
 1

Abstract

The research community has studied if-conversion

for many years. However, due to the lack of existing
hardware, studies were conducted by simulating code
generated by experimental compilers. This paper
presents the first comprehensive study of the use of
predication to implement if-conversion on production
hardware with a near-production compiler. To better
understand trends in the measurements, we generated
binaries at three increasing levels of if-conversion
aggressiveness. For each level, we gathered data
regarding the global runtime effects of if-conversion
on overall execution time, register pressure, code size,
and branch behavior. Furthermore, we studied the
inherent characteristics of program control-flow
structure related to branching to help determine
fundamental limits of if-conversion. Our results show
that on the Itanium™ processor if-conversion could
potentially remove 29% of the branch mispredictions
in SPEC2000CINT but that this accounts for a
substantially smaller overall program speedup than
previously reported.

1. Introduction

Although the research community has investigated
predicated execution for many years, due to the lack of
real hardware to validate their research results, studies
were confined to using processor simulators running
binaries generated by experimental compilers (often
running without any operating system layer). The
recent introduction of the Itanium™ processor and
associated production software environment provides
the first opportunity to perform new analysis of if-
conversion under production constraints.

This paper presents the first comprehensive study
of the use of predication to implement if-conversion
on general-purpose production hardware and software.
We examine three basic effects of if-conversion: the
impact of if-conversion on code size, register pressure,
and branch behavior on the Itanium processor,
limitations of our compiler in performing if-

conversion, and how inherent program control-flow
characteristics affect if-conversion.

Although this study is limited only to impact of if-
conversion, predication has a number of other possible
uses. For example, external studies [15] and our own
internal work have shown that floating-point (FP)
codes improve by about 35% when software
pipelining is used. Other studies have shown that code
layout has substantial impact on instruction cache
(Icache) optimization, but none have directly
addressed how predication might be used to improve
instruction stream behavior beyond that provided by
branch removal. Our results indicate that there is
potential for optimization of the instruction stream by
using predication, although we do not have sufficient
data to draw well-founded conclusions in this area.
While control and data speculation in the Itanium
instruction set provide great freedom to compilers,
non-speculative operations such as stores, checks, and
some condition computations are difficult to move. In
each of these cases, predication can contribute to the
overall performance of an application. While all of
these techniques are promising, in this paper, we
concentrate only on the use of if-conversion and its
impact on removing branches and their mispredictions.

Rather than focusing only on compile-time static
measurements or only on run-time dynamic
measurements, we have developed a methodology that
allows us to link consequences of decisions made at
compilation time with execution behavior. Runtime
behavior was measured by using the Itanium
processor’s performance monitors, while compile-time
information was stored as annotations in the program
executable.

In Section 2, we give a brief summary of prior
work in the area of predication and related compiler
technology. Section 3 describes the experimental
setup used in our study. Experimental results are
presented in two sections: Section 4 gives our program
measurements across benchmarks and compiler
settings, and Section 5 shows our analysis of how the
inherent control-flow properties of the benchmarks
impact the effectiveness of if-conversion.

The Impact of If-Conversion and Branch Prediction on Program Execution
on the Intel® Itanium™ Processor

Youngsoo Choi, Allan Knies, Luke Gerke, Tin-Fook Ngai
Intel Corporation, MS SC12-304

2200 Mission College Blvd
Santa Clara, CA 95052

{youngsoo.choi, allan.knies, luke.c.gerke, tin-fook.ngai}@intel.com

 2

2. Comparison to Related Work

Predicated execution has been extensively studied
[4, 5, 6, 7, 8, 9, 10, 11, 13, 20]. In architectures that
support predicated execution, instructions can be
tagged with a guarding predicate. Instructions whose
predicate is true execute as though they are not
predicated; instructions whose predicate is false
execute as NOP instructions. The process of
converting sequences of instructions with conditional
branches into predicated operations is known as if-
conversion [22].

2.1 Architectural Support for Predicated
Execution

Architectural support of predicated execution can
be traced back to vector mask operations in vector
machines [21], the select instruction in Multiflow
Trace [19], and restricted predicated instructions in
early superscalar architectures such as the conditional
move instruction in DEC/Compaq Alpha and SUN
SPARC V9 and nullifying instructions in HP PA-
RISC. These architectures only partially support
predication through special instructions or in special
cases. The Cydra 5 was the first wide-issue machine
that fully supported predicated execution [18]. Its
single-bit iteration control registers could be used to
predicate any instruction within a loop. Today, the
Itanium instruction set architecture is the only general-
purpose architecture that fully supports predication [1]
with 64 individually addressable predicate registers
and a wide variety of predicate-computing
instructions.

2.2 Use of Predicates in Software Pipelining

In [15, 16], predication was demonstrated to be an
important feature to help support software pipelining
(SWP) of loops. In addition to removing control
dependencies, stage predicates allow the loop kernel to
be filled and drained without the use of explicit
prologs and epilogs. The Itanium instruction set
architecture also supports rotating registers, further
increasing the efficiency of SWP. Warter et. al.
showed that software pipelined loops performed 34%
faster on average with predication than without [15].
Our own experience has shown similar results.

2.3 Compilation of Predicated Code

To gain performance enhancements from
predication, different compilation technologies are
required. The Illinois IMPACT group proposed the
hyperblock structure for predicated execution [6]. A
hyperblock is a single-entry multiple-exit region that
gives a larger scheduling region than a basic block or
a superblock. After instructions from multiple paths
are if-converted into a single block, additional

optimizations (such as instruction promotion and
merging) can be applied to increase ILP in the
predicated block [6, 7].

Havanki, et. al. [14] proposed a non-linear region
structure called a treegion that can be used to take
advantage of predication.

2.4 Reduction of Branches and Branch
Mispredictions via Predicated Execution

One major benefit of if-conversion comes from the
elimination of hard-to-predict branches. Malhke et. al.
[4] studied the impact of if-conversion on branch
prediction. It was shown that an average of 27% of
branches and 56% of mispredictions were eliminated
at runtime with if-conversion over a mix of SPEC92
benchmarks and UNIX utilities. Branches were
categorized according to their types (conditional or
unconditional, calls or returns), loop and non-loop
related, and locations (in inner loop, outer loop, or
straight-line code) and their impact on branch
prediction was studied. Our study confirms that if-
conversion can provide a very substantial removal in
branches and mispredictions on SPEC2000CINT.
However, our study also includes a correlation with
the fundamental structure of control dependences in
addition to branch types.

Tyson [9] analyzed branch elimination using
different predication models and their impact on
branch prediction schemes. A reduction of up to 30%
in the misprediction rate in several branch prediction
schemes was reported. In order to identify hard-to-
predict branches, Mantripragada and Nicolau [5]
proposed using data from branch profiling combined
with block sizes and schedule lengths, to selectively
perform if-conversion. Their simulations were based
on an ISA with partial predicate support on a 4-issue
out-of-order processor and showed a reduction of
misprediction rate from 1.2% to 55% and cycle
speedup from 0.5% to 15.2% on SPECint95
benchmarks.

2.5 Performance of Predicated Execution

Past research studies have shown significant
application performance improvement due to
predication. Based on emulation-driven simulation,
Malhke et.al. [8] reported an average speedup of 63%
(35%) of full predicated execution over non-
predicated superblock scheduling for a mix of SPEC92
and UNIX utilities on an 8-issue processor that can
retire/predict 1(2)-branch(es) per cycle. In the same
paper, predication was shown to be able to reduce the
number of branches and mispredicted branches by
57% and 38%, respectively.

An average speedup of 30% by predication alone
was reported more recently [7] for a slightly different
mix of SPEC92, SPEC95 and UNIX utilities

 3

benchmarks on a different machine configuration.
The processor used profile-based static branch
prediction and had a 6-cycle branch misprediction
penalty. Their cycle estimates were taken by
profiling execution, multiplying block execution
counts by compiler-generated expected cycle counts,
and then adding cache and exception effects from a
simulator.

Our performance results differ substantially from
these earlier works due to a number of differences in
experimental conditions. In the remainder of this
section, we describe the major factors accounting for
the difference in results.

First, the region size used by the compilers in the
past studies was improved when if-conversion was
allowed. This means that the compiler had a greater
scheduling window from which instructions are
chosen to schedule when if-conversion was enabled
than when it was disabled. In our compiler,
instructions are moved and scheduled in regions with
arbitrary acyclic control flow. Region size is
determined independently from whether if-conversion
is enabled or not.

Second, most of the previous studies used equal [7]
or greater [8] execution resources than what the
Itanium processor provides except for the number of
branch units and the complexity of their predictors.
Thus, those studies had fewer execution resource
conflicts (making if-conversion easier), but higher
contention for branch units (making if-conversion
more valuable). The results [8] showed that going
from 1 to 2 branch units substantially reduced the
performance gained from predication (almost by half).
Since the Itanium processor has 3 branch units, this
affect is further magnified.

Third, our results were gathered on a real hardware
that has TLB misses, pipeline flushes, cache
contention, and OS overhead. In [8], such exceptions
were assumed to be deferred when they were not
necessary. Since our system cannot always do this,
our overhead due to these non-branch related activities
is higher, and thus, benefits from better schedules and
elimination of mispredicted branches account for a
proportionally smaller percent of the total execution
time.

Finally, the difference in benchmarks and the
subsequent change in execution profile from past
studies contributes to a different percent of time spent
on branch processing. In SPEC2000CINT on the
Itanium processor, we see approximately only 7% of
cycles spent servicing branch mispredictions.

3. Experimental Setup and Methodology

3.1 Platform

Our experiments were run on a single C0-step
Intel® Itanium™ processor running at 733 Mhz using
the 460GX chipset and 1 GB of main memory. The
Itanium processor can issue up to six instruction slots
per cycle and has two load/store units, four general-
purpose ALUs, three branch units (and can perform
three branch predictions per clock), and two 82-bit
floating-point multiply accumulate units (FMAC).
The first level instruction and data caches are 16 KB,
4-way set associative. The second level cache is 96KB
unified, 6-way set associative and the third level cache
is 4MB, 4-way set associative. A more complete
description of the Itanium processor micro-
architecture is available in [2].

3.2 Compiler

The executables used in our performance runs
were built using a near-production version of Intel's
product Itanium architecture compiler, ECC.
Enhancements were made that allowed us to adjust the
heuristics used when making if-conversion decisions
and to insert annotations into the generated binaries.
The compiler was otherwise unmodified.

In ECC, predicate generation, along with all
predicate-aware optimization, is done in the code
generator. If-conversion is performed immediately
after software pipelining (when it is enabled) and
immediately before global code scheduling. Potential
candidates for predication are acyclic single-entry
regions, excluding those that contain architecturally
unpredicatable instructions or indirect branches.
Compile-time and code-size considerations limit our
searches to regions with reasonable size. However,
once a region is if-converted the resultant block is
considered for if-conversion with surrounding blocks,
effectively allowing if-conversion of large regions.

Predicate relationships are established through
evaluation of the control flow graph and represented
as a Predicate Partition Graph [17] for use by
downstream phases. The heuristics used to decide
whether to if-convert are based on a number of factors
including: dependence height, resource height,
estimated misprediction rates, and edge profile
information.

The compiler performs global code motion using
Wavefront Scheduling [12]. The scheduling regions
allow arbitrary acyclic control flow, and are thus not
directly impacted by the presence or absence of
upstream if-conversion. Even in the absence of if-
conversion, the compiler assigns predicates to blocks
that may be used by the code scheduler to perform

 4

upward and downward code motion. The register
allocator removes unused predicates later.

The register allocator is currently only partially
predicate-aware. In particular, the register lifetime of
a virtual register used inside a loop and defined under
a predicate is conservatively thought to extend upward
beyond its predicated definition.

3.3 Annotations

Our compiler has been modified to emit compile-
time information about specific functions, basic
blocks, and instructions into an annotation segment of
the binary [3]. These annotations are kept in a non-
loadable segment of the binary and have no impact on
the actual executable code generated by the compiler.
Post-processing tools were developed to read the
annotations from the binary and associate the
information with dynamic event data collected by the
Itanium processor’s performance monitors at runtime.

The compiler used this annotation section to record
program information related to heuristic decisions
made by the if-converter as well as to tag branch
types. Each branch is tagged with a type such as loop-
back, early loop-exit, call-type, IP-relative, indirect,
and controlling single/multiple-entry/exit acyclic
regions. These per-instruction records, used together
with per-instruction runtime event information, allow
us to relate low-level runtime event counts to higher-
level program and branch characteristics. In Section
5, this technique is used to characterize branches
according to their control-flow properties and their
architectural branch types.

3.4 Event sampling

Each binary was run multiple times to record
information from hardware performance counters.
These counters track a wide variety of basic events,
such as instructions retired, cycles, and branches
retired. The monitors are highly configurable (see [1],
Volume 4) to allow the user to collect event
information based on instruction opcode, memory
reference address, process privilege level, and other
criteria. The Itanium processor also supports event-
based sampling through the use of event address
registers (EARs).

When using EARs, it is possible to specify the
number of times an event occurs before a sample is
taken (sampling ratio). When the specified number of
events has occurred, the IP of the instruction causing
that event is recorded as well as event-specific data,
the performance monitors are frozen, and an external
interrupt is raised. After the interrupt handler records
all relevant information, monitors are unfrozen, and
execution continues. In this study, we collected branch
event samples and the sampling thresholds were
adjusted so that each benchmark had approximately 4

million samples. The sampling does not significantly
impact program execution as the overhead was
generally less than 3%.

3.5 Benchmark Runs

All experiments were run using the
SPEC2000CINT benchmarks under compiler options
compliant with SPEC “BASE” setting rules. All runs
were performed with the reference input set. Our base
settings included profile-guided optimization using
execution traces from the training set, whole program
inter-procedural optimization, and function inlining.
Three versions of each integer benchmark were built
to provide three degrees of if-conversion
aggressiveness: No if-conversion (NONE), default
level of if-conversion (DEF), and complete if-
conversion wherever possible (MAX). This
classification is based on the if-conversion heuristics
described in Section 3.2. The NONE level disallows
if-conversion entirely, the DEF level allows the
compiler to if-convert where it seems profitable
according to heuristics, and the MAX level if-converts
every region that the region-constructor creates,
regardless of profitability. (Note that due to the
compilation resource requirements at the MAX level,
we were unable to generate a functional MAX binary
for gcc, so the result is missing in our graphs.)

The DEF level has been tuned to maximize the
average performance of applications, other levels were
expected (and indeed) generally resulted in slower
binaries regardless of the amount of if-conversion
performed. The MAX level binaries were produced to
help us understand how aggressive if-conversion
changes control flow structure and associated program
characteristics, rather than to improve performance.

As mentioned in Section 2.2, predicates can be
used effectively in software pipelining (SWP). In
order to focus on the use of predication in if-
conversion, we turned off SWP in the compiler so that
measurements taken on predicated code only include
affects from if-conversion, rather than from SWP
stage predicates. Although SWP is turned off in our
experiments, the compiler still if-converts code within
loops. In SPEC2000CINT, the time spent in loops that
can be software pipelined is very small and thus the
performance benefit for using this feature is less than
1% on SPEC2000CINT (although for SPEC200FP, the
benefit is greater than 30%).

4. Experimental Results – Basic Data

In this section, we present data and analysis
regarding if-conversion and its impact on general
program behavior using binaries compiled at NONE,
DEF, and MAX aggressiveness levels. The following
subsections describe the basic program runtime

 5

behavior based on static and dynamic measures and
discuss the corresponding microarchitecture and
compiler issues.

4.1 Total Execution Time

CPU Cycle
count

(million)

% Cycle spent
servicing branch

misprediction

Instructions
retired

(million)

NOPs
retired

(million)

Effective
IPC

164.gzip 386,814 9.37% 540,344 162,999 0.98

175.vpr 381,289 6.66% 295,576 95,235 0.53

176.gcc 237,116 7.52% 241,071 56,858 0.78

181.mcf 493,147 1.34% 105,825 29,010 0.16

186.crafty 206,538 9.82% 224,410 46,155 0.86

197.parser 489,667 8.52% 495,401 136,084 0.73

252.eon 242,004 6.46% 316,048 99,284 0.90

253.perlbmk 378,016 8.21% 572,988 150,717 1.12

254.gap 293,162 3.93% 335,921 83,601 0.86

255.vortex 266,340 1.16% 365,243 80,857 1.07

256.bzip2 341,874 8.98% 388,623 87,176 0.88

300.twolf 622,937 11.28% 498,668 166,575 0.53

AVERAGE 361,575 7.15% 365,010 99,546 0.78

Benchmark

NONE binary (No if-conversion)

Table 1. Basic statistics for binaries with no if-

conversion (NONE)

CPU cycle count

1.44 1.59

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.t

wolf

AVERAGE

R
at

io
 to

 N
O

N
E

 if
-c

on
ve

rs
io

n
le

ve
l

NONE DEF MAX

Figure 1. Relative CPU cycle count (NONE = 1.0)

Table 1 shows the total number of execution cycles

for the NONE binaries and the estimated percent of
time spent in servicing branch mispredictions. Since
the cycle numbers reported are measured on near-
production silicon with near-production compiler
technology, performance will be somewhat lower than
what one would expect on a system available by the
time this paper is published.

Figure 1 shows the CPU cycle counts of other if-
conversion levels relative to those of the NONE
binaries given in Table 1. Although we report overall
performance at different levels of if-conversion
aggressiveness, the focus of our study is to understand
the fundamental issues that arise from if-conversion
rather than whether a given compilation parameter
increases or decreases performance.

Figure 1 shows that more if-conversion does not
necessarily lead to increased performance. As
expected, the DEF if-conversion level usually results

in the highest performance, although there are some
variations between benchmarks. On average, the DEF
if-conversion level was 2% faster than the NONE
binaries, while the MAX if-conversion level was 14%
slower than NONE. The remainder of this section
discusses related effects and analyzes whether these
effects can be improved by changes in
microarchitecture or compiler technology.

4.2 Instruction Access Behavior

Because code size and code layout can have subtle
effects on program performance, we use three metrics
to characterize the effect of if-conversion on the
instruction stream: dynamic count of retired
instructions (including nops and predicated-off
instructions), static instruction count (number of
instructions in the binary including nops), and the
number of first level instruction (L1I) cache misses.

The number of instructions retired at runtime
indicates the minimum bandwidth required between
the L1I cache and the execution units. Figure 2 shows
that the number of instructions retired increases with
more aggressive if-conversion. This is not surprising
because the more aggressively if-conversion is
applied, the more instructions from secondary control
paths are sent down the execution pipe (and later
squashed).

Number of instructions retired

1.63 1.33

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.t

wolf

AVERAGE

R
at

io
 to

 N
O

N
E

 if
-c

on
ve

rs
io

n
le

ve
l

NONE DEF MAX

Figure 2. Relative number of instructions retired

(NONE = 1.0)

Static number of bundles in assembly code

0.80

0.85

0.90

0.95

1.00

1.05

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.t

wolf

AVERAGE

R
at

io
 to

 N
O

N
E

 if
-c

on
ve

rs
io

n
le

ve
l

NONE DEF MAX

Figure 3. Relative static bundle count changes
(NONE=1.0)

Figure 3 shows the static instruction counts for

each binary. The static instruction count is an

 6

important measure because it contributes to the load
time of the binary, the amount of disk space required
for its storage, and is generally an indirect contributor
to instruction TLB (ITLB) misses. The code size of
DEF and MAX binaries are 1% and 5% smaller,
respectively, than that of NONE binaries. The static
code size always decreases with increasing predication
due to reduction in the number of branches and nops.
Nops are decreased because fewer branches, labels,
and higher ILP provides the compiler with greater
freedom in bundling instructions.

The last measure of the impact of code size is the
number of first level instruction (L1I) cache misses
incurred during execution. (Figure 4) For gcc, parser,
gap, and vortex, increasing if-conversion
aggressiveness increased the number of Icache misses.
For gzip, mcf, perlbmk, bzip2, and twolf, DEF if-
conversion level caused the fewest L1I cache misses
(more than 10% fewer in some cases).

Number of L1 I-cache misses

1.58 1.44 2.39

0.70

0.80

0.90

1.00

1.10

1.20

1.30

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.t

wolf

AVERAGE

R
at

io
 to

 N
O

N
E

 if
-c

on
ve

rs
io

n
le

ve
l

NONE DEF MAX

Figure 4. Relative number of L1I cache misses

(NONE = 1.0)

In summary, on average, the MAX level produces

the smallest static code size while the NONE level
retires the least number of instructions (as there are no
extra predicated-off instructions). The DEF level
incurs the fewest L1I cache misses with slight
increases in dynamic instruction count. This indicates
that by combining multiple control paths following a
branch, the default level if-conversion results in more
effective I-cache prefetching while not significantly
increasing the footprint of the original code.

4.3 Branch Behavior

Figure 5 shows the total number of branches
executed for each benchmark at different levels of if-
conversion aggressiveness. In some benchmarks, as
if-conversion level increases, successful branch
elimination by if-conversion reduces the number of
branches retired. However, for gzip, gcc, crafty,
parser, and perlbmk, the number of branches retired
increases. This can be attributed to the fact that
unconditional calls, indirect branches, and returns in
secondary control paths, which are not executed at the
NONE level, are being predicated and pulled into the

program’s execution path via if-conversion. Note that,
although the MAX level shows 19% more branches on
average, the number is skewed by perlbmk and crafty.

Number of branches retired

2.62

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.t

wolf

AVERAGE

R
at

io
 to

 N
O

N
E

 if
-c

on
ve

rs
io

n
le

ve
l

NONE DEF MAX

Figure 5. Relative number of branch instructions

retired (NONE = 1.0)

% CPU cycles spent servicing branch misprediction

0%

2%

4%

6%

8%

10%

12%

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.t

wolf

AVERAGE

%
 o

f
to

ta
l C

PU
 c

yc
le

s

NONE DEF MAX

Figure 6. Percentage of CPU cycles spent servicing

branch misprediction

Figure 6 shows the percentage of cycles spent

servicing branch mispredictions computed by
multiplying the number of branch mispredictions by
the misprediction penalty on the Itanium processor (10
cycles). We see that there is a substantial reduction in
percent of CPU cycles due to branch mispredictions
for all benchmarks except perlbmk. In Section 5, we
will explain perlbmk’s behavior. On average, the DEF
level if-conversion reduces branch misprediction
cycles by 20% and MAX by 27%. However, as
expected, overall execution time spent in servicing
mispredicted branches decreases with increasing
aggressiveness, varying from 0.2 % to 5% at DEF and
from 0.2% to 7% at MAX.

4.4 Compiler Effects

Currently, ECC’s register allocator is not fully
aware of predicate relationships. While predication
should not generally increase the use of general-
purpose registers, in some cases, ECC allocates more
registers than necessary.

 7

% CPU cycles spent servicing RSE activity

12.89% 18.29% 41.96%

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.t

wolf

AVERAGE

%
 o

f
to

ta
l C

PU
 c

yc
le

s
NONE DEF MAX

Figure 7. Percentage of CPU cycles spent in
servicing RSE activity versus if-conversion level

Figure 7 shows the estimated percent of execution

time spent servicing register stack engine (RSE)
requests (spilling/filling registers during function
call/return sequences)1, which is a good indication of
how well the compiler, did at register allocation. As
shown in Figure 7, the percent of time spent in
servicing RSE traffic is quite substantial at higher
levels of if-conversion in some benchmarks. Once this
limitation in ECC is fixed, the absolute performance
gain with if-conversion should improve
proportionally.

5. Experimental Results – Inherent
Control Flow Characteristics

While the results in Section 4 concentrate on the
changes in basic program characteristics at varying
levels of if-conversion, this section focuses on the
inherent properties and control flow structures of the
benchmarks. Through a combination of use of
compiler annotations, performance hardware
feedback, and post-processing tools, we have
characterized the inherent control flow structures of
the programs by the number, type, distribution,
predictability, and context of branches in the source
programs. We use this data to establish an upper
bound on the improvements that if-conversion can
achieve by reducing branch-mispredictions.

5.1 Branch Type Analysis

In this subsection, we examine the type and
control-flow properties of branches, identifying those
that are not removable by if-conversion. Table 2
summarizes the distribution of branches and
mispredictions in NONE binaries according to their
branch types. Dynamic data are based on runtime
sampled event data and are averaged across the

1 Based on anecdotal evidence gathered from kernels and
knowledge of the Itanium processor microarchitecture, each RSE
load/store pair is estimated to take 2 cycles.

benchmarks. Individual branches are classified either
as one of eleven different types of branches that
cannot be removed via standard application of if-
conversion or as belonging to the “Other IP-relative”
category.

static
dynamic

(sampling)

2.66%

Indirect call 0.64% 0.62% 43.19% 3.80% 0.28%

IP-relative call 23.47% 3.42% 0.25% 0.12% 0.01%

6.68% 3.91% 9.65% 5.39% 0.31%

Counted
(br.cloop,
br.ctop, br,cexit)

0.92% 6.39% 9.78% 8.92% 0.74%

IP-relative loop
back

2.94% 15.86% 6.06% 13.72% 1.01%

IP-relative loop
exit

2.58% 8.01% 6.22% 7.11% 0.43%

Indirect
unconditional

0.12% 0.34% 41.35% 2.01% 0.21%

Indirect
conditional

0.00% 0.00% 0.00% 0.00%

1.53% 0.00% 0.00% 0.00% 0.00%

25.11% 6.63% 2.59% 2.45% 0.17%

66.64% 45.18% 43.53% 3.15%

33.28% 54.81% 7.22% 56.47% 3.77%
100% 100% 100% 6.92%

Branch type (NONE if-

conversion binary)

average % of

CPU cycles

spent servicing

branch

misprediction

% of total number of

branches
misprediction

rate of each

branch type

% of total

mispredictions

due to the

branch type

Call

Nop.b

Return

Loops

Other IP-relative
Sum

Indirect

IP-relative conditional
recovery

IP-relative
unconditional

Subtotal for classified

branches

Table 2. Average branch behavior by type for
NONE binaries

Table 2 shows that eleven types of irremovable

branches account for 67% of the static branches, 45%
of the dynamic branches, and 44% of the program’s
mispredictions.

In theory, it is possible to remove some of the
mispredictions associated with branches that we have
classified as irremovable. However, in practice it is
either difficult or not profitable to do so. For example,
the conditional calls that remain (the compiler has
already performed interprocedural inlining where we
thought profitable) could be completely removed via
inlining and predication. However, unless the called
subroutine itself contains no difficult-to-predicate
instructions (such as calls, indirect branches, loops, or
unpredicatable instructions), it may not be possible to
effectively remove the mispredictions associated with
the call. Thus, our definition of irremovable branches
generally only refers to the mispredictions caused by
branches, rather than whether the branch itself is
theoretically removable.

In Table 2, the “Other IP-relative” row accounts
for all the branches that do not fall into one of those
irremovable categories – these are the branches that
form the set of branches that might be removable via
if-conversion. These branches account for 56% of all
mispredictions, and provide a bound on the number of
mispredictions that can be removed via if-conversion,

 8

with some caveats. First, unconditional IP-relative
branches are removed as a side-effect of if-conversion
or block ordering. Since they cause very few of the
mispredictions (2.5%), their removal is not generally
going to have large impact on branch prediction.
Second, our results are based on the Itanium processor
branch predictor, and different branch predictors may
give different results.

Benchmarks
% MP due to

"Other IP-
relative" branch

% MP due to
counted loop

branch

% MP due to non-
counted loop-
related branch

% MP due to
all indirect

branch

164.gzip 76.5% 1.8% 21.0% 0.0%
175.vpr 74.6% 11.6% 12.9% 0.0%
176.gcc 50.0% 9.4% 19.4% 10.0%
181.mcf 49.6% 0.0% 48.9% 0.0%
186.crafty 61.2% 3.0% 17.9% 4.4%
197.parser 51.7% 4.7% 32.9% 0.0%
252.eon 62.9% 0.0% 7.7% 12.7%
253.perlbmk 15.6% 13.5% 9.7% 54.7%
254.gap 34.9% 26.2% 17.5% 13.6%
255.vortex 66.9% 0.2% 8.3% 4.8%
256.bzip2 52.3% 11.6% 29.2% 0.0%
300.twolf 54.4% 20.7% 20.4% 0.0%

Table 3. Misprediction statistics for selected
branch types

Table 3 shows that the misprediction statistics vary

greatly by benchmark. For example, while the number
of mispredictions due to “Other IP-relative” branches
is 76% in gzip, it is only 15% for perlbmk. A close
look shows that a very large percentage of
mispredictions in perlbmk (55%) are due to branch
target mispredictions from indirect branches, which
are not directly removable via predication (our
compiler already peels out common cases from
switches, but does not directly attempt to peel
mispredicting cases).

Surprisingly, even though the Itanium processor
has a dedicated predictor for counted loops, a large
percentage of mispredictions still occur. This is most
likely due to the fact that the processor must fetch 6 or
7 cache lines of instructions between when the loop
count register is set and when the loop terminates in
order for the predictor to be accurate. Except in the
cases of eon and vortex, loop-related branches account
for 20% to 50% of all mispredictions.

This shows that substantial portions of the
mispredictions in some benchmarks cannot be
removed by if-conversion due to the fundamental
nature of the code. In the next section, we will refine
the bound on the set of mispredictions that are
removable via if-conversion.

5.2 Control Based Classification

In this subsection, we sub-classify “Other IP-
relative conditional branches” by the instructions that
are control dependent on them. We are interested in
five specific types of instructions: calls, returns, loops,

indirect non-call branches, and architecturally
unpredicatable instructions (alloc, flushrs, loadrs, rfi,
bsw, clrrrb, cover, epc). We say a branch controls one
of these types of instructions when no acyclic path
from the branch to the instruction in question passes
through any instruction that post-dominates the branch
(this is effectively a definition of control-dependence).
Furthermore, such control is said to be direct control
when no acyclic path passes through another
conditional branch before reaching the instruction in
question. Indirect control is a branch with control that
is not direct control.

Branches that directly control unpredicatable
instructions cannot be removed without altering
program behavior. Branches that control call, indirect,
and return branches can be removed via if-conversion,
but the controlled call, indirect branch, or return will
then simply inherit the predicate from the removed
branch. If this happens, directional mispredictions
from the parent will almost certainly transfer to the
child call, indirect, or return branch. If multiple calls
or indirect branches are controlled, it is possible that
predication will even increase the number of
mispredictions by effectively replicating the
mispredicting condition on several branches.

B enchm ark
N oPrd
B inary

B A SE
B inary

A ggPrd
B inary

N oPrd
B inary

B A SE
B inary

A ggPrd
B inary

164.gzip 1.33% 1.32% 2.94% 0.52% 4.17% 12.10%
175.vpr 1.32% 1.53% 4.87% 0.00% 0.00% 0.02%
176.gcc 3.93% 4.45% 10.19% 14.47%
181.mcf 0.15% 0.30% 0.30% 0.84% 2.67% 3.14%
186.crafty 3.43% 4.95% 9.62% 4.38% 8.72% 11.51%
197.parser 5.24% 6.54% 13.39% 0.12% 1.99% 3.83%
252.eon 10.45% 16.07% 24.73% 12.72% 26.79% 32.84%
253.perlbmk 10.91% 11.61% 25.14% 54.78% 57.98% 66.27%
254.gap 5.97% 8.13% 12.39% 13.68% 17.30% 24.48%
255.vortex 4.67% 5.41% 11.69% 4.79% 9.27% 27.11%
256.bzip2 2.62% 2.65% 14.12% 0.00% 0.00% 0.27%
300.twolf 1.05% 1.49% 2.27% 0.00% 0.00% 0.43%

% of instructions by calls
and indirect branches

% of m isprediction due to call
and indirect branches

Table 4. Percentage of calls and indirect branches
executed and their mispredictions

Likewise, the mispredictions associated with a

branch that directly controls a loop (the loop branch
and its body) cannot practically be removed via if-
conversion because the loop back branch would then
become part of the predicated region and
mispredictions could migrate to it from the parent. In
Table 4, we can see misprediction migration as the if-
conversion level increases by noticing that the
percentage of calls and indirect branches executed
generally increases.

Similar discussion applies to branches with
indirect control, but is more difficult to draw firm
conclusions. While it is possible to remove some
branches with indirect control, it is possible that all or
some of the mispredictions associated with the original
parent will migrate to the controlled branches. Thus,

 9

branches with indirect control sometimes can be if-
converted, but the resulting misprediction behavior of
the formerly controlled branches is difficult to analyze
statically.

static
dynamic

(sampling)
Some direct control 15.36% 17.18% 5.73% 14.06% 0.98%
 Loop entry 1.78% 2.52% 9.60% 3.46% 0.22%
 Loop exit 1.75% 5.29% 8.73% 6.60% 0.55%
 Call 10.91% 9.23% 3.21% 4.23% 0.24%
 Indirect branch 0.10% 0.36% 2.92% 0.15% 0.01%
 Return 3.83% 3.16% 6.67% 3.01% 0.16%
 Unpredicatable 0.00% 0.00% 0.00% 0.00% 0.00%
Indirect control only 9.97% 16.98% 5.40% 13.08% 0.88%
 Loop entry 4.71% 8.23% 6.66% 7.83% 0.53%
 Loop exit 1.29% 2.01% 0.35% 2.75% 0.17%
 Call 7.12% 10.60% 4.48% 6.77% 0.46%
 Indirect branch 0.37% 0.33% 16.70% 0.78% 0.06%
 Return 2.53% 2.37% 7.28% 2.46% 0.15%
 Unpredicatable 0.00% 0.00% 0.00% 0.00% 0.00%
Does not control 7.94% 20.66% 9.95% 29.33% 1.92%

Subtotal for "Other IP-
relative"

33.28% 54.81% 56.47% 3.77%

Classified branches 66.64% 45.18% 43.53% 3.15%
Sum 100% 100% 100% 6.92%

Control Info of
"Other IP-relative"

branches

average % of
CPU cycles

spent servicing
mispredictions

% of total number of
branches misprediction

rate
% of total

mispredicts

Table 5. Branch behavior based on its control
(direct/indirect)

% total
misprediction

% total CPU
cycles

% total
misprediction

% total CPU
cycles

30.09% 2.82% 16.97% 1.59%
49.79% 3.32% 16.86% 1.12%

9.37% 0.70% 23.22% 1.75%
33.78% 0.45% 10.08% 0.13%
33.65% 3.30% 13.11% 1.29%

3.22% 0.27% 13.82% 1.18%
29.27% 1.89% 8.62% 0.56%

2.09% 0.17% 6.20% 0.51%
15.58% 0.61% 14.02% 0.55%
28.23% 0.33% 28.66% 0.33%
13.09% 1.18% 18.09% 1.63%
48.45% 5.46% 5.73% 0.65%
29.33% 1.92% 13.08% 0.88%

186.crafty

164.gzip

175.vpr

176.gcc

181.mcf

197.parser

252.eon

253.perlbmk

254.gap

255.vortex

256.bzip2

300.twolf

AVERAGE

Benchmarks

Other IP-relative branch (rem ovable branch)

no control indirect control only

Table 6. Branch misprediction information for

potentially removable branches

Table 5 2 breaks down branches based on their
control characteristics. “Some direct control” includes
any branch that directly or indirectly controls one of
the six categories of controlled instructions,
“Indirectly control only” includes those branches that
have indirect control, but no direct control, and the
“Does not control” category includes those branches
that have no direct or indirect control over any of the
six categories.

“Does not control” branches and their
mispredictions are completely removable via if-
conversion, although there are a variety of factors such

2 The sub-categories do not sum to the row totals because they

overlap with each other (one branch could control both a return and
a call).

as dependence height, resource height, code size, and
predicate register usage that may make predication
undesirable in a given situation. On a per-benchmark
basis, Table 6 shows that the percent of mispredictions
due to “Does not control, Other IP-relative branches”
is relatively small and, on average, contributes 28% of
mispredictions accounting for 2% of the overall
execution cycles. If we included “indirectly-controlled
IP-relative branches”, this would account for 41% of
mispredictions and 3% of overall execution time.

According to Table 6, the CPU cycle reduction
possible due to reducing branch mispredictions by
applying if-conversion on the Itanium processor is
about 2-3%. However, this number does not account
for potential reductions in capacity or conflict misses
in predictors but does provide an upper bound based
on the predictability of specific branches. As pointed
out in the related research summary, there are many
other possible uses for prediction beyond if-
conversion. Thus, it would be a mistake to assume
that 2-3% is the maximum potential performance gain
for predication as a whole.

6. Conclusions

This study presents the first data analyzing the
impact of if-conversion on real hardware and
production software. We distinguish between if-
conversion and predication by noting that if-
conversion is but one of several uses for predication.
Our study only addresses if-conversion, although both
others’ and our own results show predication provides
substantial benefit for software pipelining,
improvements in instruction stream behavior, and
ability to perform more advanced code motion.

The data presented in this study provides a realistic
evaluation of how if-conversion affects program
execution while helping to establish some fundamental
limits on the impact of if-conversion. We have also
presented data showing how code size, register
pressure, and branch behavior are impacted by if-
conversion in greater details and in more realistic
conditions than has been previously possible.

Although this work and previous research have
demonstrated that if-conversion is very effective at
removing branches and mispredictions, our results
show that differences in compiler technology,
hardware resources, and benchmark behavior
substantially affect the conclusions of prior estimates
of if-conversion potential. However, in the future,
further changes in workload or microarchitecture
could substantially change the importance of the
findings in this paper again. Since follow-on
implementations of the Itanium processor are likely to
have bigger caches and the ILP compilation
techniques that exploit other Itanium features are

 10

becoming more mature, the portion of execution time
dominated by branch penalty will likely grow. In fact,
this effect partially accounts for why prior academic
studies saw a larger improvement from if-conversion –
they assumed that non-branch related factors were
smaller than what we have seen on the Itanium
processor for SPEC2000CINT.

Finally, we note that predication has major impact
on applications that have substantial time in software
pipelined loops or that have a very substantial
component of time spent in servicing mispredictions.
For applications that are Icache-limited, if-conversion
combined with profile-feedback directed layout look
promising and we expect research to examine this area
in depth. Because of these fundamental differences in
application codes, we expect to continue to see the
impact of predication vary widely across benchmarks
and microarchitectures.

7. References
[1] Intel Corporation. Intel® Itanium™ Architecture

Software Developer’s Manual. Available from
http://developer.intel.com/design/ia-64/manuals/, July
2000.

[2] Intel Corporation. Itanium™ Processor Microarchitecture
Reference for Software Optimization. Available from
http://developer.intel.com/design/ia-64/manuals/,
August 2000.

[3] Intel Corporation. Flexible Annotations API
Programming Guide. Available from
http://developer.intel.com/software/product/opensource
/tools/perftools.htm, June 2001.

[4] Scott A. Mahlke, Richard E. Hank, Roger A. Bringmann,
John C. Gyllenhaal, David M. Gallagher, and Wen-mei
W. Hwu. Characterizing the impact of predicated
execution on branch prediction. Proceedings of the 27th
annual international symposium on Microarchitecture,
pages 217–227, 1994.

[5] Srinivas Mantripragada and Alexandru Nicolau. Using
profiling to reduce branch misprediction costs on a
dynamically scheduled processor. Proceedings of the
2000 international conference on Supercomputing,
pages 206–214, 2000.

[6] Scott A. Mahlke, David C. Lin, William Y. Chen,
Richard E. Hank and Roger A. Bringmann. Effective
compiler support for predicated execution using the
hyperblock. Proceedings of the 25th annual
international symposium on Microarchitecture, pages
45-54, 1992.

[7] David I. August, Daniel A. Connors, Scott A. Mahlke,
John W. Sias, Kevin M. Crozier, Ben-Chung Cheng,
Patrick R. Eaton, Qudus B. Olaniran and Wen-mei W.
Hwu. Integrated predicated and speculative execution
in the IMPACT EPIC architecture. Proceedings of the
25th annual international symposium on Computer
architecture, pages 227-237, 1998.

[8] Scott A. Mahlke, Richard E. Hank, James E.
McCormick, David I. August and Wen-Mei W. Hwu. A
comparison of full and partial predicated execution
support for ILP processors. Proceedings of the 22nd
annual international symposium on Computer
architecture, pages 138-150, 1995.

[9] Gary Scott Tyson. The effects of predicated execution
on branch prediction. Proceedings of the 27th annual
international symposium on Microarchitecture, pages
196-206, 1994.

[10] Alexandre Eichenberger, Waleed Meleis, and Suman
Maradani. An integrated approach to accelerate data
and predicate computations in hyperblocks.
Proceedings of the 33rd annual IEEE/ACM
international symposium on Microarchitecture, pages
101–111, 2000.

 [11] David M. Gillies, Dz-ching Roy Ju, Richard Johnson,
and Michael Schlansker. Global predicate analysis and
its application to register allocation. Proceedings of the
29th annual IEEE/ACM international symposium on
Microarchitecture, pages 114–125, 1996.

[12] Jay Bharadwaj, Kishore Menezes, and Chris McKinsey.
Wavefront scheduling: path based data representation
and scheduling of subgraphs. Proceedings of the 32nd
Annual ACM/IEEE international symposium on
Microarchitecture, pages 262–271, 1999.

[13] D. N. Pnevmatikatos and G. S. Sohi. Guarded execution
and branch prediction in dynamic ILP processors.
Proceedings of the 21ST annual international
symposium on Computer architecture, pages 120-129,
1994.

[14] W. A. Havanki, S. Banerjia, T. M. Conte. Treegion
scheduling for wide issue processors. Proceedings of
the Fourth International Symposium on High-
Performance Computer Architecture, pages 266-276,
1998.

[15] N. J. Warter, D. M. Lavery, and W. W. Hwu. The
benefit of predicated execution for software pipelining.
Proceeding of the Twenty-Sixth Hawaii International
Conference on System Sciences, Vol. I, pages 496-506,
1993.

[16] James C. Dehnert, Peter Y.-T. Hsu, and Joseph P. Bratt.
Overlapped loop support in the Cydra 5. Proceedings of
the third international conference on Architectural
support for programming languages and operating
systems, pages 26-38, 1989.

[17] R. Johnson, M. Schlansker. Analysis Techniques for
Predicated Code. Proceedings of the 29th Annual
IEEE/ACM International Symposium on
Microarchitecture, pages 100–113, 1996.

[18] B. R. Rau, D.W.L. Yen, W. Yen, R.A. Towle. The
Cydra 5 departmental supercomputer. IEEE Computer,
pages 12-35, January 1989.

[19] P.G. Lowney, et. al. The Multiflow trace scheduling
compiler. The Journal of Supercomputing, Vol. 7,
pages 51-142, January 1993.

[20] P.Y. Chang, E. Hao, Y. Patt. Using predicated
execution to improve the performance of a dynamically
scheduled machine with speculative execution.
Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, 1995.

[21] R.M. Russel. The CRAY-1 computer system. CACM,
Vol. 21, pages 63-72, January 1978.

[22] J. R. Allen, K. Kennedy, C. Porterfield, J. Warren.
Conversion of control dependence to data dependence.
Proceedings of the 10th ACM Symposium on
Principles of Programming Languages, pages 177–189,
1983.

