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Abstract 

 
The research community has studied if-conversion 

for many years.  However, due to the lack of existing 
hardware, studies were conducted by simulating code 
generated by experimental compilers.  This paper 
presents the first comprehensive study of the use of 
predication to implement if-conversion on production 
hardware with a near-production compiler.  To better 
understand trends in the measurements, we generated 
binaries at three increasing levels of if-conversion 
aggressiveness.  For each level, we gathered data 
regarding the global runtime effects of if-conversion 
on overall execution time, register pressure, code size, 
and branch behavior.  Furthermore, we studied the 
inherent characteristics of program control-flow 
structure related to branching to help determine 
fundamental limits of if-conversion.  Our results show 
that on the Itanium™ processor if-conversion could 
potentially remove 29% of the branch mispredictions 
in SPEC2000CINT but that this accounts for a 
substantially smaller overall program speedup than 
previously reported. 

 
 

1.  Introduction 

Although the research community has investigated 
predicated execution for many years, due to the lack of 
real hardware to validate their research results, studies 
were confined to using processor simulators running 
binaries generated by experimental compilers (often 
running without any operating system layer).  The 
recent introduction of the Itanium™ processor and 
associated production software environment provides 
the first opportunity to perform new analysis of if-
conversion under production constraints. 

This paper presents the first comprehensive study 
of the use of predication to implement if-conversion 
on general-purpose production hardware and software.  
We examine three basic effects of if-conversion: the 
impact of if-conversion on code size, register pressure, 
and branch behavior on the Itanium processor, 
limitations of our compiler in performing if-

conversion, and how inherent program control-flow 
characteristics affect if-conversion. 

Although this study is limited only to impact of if-
conversion, predication has a number of other possible 
uses. For example, external studies [15] and our own 
internal work have shown that floating-point (FP) 
codes improve by about 35% when software 
pipelining is used.  Other studies have shown that code 
layout has substantial impact on instruction cache 
(Icache) optimization, but none have directly 
addressed how predication might be used to improve 
instruction stream behavior beyond that provided by 
branch removal.  Our results indicate that there is 
potential for optimization of the instruction stream by 
using predication, although we do not have sufficient 
data to draw well-founded conclusions in this area. 
While control and data speculation in the Itanium 
instruction set provide great freedom to compilers, 
non-speculative operations such as stores, checks, and 
some condition computations are difficult to move. In 
each of these cases, predication can contribute to the 
overall performance of an application. While all of 
these techniques are promising, in this paper, we 
concentrate only on the use of if-conversion and its 
impact on removing branches and their mispredictions. 

Rather than focusing only on compile-time static 
measurements or only on run-time dynamic 
measurements, we have developed a methodology that 
allows us to link consequences of decisions made at 
compilation time with execution behavior. Runtime 
behavior was measured by using the Itanium 
processor’s performance monitors, while compile-time 
information was stored as annotations in the program 
executable.  

In Section 2, we give a brief summary of prior 
work in the area of predication and related compiler 
technology.  Section 3 describes the experimental 
setup used in our study.  Experimental results are 
presented in two sections: Section 4 gives our program 
measurements across benchmarks and compiler 
settings, and Section 5 shows our analysis of how the 
inherent control-flow properties of the benchmarks 
impact the effectiveness of if-conversion. 
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2.  Comparison to Related Work 

Predicated execution has been extensively studied 
[4, 5, 6, 7, 8, 9, 10, 11, 13, 20].  In architectures that 
support predicated execution, instructions can be 
tagged with a guarding predicate. Instructions whose 
predicate is true execute as though they are not 
predicated; instructions whose predicate is false 
execute as NOP instructions.  The process of 
converting sequences of instructions with conditional 
branches into predicated operations is known as if-
conversion [22].  

2.1 Architectural Support for Predicated 
Execution 

Architectural support of predicated execution can 
be traced back to vector mask operations in vector 
machines [21], the select instruction in Multiflow 
Trace [19], and restricted predicated instructions in 
early superscalar architectures such as the conditional 
move instruction in DEC/Compaq Alpha and SUN 
SPARC V9 and nullifying instructions in HP PA-
RISC.  These architectures only partially support 
predication through special instructions or in special 
cases.  The Cydra 5 was the first wide-issue machine 
that fully supported predicated execution [18].  Its 
single-bit iteration control registers could be used to 
predicate any instruction within a loop.  Today, the 
Itanium instruction set architecture is the only general-
purpose architecture that fully supports predication [1] 
with 64 individually addressable predicate registers 
and a wide variety of predicate-computing 
instructions. 

2.2 Use of Predicates in Software Pipelining 

In [15, 16], predication was demonstrated to be an 
important feature to help support software pipelining 
(SWP) of loops.   In addition to removing control 
dependencies, stage predicates allow the loop kernel to 
be filled and drained without the use of explicit 
prologs and epilogs.   The Itanium instruction set 
architecture also supports rotating registers, further 
increasing the efficiency of SWP.  Warter et. al. 
showed that software pipelined loops performed 34% 
faster on average with predication than without [15].  
Our own experience has shown similar results.    

2.3 Compilation of Predicated Code 

To gain performance enhancements from 
predication, different compilation technologies are 
required.  The Illinois IMPACT group proposed the 
hyperblock structure for predicated execution [6].  A 
hyperblock is a single-entry multiple-exit region that 
gives a larger scheduling region than a basic block or  
a superblock. After instructions from multiple paths 
are if-converted into a single block, additional 

optimizations (such as instruction promotion and 
merging) can be applied to increase ILP in the 
predicated block [6, 7].   

Havanki, et. al. [14] proposed a non-linear region 
structure called a treegion that can be used to take 
advantage of predication.   

2.4 Reduction of Branches and Branch 
Mispredictions via Predicated Execution 

One major benefit of if-conversion comes from the 
elimination of hard-to-predict branches.  Malhke et. al. 
[4] studied the impact of if-conversion on branch 
prediction.   It was shown that an average of 27% of 
branches and 56% of mispredictions were eliminated 
at runtime with if-conversion over a mix of SPEC92 
benchmarks and UNIX utilities.   Branches were 
categorized according to their types (conditional or 
unconditional, calls or returns), loop and non-loop 
related, and locations (in inner loop, outer loop, or 
straight-line code) and their impact on branch 
prediction was studied.  Our study confirms that if-
conversion can provide a very substantial removal in 
branches and mispredictions on SPEC2000CINT. 
However, our study also includes a correlation with 
the fundamental structure of control dependences in 
addition to branch types. 

Tyson [9] analyzed branch elimination using 
different predication models and their impact on 
branch prediction schemes.  A reduction of up to 30% 
in the misprediction rate in several branch prediction 
schemes was reported.   In order to identify hard-to-
predict branches, Mantripragada and Nicolau [5] 
proposed using data from branch profiling combined 
with block sizes and schedule lengths, to selectively 
perform if-conversion.  Their simulations were based 
on an ISA with partial predicate support on a 4-issue 
out-of-order processor and showed a reduction of 
misprediction rate from 1.2% to 55% and cycle 
speedup from 0.5% to 15.2% on SPECint95 
benchmarks.  

2.5 Performance of Predicated Execution 

Past research studies have shown significant 
application performance improvement due to 
predication.  Based on emulation-driven simulation, 
Malhke et.al. [8] reported an average speedup of 63% 
(35%) of full predicated execution over non-
predicated superblock scheduling for a mix of SPEC92 
and UNIX utilities on an 8-issue processor that can 
retire/predict 1(2)-branch(es) per cycle.  In the same 
paper, predication was shown to be able to reduce the 
number of branches and mispredicted branches by 
57% and 38%, respectively.  

An average speedup of 30% by predication alone 
was reported more recently [7] for a slightly different 
mix of SPEC92, SPEC95 and UNIX utilities 
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benchmarks on a different machine configuration.   
The processor used profile-based static branch 
prediction and had a 6-cycle branch misprediction 
penalty.   Their cycle estimates were taken by 
profiling execution, multiplying block execution 
counts by compiler-generated expected cycle counts, 
and then adding cache and exception effects from a 
simulator. 

Our performance results differ substantially from 
these earlier works due to a number of differences in 
experimental conditions.  In the remainder of this 
section, we describe the major factors accounting for 
the difference in results.   

First, the region size used by the compilers in the 
past studies was improved when if-conversion was 
allowed.  This means that the compiler had a greater 
scheduling window from which instructions are 
chosen to schedule when if-conversion was enabled 
than when it was disabled.  In our compiler, 
instructions are moved and scheduled in regions with 
arbitrary acyclic control flow.  Region size is 
determined independently from whether if-conversion 
is enabled or not. 

Second, most of the previous studies used equal [7] 
or greater [8] execution resources than what the 
Itanium processor provides except for the number of 
branch units and the complexity of their predictors.  
Thus, those studies had fewer execution resource 
conflicts (making if-conversion easier), but higher 
contention for branch units (making if-conversion 
more valuable). The results [8] showed that going 
from 1 to 2 branch units substantially reduced the 
performance gained from predication (almost by half).  
Since the Itanium processor has 3 branch units, this 
affect is further magnified.   

Third, our results were gathered on a real hardware 
that has TLB misses, pipeline flushes, cache 
contention, and OS overhead.  In [8], such exceptions 
were assumed to be deferred when they were not 
necessary.  Since our system cannot always do this, 
our overhead due to these non-branch related activities 
is higher, and thus, benefits from better schedules and 
elimination of mispredicted branches account for a 
proportionally smaller percent of the total execution 
time.   

Finally, the difference in benchmarks and the 
subsequent change in execution profile from past 
studies contributes to a different percent of time spent 
on branch processing.  In SPEC2000CINT on the 
Itanium processor, we see approximately only 7% of 
cycles spent servicing branch mispredictions. 

 

3.  Experimental Setup and Methodology 

3.1 Platform  

Our experiments were run on a single C0-step 
Intel® Itanium™ processor running at 733 Mhz using 
the 460GX chipset and 1 GB of main memory. The 
Itanium processor can issue up to six instruction slots 
per cycle and has two load/store units, four general-
purpose ALUs, three branch units (and can perform 
three branch predictions per clock), and two 82-bit 
floating-point multiply accumulate units (FMAC).  
The first level instruction and data caches are 16 KB, 
4-way set associative. The second level cache is 96KB 
unified, 6-way set associative and the third level cache 
is 4MB, 4-way set associative. A more complete 
description of the Itanium processor micro-
architecture is available in [2].   

3.2 Compiler 

The executables used in our performance runs 
were built using a near-production version of Intel's 
product Itanium architecture compiler, ECC.  
Enhancements were made that allowed us to adjust the 
heuristics used when making if-conversion decisions 
and to insert annotations into the generated binaries. 
The compiler was otherwise unmodified.   

In ECC, predicate generation, along with all 
predicate-aware optimization, is done in the code 
generator.  If-conversion is performed immediately 
after software pipelining (when it is enabled) and 
immediately before global code scheduling.  Potential 
candidates for predication are acyclic single-entry 
regions, excluding those that contain architecturally 
unpredicatable instructions or indirect branches. 
Compile-time and code-size considerations limit our 
searches to regions with reasonable size.  However, 
once a region is if-converted the resultant block is 
considered for if-conversion with surrounding blocks, 
effectively allowing if-conversion of large regions.  

Predicate relationships are established through 
evaluation of the control flow graph and represented 
as a Predicate Partition Graph [17] for use by 
downstream phases.  The heuristics used to decide 
whether to if-convert are based on a number of factors 
including:  dependence height, resource height, 
estimated misprediction rates, and edge profile 
information. 

The compiler performs global code motion using 
Wavefront Scheduling [12].  The scheduling regions 
allow arbitrary acyclic control flow, and are thus not 
directly impacted by the presence or absence of 
upstream if-conversion.  Even in the absence of if-
conversion, the compiler assigns predicates to blocks 
that may be used by the code scheduler to perform 



 4 

upward and downward code motion. The register 
allocator removes unused predicates later.   

The register allocator is currently only partially 
predicate-aware.  In particular, the register lifetime of 
a virtual register used inside a loop and defined under 
a predicate is conservatively thought to extend upward 
beyond its predicated definition.    

3.3 Annotations 

Our compiler has been modified to emit compile-
time information about specific functions, basic 
blocks, and instructions into an annotation segment of 
the binary [3].  These annotations are kept in a non-
loadable segment of the binary and have no impact on 
the actual executable code generated by the compiler.   
Post-processing tools were developed to read the 
annotations from the binary and associate the 
information with dynamic event data collected by the 
Itanium processor’s performance monitors at runtime.   

The compiler used this annotation section to record 
program information related to heuristic decisions 
made by the if-converter as well as to tag branch 
types.  Each branch is tagged with a type such as loop-
back, early loop-exit, call-type, IP-relative, indirect, 
and controlling single/multiple-entry/exit acyclic 
regions. These per-instruction records, used together 
with per-instruction runtime event information, allow 
us to relate low-level runtime event counts to higher-
level program and branch characteristics.  In Section 
5, this technique is used to characterize branches 
according to their control-flow properties and their 
architectural branch types. 

3.4 Event sampling 

Each binary was run multiple times to record 
information from hardware performance counters.  
These counters track a wide variety of basic events, 
such as instructions retired, cycles, and branches 
retired.  The monitors are highly configurable (see [1], 
Volume 4) to allow the user to collect event 
information based on instruction opcode, memory 
reference address, process privilege level, and other 
criteria.  The Itanium processor also supports event-
based sampling through the use of event address 
registers (EARs). 

When using EARs, it is possible to specify the 
number of times an event occurs before a sample is 
taken (sampling ratio).  When the specified number of 
events has occurred, the IP of the instruction causing 
that event is recorded as well as event-specific data, 
the performance monitors are frozen, and an external 
interrupt is raised. After the interrupt handler records 
all relevant information, monitors are unfrozen, and 
execution continues. In this study, we collected branch 
event samples and the sampling thresholds were 
adjusted so that each benchmark had approximately 4 

million samples.  The sampling does not significantly 
impact program execution as the overhead was 
generally less than 3%. 

3.5 Benchmark Runs 

All experiments were run using the 
SPEC2000CINT benchmarks under compiler options 
compliant with SPEC “BASE” setting rules.  All runs 
were performed with the reference input set.  Our base 
settings included profile-guided optimization using 
execution traces from the training set, whole program 
inter-procedural optimization, and function inlining.  
Three versions of each integer benchmark were built 
to provide three degrees of if-conversion 
aggressiveness:  No if-conversion (NONE), default 
level of if-conversion (DEF), and complete if-
conversion wherever possible (MAX). This 
classification is based on the if-conversion heuristics 
described in Section 3.2.  The NONE level disallows 
if-conversion entirely, the DEF level allows the 
compiler to if-convert where it seems profitable 
according to heuristics, and the MAX level if-converts 
every region that the region-constructor creates, 
regardless of profitability. (Note that due to the 
compilation resource requirements at the MAX level, 
we were unable to generate a functional MAX binary 
for gcc, so the result is missing in our graphs.) 

The DEF level has been tuned to maximize the 
average performance of applications, other levels were 
expected (and indeed) generally resulted in slower 
binaries regardless of the amount of if-conversion 
performed.  The MAX level binaries were produced to 
help us understand how aggressive if-conversion 
changes control flow structure and associated program 
characteristics, rather than to improve performance.  

As mentioned in Section 2.2, predicates can be 
used effectively in software pipelining (SWP). In 
order to focus on the use of predication in if-
conversion, we turned off SWP in the compiler so that 
measurements taken on predicated code only include 
affects from if-conversion, rather than from SWP 
stage predicates.  Although SWP is turned off in our 
experiments, the compiler still if-converts code within 
loops.  In SPEC2000CINT, the time spent in loops that 
can be software pipelined is very small and thus the 
performance benefit for using this feature is less than 
1% on SPEC2000CINT (although for SPEC200FP, the 
benefit is greater than 30%). 

 

4.  Experimental Results – Basic Data 

In this section, we present data and analysis 
regarding if-conversion and its impact on general 
program behavior using binaries compiled at NONE, 
DEF, and MAX aggressiveness levels.  The following 
subsections describe the basic program runtime 
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behavior based on static and dynamic measures and 
discuss the corresponding microarchitecture and 
compiler issues. 

4.1 Total Execution Time 

CPU Cycle 
count 

(million)

% Cycle spent 
servicing branch 

misprediction

Instructions 
retired 

(million)

NOPs 
retired 

(million)

Effective 
IPC

164.gzip 386,814 9.37% 540,344 162,999 0.98

175.vpr 381,289 6.66% 295,576 95,235 0.53

176.gcc 237,116 7.52% 241,071 56,858 0.78

181.mcf 493,147 1.34% 105,825 29,010 0.16

186.crafty 206,538 9.82% 224,410 46,155 0.86

197.parser 489,667 8.52% 495,401 136,084 0.73

252.eon 242,004 6.46% 316,048 99,284 0.90

253.perlbmk 378,016 8.21% 572,988 150,717 1.12

254.gap 293,162 3.93% 335,921 83,601 0.86

255.vortex 266,340 1.16% 365,243 80,857 1.07

256.bzip2 341,874 8.98% 388,623 87,176 0.88

300.twolf 622,937 11.28% 498,668 166,575 0.53

AVERAGE 361,575 7.15% 365,010 99,546 0.78

Benchmark

NONE binary (No if-conversion)

 
Table 1. Basic statistics for binaries with no if-

conversion (NONE) 
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Figure 1. Relative CPU cycle count (NONE = 1.0) 

 
Table 1 shows the total number of execution cycles 

for the NONE binaries and the estimated percent of 
time spent in servicing branch mispredictions. Since 
the cycle numbers reported are measured on near-
production silicon with near-production compiler 
technology, performance will be somewhat lower than 
what one would expect on a system available by the 
time this paper is published.   

Figure 1 shows the CPU cycle counts of other if-
conversion levels relative to those of the NONE 
binaries given in Table 1. Although we report overall 
performance at different levels of if-conversion 
aggressiveness, the focus of our study is to understand 
the fundamental issues that arise from if-conversion 
rather than whether a given compilation parameter 
increases or decreases performance. 

Figure 1 shows that more if-conversion does not 
necessarily lead to increased performance. As 
expected, the DEF if-conversion level usually results 

in the highest performance, although there are some 
variations between benchmarks. On average, the DEF 
if-conversion level was 2% faster than the NONE 
binaries, while the MAX if-conversion level was 14% 
slower than NONE.  The remainder of this section 
discusses related effects and analyzes whether these 
effects can be improved by changes in 
microarchitecture or compiler technology. 

4.2  Instruction Access Behavior  

Because code size and code layout can have subtle 
effects on program performance, we use three metrics 
to characterize the effect of if-conversion on the 
instruction stream: dynamic count of retired 
instructions (including nops and predicated-off 
instructions), static instruction count (number of 
instructions in the binary including nops), and the 
number of first level instruction (L1I) cache misses. 

The number of instructions retired at runtime 
indicates the minimum bandwidth required between 
the L1I cache and the execution units. Figure 2 shows 
that the number of instructions retired increases with 
more aggressive if-conversion.  This is not surprising 
because the more aggressively if-conversion is 
applied, the more instructions from secondary control 
paths are sent down the execution pipe (and later 
squashed).  

Number of instructions retired

1.63 1.33

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.t

wolf

AVERAGE

R
at

io
 to

 N
O

N
E

 if
-c

on
ve

rs
io

n 
le

ve
l

NONE DEF MAX

 
Figure 2. Relative number of instructions retired 

(NONE = 1.0) 
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Figure 3. Relative static bundle count changes 
(NONE=1.0) 

 
Figure 3 shows the static instruction counts for 

each binary.  The static instruction count is an 
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important measure because it contributes to the load 
time of the binary, the amount of disk space required 
for its storage, and is generally an indirect contributor 
to instruction TLB (ITLB) misses. The code size of 
DEF and MAX binaries are 1% and 5% smaller, 
respectively, than that of NONE binaries.  The static 
code size always decreases with increasing predication 
due to reduction in the number of branches and nops. 
Nops are decreased because fewer branches, labels, 
and higher ILP provides the compiler with greater 
freedom in bundling instructions. 

The last measure of the impact of code size is the 
number of first level instruction (L1I) cache misses 
incurred during execution. (Figure 4)  For gcc, parser, 
gap, and vortex, increasing if-conversion 
aggressiveness increased the number of Icache misses.  
For gzip, mcf, perlbmk, bzip2, and twolf, DEF if-
conversion level caused the fewest L1I cache misses 
(more than 10% fewer in some cases). 

Number of L1 I-cache misses
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Figure 4. Relative number of L1I cache misses 

(NONE = 1.0) 
 
In summary, on average, the MAX level produces 

the smallest static code size while the NONE level 
retires the least number of instructions (as there are no 
extra predicated-off instructions).  The DEF level 
incurs the fewest L1I cache misses with slight 
increases in dynamic instruction count.  This indicates 
that by combining multiple control paths following a 
branch, the default level if-conversion results in more 
effective I-cache prefetching while not significantly 
increasing the footprint of the original code.  

4.3 Branch Behavior 

Figure 5 shows the total number of branches 
executed for each benchmark at different levels of if-
conversion aggressiveness. In some benchmarks,  as 
if-conversion level increases, successful branch 
elimination by if-conversion reduces the number of 
branches retired.  However, for gzip, gcc, crafty, 
parser, and perlbmk, the number of branches retired 
increases. This can be attributed to the fact that 
unconditional calls, indirect branches, and returns in 
secondary control paths, which are not executed at the 
NONE level, are being predicated and pulled into the 

program’s execution path via if-conversion. Note that, 
although the MAX level shows 19% more branches on 
average, the number is skewed by perlbmk and crafty. 
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Figure 5. Relative number of branch instructions 

retired (NONE = 1.0) 
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Figure 6. Percentage of CPU cycles spent servicing 

branch misprediction 
 
Figure 6 shows the percentage of cycles spent 

servicing branch mispredictions computed by 
multiplying the number of branch mispredictions by 
the misprediction penalty on the Itanium processor (10 
cycles). We see that there is a substantial reduction in 
percent of CPU cycles due to branch mispredictions 
for all benchmarks except perlbmk. In Section 5, we 
will explain perlbmk’s behavior. On average, the DEF 
level if-conversion reduces branch misprediction 
cycles by 20% and MAX by 27%. However, as 
expected, overall execution time spent in servicing 
mispredicted branches decreases with increasing 
aggressiveness, varying from 0.2 % to 5% at DEF and 
from 0.2% to 7% at MAX.  

4.4 Compiler Effects 

Currently, ECC’s register allocator is not fully 
aware of predicate relationships.  While predication 
should not generally increase the use of general-
purpose registers, in some cases, ECC allocates more 
registers than necessary.  
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Figure 7. Percentage of CPU cycles spent in 
servicing RSE activity versus if-conversion level 

 
Figure 7 shows the estimated percent of execution 

time spent servicing register stack engine (RSE) 
requests (spilling/filling registers during function 
call/return sequences)1, which is a good indication of 
how well the compiler, did at register allocation.  As 
shown in Figure 7, the percent of time spent in 
servicing RSE traffic is quite substantial at higher 
levels of if-conversion in some benchmarks.  Once this 
limitation in ECC is fixed, the absolute performance 
gain with if-conversion should improve 
proportionally.  

 

5.  Experimental Results – Inherent 
Control Flow Characteristics 

While the results in Section 4 concentrate on the 
changes in basic program characteristics at varying 
levels of if-conversion, this section focuses on the 
inherent properties and control flow structures of the 
benchmarks.  Through a combination of use of 
compiler annotations, performance hardware 
feedback, and post-processing tools, we have 
characterized the inherent control flow structures of 
the programs by the number, type, distribution, 
predictability, and context of branches in the source 
programs.  We use this data to establish an upper 
bound on the improvements that if-conversion can 
achieve by reducing branch-mispredictions. 

5.1 Branch Type Analysis 

In this subsection, we examine the type and 
control-flow properties of branches, identifying those 
that are not removable by if-conversion. Table 2 
summarizes the distribution of branches and 
mispredictions in NONE binaries according to their 
branch types.  Dynamic data are based on runtime 
sampled event data and are averaged across the 
                                                           

1  Based on anecdotal evidence gathered from kernels and 
knowledge of the Itanium processor microarchitecture, each RSE 
load/store pair is estimated to take 2 cycles.   

 

benchmarks.  Individual branches are classified either 
as one of eleven different types of branches that 
cannot be removed via standard application of if-
conversion or as belonging to the “Other IP-relative” 
category.   

 

static
dynamic 

(sampling)

2.66%

Indirect call 0.64% 0.62% 43.19% 3.80% 0.28%

IP-relative call 23.47% 3.42% 0.25% 0.12% 0.01%

6.68% 3.91% 9.65% 5.39% 0.31%

Counted 
(br.cloop, 
br.ctop, br,cexit)

0.92% 6.39% 9.78% 8.92% 0.74%

IP-relative loop 
back

2.94% 15.86% 6.06% 13.72% 1.01%

IP-relative loop 
exit

2.58% 8.01% 6.22% 7.11% 0.43%

Indirect 
unconditional

0.12% 0.34% 41.35% 2.01% 0.21%

Indirect 
conditional

0.00% 0.00% 0.00% 0.00%

1.53% 0.00% 0.00% 0.00% 0.00%

25.11% 6.63% 2.59% 2.45% 0.17%

66.64% 45.18% 43.53% 3.15%

33.28% 54.81% 7.22% 56.47% 3.77%
100% 100% 100% 6.92%

Branch type (NONE if-

conversion binary)

average % of 

CPU cycles 

spent servicing 

branch 

misprediction

% of total number of 

branches
misprediction 

rate of each 

branch type

% of total 

mispredictions 

due to the 

branch type

Call

Nop.b

Return

Loops

Other IP-relative
Sum

Indirect

IP-relative conditional 
recovery

IP-relative 
unconditional

Subtotal for classified 

branches

Table 2. Average branch behavior by type for 
NONE binaries 

 
Table 2 shows that eleven types of irremovable 

branches account for 67% of the static branches, 45% 
of the dynamic branches, and 44% of the program’s 
mispredictions. 

In theory, it is possible to remove some of the 
mispredictions associated with branches that we have 
classified as irremovable.  However, in practice it is 
either difficult or not profitable to do so. For example, 
the conditional calls that remain (the compiler has 
already performed interprocedural inlining where we 
thought profitable) could be completely removed via 
inlining and predication.  However, unless the called 
subroutine itself contains no difficult-to-predicate 
instructions (such as calls, indirect branches, loops, or 
unpredicatable instructions), it may not be possible to 
effectively remove the mispredictions associated with 
the call.  Thus, our definition of irremovable branches 
generally only refers to the mispredictions caused by 
branches, rather than whether the branch itself is 
theoretically removable. 

In Table 2, the “Other IP-relative” row accounts 
for all the branches that do not fall into one of those 
irremovable categories – these are the branches that 
form the set of branches that might be removable via 
if-conversion.  These branches account for 56% of all 
mispredictions, and provide a bound on the number of 
mispredictions that can be removed via if-conversion, 
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with some caveats.  First, unconditional IP-relative 
branches are removed as a side-effect of if-conversion 
or block ordering.  Since they cause very few of the 
mispredictions (2.5%), their removal is not generally 
going to have large impact on branch prediction.  
Second, our results are based on the Itanium processor 
branch predictor, and different branch predictors may 
give different results. 

 

Benchmarks
% MP due to 

"Other IP-
relative" branch

% MP due to 
counted loop 

branch

% MP due to non-
counted loop-
related branch

% MP due to 
all indirect 

branch

164.gzip 76.5% 1.8% 21.0% 0.0%
175.vpr 74.6% 11.6% 12.9% 0.0%
176.gcc 50.0% 9.4% 19.4% 10.0%
181.mcf 49.6% 0.0% 48.9% 0.0%
186.crafty 61.2% 3.0% 17.9% 4.4%
197.parser 51.7% 4.7% 32.9% 0.0%
252.eon 62.9% 0.0% 7.7% 12.7%
253.perlbmk 15.6% 13.5% 9.7% 54.7%
254.gap 34.9% 26.2% 17.5% 13.6%
255.vortex 66.9% 0.2% 8.3% 4.8%
256.bzip2 52.3% 11.6% 29.2% 0.0%
300.twolf 54.4% 20.7% 20.4% 0.0%  

Table 3. Misprediction statistics for selected 
branch types 

 
Table 3 shows that the misprediction statistics vary 

greatly by benchmark.  For example, while the number 
of mispredictions due to “Other IP-relative” branches 
is 76% in gzip, it is only 15% for perlbmk.  A close 
look shows that a very large percentage of 
mispredictions in perlbmk (55%) are due to branch 
target mispredictions from indirect branches, which 
are not directly removable via predication (our 
compiler already peels out common cases from 
switches, but does not directly attempt to peel 
mispredicting cases).   

Surprisingly, even though the Itanium processor 
has a dedicated predictor for counted loops, a large 
percentage of mispredictions still occur. This is most 
likely due to the fact that the processor must fetch 6 or 
7 cache lines of instructions between when the loop 
count register is set and when the loop terminates in 
order for the predictor to be accurate.   Except in the 
cases of eon and vortex, loop-related branches account 
for 20% to 50% of all mispredictions.  

This shows that substantial portions of the 
mispredictions in some benchmarks cannot be 
removed by if-conversion due to the fundamental 
nature of the code.  In the next section, we will refine 
the bound on the set of mispredictions that are 
removable via if-conversion. 

5.2 Control Based Classification 

In this subsection, we sub-classify “Other IP-
relative conditional branches” by the instructions that 
are control dependent on them.  We are interested in 
five specific types of instructions: calls, returns, loops, 

indirect non-call branches, and architecturally 
unpredicatable instructions (alloc, flushrs, loadrs, rfi, 
bsw, clrrrb, cover, epc).  We say a branch controls one 
of these types of instructions when no acyclic path 
from the branch to the instruction in question passes 
through any instruction that post-dominates the branch 
(this is effectively a definition of control-dependence).  
Furthermore, such control is said to be direct control 
when no acyclic path passes through another 
conditional branch before reaching the instruction in 
question.  Indirect control is a branch with control that 
is not direct control. 

Branches that directly control unpredicatable 
instructions cannot be removed without altering 
program behavior. Branches that control call, indirect, 
and return branches can be removed via if-conversion, 
but the controlled call, indirect branch, or return will 
then simply inherit the predicate from the removed 
branch.  If this happens, directional mispredictions 
from the parent will almost certainly transfer to the 
child call, indirect, or return branch.  If multiple calls 
or indirect branches are controlled, it is possible that 
predication will even increase the number of 
mispredictions by effectively replicating the 
mispredicting condition on several branches. 

 

B enchm ark
N oPrd 
B inary

B A SE 
B inary

A ggPrd 
B inary

N oPrd 
B inary

B A SE 
B inary

A ggPrd 
B inary

164.gzip 1.33% 1.32% 2.94% 0.52% 4.17% 12.10%
175.vpr 1.32% 1.53% 4.87% 0.00% 0.00% 0.02%
176.gcc 3.93% 4.45% 10.19% 14.47%
181.mcf 0.15% 0.30% 0.30% 0.84% 2.67% 3.14%
186.crafty 3.43% 4.95% 9.62% 4.38% 8.72% 11.51%
197.parser 5.24% 6.54% 13.39% 0.12% 1.99% 3.83%
252.eon 10.45% 16.07% 24.73% 12.72% 26.79% 32.84%
253.perlbmk 10.91% 11.61% 25.14% 54.78% 57.98% 66.27%
254.gap 5.97% 8.13% 12.39% 13.68% 17.30% 24.48%
255.vortex 4.67% 5.41% 11.69% 4.79% 9.27% 27.11%
256.bzip2 2.62% 2.65% 14.12% 0.00% 0.00% 0.27%
300.twolf 1.05% 1.49% 2.27% 0.00% 0.00% 0.43%

%  of instructions by calls 
and indirect branches

%  of m isprediction due to  call 
and indirect branches

Table 4. Percentage of calls and indirect branches 
executed and their mispredictions 

 
Likewise, the mispredictions associated with a 

branch that directly controls a loop (the loop branch 
and its body) cannot practically be removed via if-
conversion because the loop back branch would then 
become part of the predicated region and 
mispredictions could migrate to it from the parent.  In 
Table 4, we can see misprediction migration as the if-
conversion level increases by noticing that the 
percentage of calls and indirect branches executed 
generally increases. 

Similar discussion applies to branches with 
indirect control, but is more difficult to draw firm 
conclusions.  While it is possible to remove some 
branches with indirect control, it is possible that all or 
some of the mispredictions associated with the original 
parent will migrate to the controlled branches. Thus, 
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branches with indirect control sometimes can be if-
converted, but the resulting misprediction behavior of  
the formerly controlled branches is difficult to analyze 
statically. 

 

static
dynamic 

(sampling)
Some direct control 15.36% 17.18% 5.73% 14.06% 0.98%
       Loop entry 1.78% 2.52% 9.60% 3.46% 0.22%
       Loop exit 1.75% 5.29% 8.73% 6.60% 0.55%
       Call 10.91% 9.23% 3.21% 4.23% 0.24%
       Indirect branch 0.10% 0.36% 2.92% 0.15% 0.01%
       Return 3.83% 3.16% 6.67% 3.01% 0.16%
       Unpredicatable 0.00% 0.00% 0.00% 0.00% 0.00%
Indirect control only 9.97% 16.98% 5.40% 13.08% 0.88%
       Loop entry 4.71% 8.23% 6.66% 7.83% 0.53%
       Loop exit 1.29% 2.01% 0.35% 2.75% 0.17%
       Call 7.12% 10.60% 4.48% 6.77% 0.46%
       Indirect branch 0.37% 0.33% 16.70% 0.78% 0.06%
       Return 2.53% 2.37% 7.28% 2.46% 0.15%
       Unpredicatable 0.00% 0.00% 0.00% 0.00% 0.00%
Does not control 7.94% 20.66% 9.95% 29.33% 1.92%

Subtotal for "Other IP-
relative"

33.28% 54.81% 56.47% 3.77%

Classified branches 66.64% 45.18% 43.53% 3.15%
Sum 100% 100% 100% 6.92%

Control Info of 
"Other IP-relative" 

branches

average % of 
CPU cycles 

spent servicing 
mispredictions

% of total number of 
branches misprediction 

rate
% of total 

mispredicts 

Table 5. Branch behavior based on its control 
(direct/indirect) 

 

% total 
misprediction

% total CPU 
cycles

%  total 
misprediction

% total CPU 
cycles

30.09% 2.82% 16.97% 1.59%
49.79% 3.32% 16.86% 1.12%

9.37% 0.70% 23.22% 1.75%
33.78% 0.45% 10.08% 0.13%
33.65% 3.30% 13.11% 1.29%

3.22% 0.27% 13.82% 1.18%
29.27% 1.89% 8.62% 0.56%

2.09% 0.17% 6.20% 0.51%
15.58% 0.61% 14.02% 0.55%
28.23% 0.33% 28.66% 0.33%
13.09% 1.18% 18.09% 1.63%
48.45% 5.46% 5.73% 0.65%
29.33% 1.92% 13.08% 0.88%

186.crafty

164.gzip

175.vpr

176.gcc

181.mcf

197.parser

252.eon

253.perlbmk

254.gap

255.vortex

256.bzip2

300.twolf

AVERAGE

Benchmarks

Other IP-relative branch (rem ovable branch)

no control indirect control only

 
Table 6. Branch misprediction information for 

potentially removable branches 
 

Table 5 2  breaks down branches based on their 
control characteristics. “Some direct control” includes 
any branch that directly or indirectly controls one of 
the six categories of controlled instructions, 
“Indirectly control only” includes those branches that 
have indirect control, but no direct control, and the 
“Does not control” category includes those branches 
that have no direct or indirect control over any of the 
six categories. 

“Does not control” branches and their 
mispredictions are completely removable via if-
conversion, although there are a variety of factors such 

                                                           
2 The sub-categories do not sum to the row totals because they 

overlap with each other (one branch could control both a return and 
a call). 

as dependence height, resource height, code size, and 
predicate register usage that may make predication 
undesirable in a given situation.  On a per-benchmark 
basis, Table 6 shows that the percent of mispredictions 
due to “Does not control, Other IP-relative branches” 
is relatively small and, on average, contributes 28% of 
mispredictions accounting for 2% of the overall 
execution cycles. If we included “indirectly-controlled 
IP-relative branches”, this would account for 41% of 
mispredictions and 3% of overall execution time. 

According to Table 6, the CPU cycle reduction 
possible due to reducing branch mispredictions by 
applying if-conversion on the Itanium processor is 
about 2-3%. However, this number does not account 
for potential reductions in capacity or conflict misses 
in predictors but does provide an upper bound based 
on the predictability of specific branches.  As pointed 
out in the related research summary, there are many 
other possible uses for prediction beyond if-
conversion.  Thus, it would be a mistake to assume 
that 2-3% is the maximum potential performance gain 
for predication as a whole. 

 

6. Conclusions 

This study presents the first data analyzing the 
impact of if-conversion on real hardware and 
production software.  We distinguish between if-
conversion and predication by noting that if-
conversion is but one of several uses for predication.  
Our study only addresses if-conversion, although both 
others’ and our own results show predication provides 
substantial benefit for software pipelining, 
improvements in instruction stream behavior, and 
ability to perform more advanced code motion. 

The data presented in this study provides a realistic 
evaluation of how if-conversion affects program 
execution while helping to establish some fundamental 
limits on the impact of if-conversion.  We have also 
presented data showing how code size, register 
pressure, and branch behavior are impacted by if-
conversion in greater details and in more realistic 
conditions than has been previously possible.  

Although this work and previous research have 
demonstrated that if-conversion is very effective at 
removing branches and mispredictions, our results 
show that differences in compiler technology, 
hardware resources, and benchmark behavior 
substantially affect the conclusions of prior estimates 
of if-conversion potential. However, in the future, 
further changes in workload or microarchitecture 
could substantially change the importance of the 
findings in this paper again. Since follow-on 
implementations of the Itanium processor are likely to 
have bigger caches and the ILP compilation 
techniques that exploit other Itanium features are 
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becoming more mature, the portion of execution time 
dominated by branch penalty will likely grow.  In fact, 
this effect partially accounts for why prior academic 
studies saw a larger improvement from if-conversion – 
they assumed that non-branch related factors were 
smaller than what we have seen on the Itanium 
processor for SPEC2000CINT. 

Finally, we note that predication has major impact 
on applications that have substantial time in software 
pipelined loops or that have a very substantial 
component of time spent in servicing mispredictions. 
For applications that are Icache-limited, if-conversion 
combined with profile-feedback directed layout look 
promising and we expect research to examine this area 
in depth.  Because of these fundamental differences in 
application codes, we expect to continue to see the 
impact of predication vary widely across benchmarks 
and microarchitectures. 
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