two graphs in Fig. 3 show
z- and x-positions of the paddle and the ball during some of
the perturbations.

Fig. 3. System response to perturbations. The perturbations are marked
with gray lines; the contacts are marked with dotted lines. Top: z-position
of the paddle (blue, dashed) and the ball (red). Bottom: x-position of the
paddle (blue, dashed) and the ball (red).

The first gray line marks the time when the ball was added

10We recorded several 12 minute runs with 1500+ bounces in each session
without any interruptions.

(25th second on the graph; this corresponds to 42th second
on the submitted video). The robot juggled the ball for a bit
and then the paddle was pushed (27th second on the graph
marked with a gray line and 44th second on the video); the
system recovered from the push and completed the bounce.
Then the system was pushed again (29th second on the graph
marked with a gray line and 46th second on the video), but
the paddle smoothly came back and the system continued
juggling. The system demonstrated robust behavior and quick
recovery from disturbances and had been fun to play with.

In addition to perturbing the system during one-ball jug-
gling, we also analyzed in detail how the system reacts to
changes during two-ball juggling. Fig. 4 shows several events
of interest also marked with gray lines. The first event was
adding a second ball to the system, which was then bounced
along with the first one. Then the system lost one of the
balls (around 57th second; marked with a gray line), which
happened because two balls were too close to each other11.
In this case the system hit the ball too slow and the next
contact happened with two balls almost at the same time.
The system still managed to recover and sent one of the
balls high to get the next contact to happen when the ball is
close to the apex. The system continued to happily bounce
the balls for one more second until one of the balls flew
out of the workspace. The cameras lost one of the balls
one more time (third gray line), but this didn’t have any
negative consequences as both of the balls were flying up.
As the result of this analysis we implemented a mechanism
that checks for this set of conditions and adjusts reported
positions when one of the balls is lost, which eliminated this
issue from subsequent runs.

Fig. 4. Two ball bouncing sequence with paddle (blue, dashed) and balls
(red and black) z-positions. Events of interest marked with gray background.

11Although the Vicon system proved to be reliable in ball tracking, when
two balls get sufficiently close (less than 3/4 of their diameter), the system
tends to recognize and report them as one marker; while the balls pass each
other they may still be reported as one marker. This has a double negative
effect as not only does one of the balls ”disappear” from the system, but
the other ball is reported in the wrong position (roughly between the two
balls), which affects both position and velocity calculations.

C. Accuracy of reaching target height

To assess the accuracy of reaching the target height we
recorded several two-minute sequences of bounces with
various target heights; the results are shown in Fig. 5. Even
though our analysis of the coefficient of restitution produced
different values for different target heights (as described in
Section Parameter identification), we used the same value for
all these experiments and the system generated good results
with rather narrow distributions (except with the target height
set to 0.40m, where the mean is 0.376m).

(a) Target height set to 0.10m (b) Target height set to 0.20m

(c) Target height set to 0.30m (d) Target height set to 0.40m

Fig. 5. Accuracy of the ball reaching a target height for various target
values.

The accuracy of the target height is an important mea-
surement, especially for bouncing two balls, where the time
between bounces is one of the few parameters that can be
controlled. This accuracy depends on several factors: the
specified coefficient of restitution, paddle and ball quality,
the amount of spin (not included in the model), control of
the robot to get to the contact point with the right velocity,
and other factors. As the desired paddle velocity at contact,
which in turn defines the ball velocity after the contact and as
such the height it will fly to, is only one of the components
in the cost function, the system makes a decision based on
a combination of those components and may not necessarily
satisfy each of its targets individually (being it a target
position or a target height).

D. Accuracy of predicting paddle position

We also analyzed how well the paddle follows the pre-
dicted trajectory, which would indicate how well the system
can control the robot. Fig. 6 shows the actual trajectory of
the paddle during several bounces and the predictions of the
algorithm for positions of the paddle in the subsequent time
steps before a contact (small black dots mark positions and
time steps when the prediction is being made).

There are two things that can be seen from the graph:
the robot doesn’t exactly follows the trajectory that the
algorithms predicts for it, which can be explained by delays

Fig. 6. Actual (solid blue) versus predicted (dashed black) paddle position.

in the robot hardware and the fact that sending of the control
commands is delayed by the time of the algorithm execution.
More specifically, if the vicon/robot data are gathered at time
T and the prediction is based on that data, the control signal
is sent at time T + δ, where δ is the execution time of the
algorithm; it is 7ms on average for the system with one ball.
Other potential causes for the differences are friction, which
is currently not being modeled; some nonlinearities in the
robot dynamics which are currently modeled as linear; and
mis-estimation of the effective mass.

One thing worth noting in this context is that the modeling
errors are significant and yet the control algorithm works
remarkably well. In fact it worked so well that we didn’t even
realize the errors were there until we analyzed and plotted the
data. This is a very good property to have because complex
robots can rarely be modeled well, so it is important to
have control algorithms that are robust to model errors; these
errors are different from perturbations (and our algorithm is
robust to both). Having said that, one of the directions where
we plan to take this work is to get better control of the robot
as further detailed in the Conclusions section.

E. Accuracy of contact point on paddle

Another important parameter, especially for the two ball
bouncing, is the accuracy of the contact point on the paddle
as the two balls need to be separated in both time and space.
Fig. 7 shows contact coordinates relative to the paddle as well
as their fitted distributions in x and y coordinates. The results
show that the contact points have the expected mean in the x
coordinate and a small non-zero mean in the y coordinate; we
attributed this deviation to the robot platform being slightly
misleveled.

VI. CONCLUSIONS

In this work we generalized MPC from the finite horizon
setting to a first-exit setting, generalized and extended iLQG
algorithm to first-exit setting, described suitable cost func-
tions and overall system design, implemented the system, and

Fig. 7. Contact locations between ball and paddle relative to the center of
the paddle. Top: x- and y-positions on the paddle; blue circle approximately
shows the paddle size (0.15m in diameter). Bottom: Fitted contact coordinate
distributions for x- and y-positions.

analyzed its performance in simulation and on the real robot.
We also demonstrated that even though the system is using a
robot with significant physical constraints (a small workspace
and no tilt control) we were able to robustly bounce one ball,
recover from a wide range of disturbances, and bounce two
balls on the same paddle.

We are pursuing extending the work that has been done so
far in several directions: i. tuning the final cost of the solution
using policy gradient and approximate policy iteration as
described in more detail in Section Tuning the final cost; ii.
improving properties of the existing algorithms by speeding
up calculations, taking ball trajectories into account when
calculating desired target positions, and improving the model
by incorporating robot delays and other factors like the
horizontal coefficient of restitution, that are currently being
ignored.

To minimize modeling errors we plan to develop a more
detailed dynamics model of this robot and infer its parame-
ters via system identification, which is likely to increase per-
formance further. Another item for future work is developing
a state estimation algorithm for tracking the balls, instead
of relying on the instantaneous Vicon data (which proved
to be unreliable when the balls come close). This has been
partially addressed with the fail-safe mechanism as described
in Section Execution time analysis, but we are looking for a
more systematic solution.

We also plan to do a comparison with human subjects
to explore how the behavior of the robot is different from

humans on similar tasks and to bring the cost model closer to
the models that humans may be using. We have already per-
formed an experiment with human subjects bouncing ping-
pong balls to different heights and with different amounts
of perturbation (introduced by making the ball bumpy).
This is actually one of the first experimental datasets on
mechanically-unconstrained 3D human ball bouncing, and is
made possible by our trick of wrapping the ball in reflective
tape and treating it as a Vicon marker. We are looking
forward to analyzing this data in detail and comparing it to
the behavior of the robot. Such comparisons will hopefully
suggest additional improvements in our control algorithm.

VII. ACKNOWLEDGEMENTS

This work was supported by the US National Science
Foundation. Thanks to Yuval Tassa and Alex Simpkins for
their help with the project.

REFERENCES

[1] M. Morari and J. Lee (1999). Model predictive control: past, present
and future. Computers and Chemical Engineering 23: 667-682

[2] D. Bertsekas (2005). Dynamic programming and suboptimal control:
A survey from ADP to MPC. European J Control

[3] M. Diehl, H. Ferreau and N. Haverbeke (2008). Efficient numerical
methods for nonlinear MPC and moving horizon estimation. Interna-
tional Workshop on Assessment and Future Directions of NMPC

[4] P. Abbeel, A. Coates, M. Quigley and A. Ng (2007) An application
of reinforcement learning to aerobatic helicopter flight. In Advances
in Neural Information Processing Systems 19

[5] E. Todorov and W. Li (2005). A generalized iterative LQG method for
locally-optimal feedback control of constrained nonlinear stochastic
systems. In proceedings of the American Control Conference 2005

[6] S. Schaal and C. G. Atkeson (1993). Open Loop Stable Control
Strategies for Robot Juggling. In processings of the 1993 IEEE
international conference on Robotics and Automation

[7] A. Rizzi and D. Koditschek (1994). Further progress in robot juggling:
Solvable mirror laws. In processings of the 1994 IEEE international
conference on Robotics and Automation

[8] D. Sternad, M. Duarte, H. Katsumata and S. Schaal (2000). Dynamics
of bouncing ball in human performance. Physical Review E, vol 63

[9] R. Ronsse, K. Wei and D. Sternad (2010). Optimal control of a
hybrid rhythmic-discrete task: The bouncing ball revisited. Journal
of Neurophysiology 104: 2484-2493

[10] E. Todorov (2004). Optimality principles in sensorimotor control.
Nature Neuroscience 7: 907-915

[11] S. Grange, F. Conti, P. Helmer, P. Rouiller, C. Baur. (2001) The Delta
Haptic Device. In proceedings of the Eurohaptics’01

[12] P. Reist and R. D’Andrea (2009). Bouncing an Unconstrained Ball in
Three Dimensions with a Blind Juggling Robot. In proceedings of the
2009 IEEE international conference on Robotics and Automation

	Introduction
	First-exit model predictive control
	Infinite-horizon and first-exit problems
	Tuning the final cost
	Solving the first-exit problem

	Application to ball-bouncing
	Target identification for one-ball system
	Target identification for two-ball system
	System design
	Implementation details

	System identification and modeling
	Parameter identification
	MATLAB simulation

	Experimental results
	Execution time analysis
	Response to perturbations
	Accuracy of reaching target height
	Accuracy of predicting paddle position
	Accuracy of contact point on paddle

	Conclusions
	Acknowledgements
	References

