
0018-9162/02/$17.00 © 2002 IEEE68 Computer

Asim:
A Performance
Model Framework

T he Compaq (formerly Digital) processor
design teams that created the VAX and
Alpha processors have a long history of
developing models to predict the perfor-
mance of proposed processor designs.

Such predictions have become both more daunting
and more critical as processor and system com-
plexity has increased.

Microprocessors now consist of several hundred
million transistors. The interaction between the
hardware structures built from these millions of
transistors is hard to predict through simple simu-
lation or analytical models. Having such a large
number of transistors has also made modern micro-
processors extremely complex, substantially extend-
ing the design cycle of new microarchitectures.
Furthermore, because a design’s architectural
aspects are increasingly affected by signal propa-
gation delays, modeling timing delays systemati-
cally has become more important. In this context,
performance models play a crucial role because
developers use them to study design alternatives and
predict the performance of processors and systems
long before actually building them.

These factors have resulted in a substantial
increase in the complexity of the performance mod-
els themselves. In the past, the longevity and use-
fulness of a model depended mostly on the skills
and discipline of the model writers. Unfortunately,
at Compaq, our models were still becoming
extremely complex and unmanageable because we
lacked a structured way to develop them. To cope
with these complexities, in late 1998 we began

developing Asim to allow model writers to faith-
fully represent the detailed timing of complex mod-
ern machines and effectively manage the large
software projects needed to model such machines.

Asim addresses these needs by providing a frame-
work for creating many models, instead of being a
single performance model. More specifically, Asim
achieves these goals through modularity and
reusability. Modularity helps break down the per-
formance-modeling problem into individual pieces
that can be modeled separately, while reusability
allows using a software component repeatedly in
different contexts. Reusability increases productiv-
ity and confidence in the robustness of the software
component itself. Asim provides a set of tools that
can effectively manage these software components
to help model writers deal with a large software
base’s complexity.

BASIC COMPONENTS
In Asim, the basic software component, or mod-

ule, will usually represent a physical component of
a design, such as a cache, or capture a hardware
algorithm’s operation, such as the cache’s replace-
ment policy. A particular model will be represented
as a user-selected hierarchy of modules.

Each Asim module provides a well-defined inter-
face that lets developers reuse modules in different
contexts or replace them with other modules that
implement a different algorithm for the same func-
tion. Asim specifies module interfaces in terms of a
set of method calls or ports. Method call interfaces
provide communciation between a module and sub-

To cope with the complexity of modern high-end microprocessors and
systems as well as the intricacy of the software that models these
machines, the authors developed a modular and reusable performance
model framework.

Joel Emer
Pritpal Ahuja
Eric Borch
Artur Klauser
Chi-Keung
Luk
Srilatha
Manne
Shubhendu S.
Mukherjee
Harish Patil
Steven
Wallace
Intel

Nathan
Binkert
University of
Michigan,
Ann Arbor

Roger Espasa
Toni Juan
Universitat
Politècnica
de Catalunya

C O V E R F E A T U R E

modules embedded in it. Ports provide a commu-
nication abstraction that explicitly allows a model
to represent the communication channels and the
timing characteristics between modules.

Asim also allows using modules that represent
nonhardware-based infrastructure. Interfaces to
these nonhardware modules also use the method-
call interface. One such nonhardware module, the
feeder, provides the inputs necessary to drive the
performance models. In particular, instruction feed-
ers supply instructions to the performance models.

Asim programmers develop models independent
of feeders. In this approach, the instruction feeders
manage the functional aspects of a program’s exe-
cution while the performance models manage timing
predictions, including the timing of incorrect pro-
gram paths that arise due to improper speculation.

Figure 1 shows an overview of Asim. Asim also
provides a collection of models and benchmarks
not shown in the figure. Developers can use the
Architect’s Workbench to configure a performance
model by selecting a specific set of modules, browse
existing models and benchmarks, and run a per-
formance model with a specific benchmark. Asim
also provides a runtime cycle display, which lets
developers visualize the activity in processor
pipelines on a cycle-by-cycle basis.

Asim easily supports both timing and stand-
alone performance models. Timing models—com-
plete processor or system models—predict the time
it takes to run part of a program or all of it. In con-
trast, with stand-alone models, we can efficiently
study the behavior of individual hardware compo-
nents in isolation. For example, we would use a
stand-alone model to study a branch predictor’s
accuracy. However, to understand a branch pre-
dictor’s timing behavior, we would immerse the
same module in a complete processor model.

Using this framework, we developed several per-
formance models, including models for uniproces-

sors, vector processors, and chip multiprocessors as
well as for multithreaded, fault-tolerant, power-
efficient processors and tightly coupled network
architectures. We have also used Asim to study
organizations for several processor subcomponents,
including line and branch predictors and memory
components. In our experience, Asim is an invalu-
able framework for modeling, maintaining, extend-
ing, and managing processor and system architec-
ture models.

MODULES
Effective processor and system performance

modeling requires a performance-modeling envi-
ronment that copes with the complexity of mod-
ern machines and the software that models them.
A performance-modeling environment must pro-
vide a language to express hardware structures,
libraries to provide functionality common to all
models, and a tool set to build these hardware
structures into models. Most modern languages can
express the hardware descriptions that perfor-
mance models use. Asim, for example, is primarily
written in C++. Although it is possible to augment
such languages to help model writers, we focus
instead on helping a model writer express and
expose reusable alternate designs.

Key to achieving these goals is providing the user
with a convenient means to select alternatives and
use well-defined interfaces to specify how to com-
municate with other software components. Earlier
performance models made it difficult to provide
alternative designs for individual hardware com-
ponents, such as branch predictors, or to reuse a
specific component’s code in different models. For
example, conditional compilation was popular for
providing model alternatives at compile time. This
method, usually invoked with the #ifdef and #endif
statements processed by the C preprocessor, selects
a code variant at compile time, which can lead to

February 2002 69

Architect’s
Workbench
configurator

Performance model

Runtime
display

Asim
controller

Asim’s
collection of

modules

Feeder

Hierarchy of
instantiated

modules

Figure 1. Asim
framework. The
configurator instan-
tiates modules to
create a perfor-
mance model,
which it builds
using a standard
makefile and C++
compiler. The model
consists of a hierar-
chy of instantiated
modules and an
Asim controller
that controls the
module hierarchy’s
execution.

70 Computer

more efficient execution. Unfortunately, because
conditional compilation lacks clearly specified code
boundaries, it does not lead to a modular design
nor does it naturally specify a well-defined inter-
face for providing or extracting a specific compo-
nent for reuse.

Expressing alternate designs
In Asim, a module represents a software com-

ponent that developers can use in different contexts
to either encapsulate the behavior of a hardware
structure or represent a software component that
needs to be modularized. A user explicitly selects
such modules when he or she creates a model.
Internally, however, we represent such modules as
C++ classes.

For example, in Figure 2, the branch_predic-
tor_class module captures the high-level descrip-
tion of a generic branch predictor. In C++ style,
developers will derive the branch predictor class
from a more generic asim_module_class. Using the
selected C++ class gives the developers the flexibil-
ity to instantiate the module as needed. Thus, for
example, a module representing a CPU might be
instantiated multiple times to create a multi-
processor. Asim requires modules to have well-
defined interfaces so that they can either be reused
in multiple contexts or replaced by other modules
that encode a different algorithm for the same func-
tion. Thus, the gshare algorithm can easily replace
the simple or bimodal branch predictor algorithms
shown in Figure 2.

To satisfy the different ways developers use mod-
ules, Asim provides two interface styles: ports and
method-call. In the port interface style, modules
that represent hardware boxes use ports to com-
municate with each other over cycle boundaries. In
the method-call interface style, two modules define
a set of functions that they use to communicate
with each other. Typically, submodules embedded
in parent modules with only intracycle communi-
cation and non-hardware-based components use
such an interface.

For example, developers can implement a branch
predictor by coding the appropriate module type.
As Figure 2 shows, the module branch_predictor_
class can implement a branch predictor, perhaps by
interfacing to a branch_predictor_algorithm_ class
module. Any compatible branch predictor in Asim

must conform to this interface style. In this case,
the interface consists of three methods:

• GetPrediction, which obtains a branch pre-
diction from a predictor;

• UpdateBranchPredictor, which updates the
branch predictor after the branch resolves; and

• HandleMispredictedBranch, which handles
mispredicted branches.

Thus, developers can implement multiple branch
predictors, such as simple, bimodal, or gshare by
implementing these three methods for each branch
predictor.

Managing design choices
Managing all the design choices expressed by an

Asim programmer can be daunting. A processor or
a complete system can have hundreds of modules,
and each module can have several design alterna-
tives. A performance modeling environment must
provide a framework to easily manage and expose
these choices. Dependence among modules further
complicates management of these design choices.
For example, to the branch_predictor_class shown
in Figure 2, the developer must define an associated
branch predictor algorithm.

Asim manages these dependences using two
mechanisms. First, each module has an Asim mod-
ule type, which defines what capabilities it provides
and implicitly defines its interface. It also specifies
which modules and types it requires. Thus, the
branch predictor shown in Figure 3 requires a
BranchPredictor_Algorithm. Each of the simple,
bimodal, and gshare predictors, in turn, provides a
BranchPredictor_Algorithm. Thus, the requires-pro-
vides interface lets Asim correctly pick dependent
modules.

Second, Asim maintains the information about
each module in a separate .awb file. If developers
define the gshare branch predictor in two files—
gshare_branch_predictor.h and gshare_branch_
predictor.cpp—this information, the Asim module
type, and any necessary dependence information
will typically be in ghsare_branch_predictor.awb.
The Asim framework processes these .awb files and
exposes the dependences among modules. In the
.awb file, each module also can define one or more
corresponding attributes. Attributes help find mod-

branch_predictor_algorithm_class
(simple branch predictor)

branch_predictor_algorithm_class
(bimodal branch predictor)

branch_predictor_algorithm_class
(gshare branch predictor)

branch_predictor_class

OR OR

Figure 2. Asim
branch predictor
hierarchy. The
branch_predictor_
class selects either
the simple, bimodal,
or gshare module as
its branch predictor
algorithm.

ules associated with a particular complete design
or indicate compatible collections of modules.

Advantages
Modules express alternate design choices for a

hardware structure by identifying a module as a
member of an Asim module class that character-
izes the interface to that component. The code that
implements that model is isolated into separate files.
Developers can reuse modules in a full-fledged
processor pipeline or in a simple, stand-alone model
that reads an instruction stream and makes requests
to the modules. This flexible interchange of code
between simple and complex models saves coding
time and lets developers study the interactions
between modules.

Additionally, having multiple modules that
implement a single processor component facilitates
experimenting with design alternatives. We have
conducted several successful runs of full factorial
experiments with modules. This mix-and-match
capability also makes the complexity of testing a
performance model painfully obvious. We typically
test a module in only a small number of contexts,
not in all contexts where it might appear. With
Asim, the increased reuse of the module’s code in
different contexts, and the consequent maturity of
the module’s code, give us greater confidence in the
accuracy of the individual modules.

The more detailed a model becomes, the slower it
runs. However, performance model studies often do
not need the detailed accuracy of certain hardware
structures. In such cases, developers can replace a
module with a simpler and less detailed module to
speed up the performance model’s execution.

PORTS
Current trends in semiconductor scaling indicate

that wire delay will play a critical role in processor
performance. Thus, time and, more specifically,
delays between and in hardware structures must
become first-class abstractions in the processor

design representation. For this reason, and to keep
the interfaces between modules cleaner and better
defined, we created Asim’s ports communication
paradigm.

Ports have several functions in Asim. First, mod-
ules that represent hardware structures exchange
information through ports. A real processor or sys-
tem typically does not have any global information
instantaneously accessible anywhere in the chip.
Instead, a processor’s state is distributed among
several hardware components that might take sev-
eral cycles to communicate. Components that need
to access the state of other components must do so
through explicit communication. Asim’s ports rep-
resent communication channels that let modules
representing hardware components communicate
such state information with one another.

To pass information from one module to another,
the sending module must write the relevant infor-
mation to the port. The receiving module on the
other side of the port’s connection reads the infor-
mation from the port. For example, in the micro-
processor pipeline shown in Figure 4, the module
that executes instructions can send the correct
branch outcome to the branch predictor through a
port that connects the execution and branch pre-
dictor modules.

Asim uses ports to model communication delays
between modules. Asim models an intrinsically syn-
chronous clocked system that clocks every module
once per cycle. In terms of actual code, each mod-
ule has a Clock method, which a scheduler calls at
the simulated time during which the module must
be active. Within the Clock method, a module
defines all the logical activity it needs to do in that
cycle such as sending information to and receiving
it from other modules through ports.

Like real hardware, ports have a fixed latency
and a maximum bandwidth. The information that
a module sends through a port does not appear in
the receiving module before the port’s fixed latency
elapses. Similarly, a module cannot send more

February 2002 71

/***
* Awb definitions
*
* %AWB_START
*
* %name FiveStagePipeline: BranchPredictor
* %desc Branch Predictor for FiveStagePipeline
* %attributes FiveStagePipeline
* %provides BranchPredictor
* %requires BranchPredictor_Algorithm
* %private branchpredictor.h
* %param BP_PROBE_LATENCY 1 “branch prediction latency in cycles”
*
* %AWB_END
***/

Figure 3. Sample
.awb file associated
with the branch
predictor module.
%AWB_START and
%AWB_END demar-
cate the start and
end of AWB com-
mands, while
%public (not
included in this
figure) and %private
show the files asso-
ciated with this
module. All com-
mands except
%name and %desc
can be specified
multiple times.

72 Computer

information than the port’s bandwidth allows.
Thus, Asim can accurately model wire delays and
bandwidth between modules.

Asim also uses ports to model delays within a
hardware structure. In Figure 4, the port delay from
the data cache to the function units includes a delay
of one cycle to account for the time it takes to access
the data cache. Asim allows such time representa-
tions because it creates a clear separation between
a hardware algorithm, independent of time, and
the timing component itself.

Ports define interfaces between modules to facil-
itate coding of reusable modules. A well-defined
interface disallows implicit side effects, which might
hinder the fidelity, reusability, and portability of
model code. Traditionally, performance models use
method calls and global variables to pass informa-
tion between hardware structures. Unfortunately,
these techniques permit an unrestricted information
flow that allows unexpected side effects to occur,
making reuse more difficult.

Having a well-defined port interface also forces
developers to explicitly specify modeling delays
between modules. This feature is critical because pro-
grammers often tend to approximate time. To obtain
branch predictions in Asim, a module defines two
ports to the branch predictor: one that requests a pre-
diction and one that returns it. Each port has the re-
quisite latency. The module requesting the predictions
will not even see them until they are truly available.

Asim implements ports through first-in, first-out
queues. Each module declares one end of the port.
The sending module declares an output port with
an identifier string, and the receiving module
declares the corresponding input port with the same
identifier string. Asim’s utility code handles the
actual connection between output and input ports.
The utility code runs at initialization and connects
output and input ports using the identifier strings.
This technique lets submodules from one module
connect to submodules in other modules without
the parent modules’ being aware of the connection.
The automatic connection also lets developers con-
nect replicated modules and their corresponding
ports automatically, which can be useful for multi-
processors that might instantiate several processors
connected to a network through ports.

FEEDERS
For improved efficiency, performance models tra-

ditionally focus on modeling only those machine
operations that affect performance. In particular,
developers often can use instruction traces or abstract
architecture emulations to avoid details of an archi-
tecture’s execution. Asim supports this capability by
using specially designated modules called feeders,
which supply inputs to drive a performance model.

Because a program or group of programs even-
tually drives a real computer system, the key feeder
for a performance model must supply instructions
that make up a program. To study hardware com-
ponents in isolation using stand-alone models, we
might use several feeders. For example, to drive a
network model, we might need a feeder that sup-
plies network packets either from a prior trace or
from an analytical model. Alternatively, to study a
branch predictor in isolation, we need only a stream
of branch instructions or a subset of a program’s
instructions. Asim recognizes the need for such
feeders and, to create sets of interchangeable feed-
ers, uses its module abstraction to specify standard
feeder interfaces.

Instruction feeders
Currently, Asim supports three instruction feed-

ers. The static trace feeder reads instruction traces,
interprets them, and supplies them to the perfor-
mance model. Either a real machine or a different
performance model could generate this kind of
trace. The static trace feeder’s simplicity, inherent
repeatability, and corresponding execution speed
make it appealing. However, because the trace only
has the correctly executed path, it does not supply
instructions from incorrectly executed paths.

The dynamic trace feeder runs an instruction emu-
lator to generate a trace on the fly and supply it to
the performance model. Compared to the static trace
feeder, the dynamic trace feeder saves disk space
because Asim does not have to store the traces, which
could be several gigabytes. Asim uses the dynamic
trace feeder to read instructions from the SimOS sys-
tem model,1 which simulates full computer systems
running a variety of applications, including data-
bases. The dynamic trace feeder also has trouble sup-
plying instructions from incorrectly executed paths.

Five-stage pipeline module

Fetch
module

Branch
predictor

<Fetch
to decode
port, 1, 2> Decode

module

<Decode
to execute
port, 1, 2>

Execute
module

Functional
unit

<Execute
to memory
port, 1, 2>

Cache
module

Data
cache

<Memory
to retire

port, 1, 2> Retire
module

<Branch predictor
update port, 2, 2>

<Data cache to functional
unit result port, 2, 2>

Figure 4. Sample
modules and ports
for a simple five-
stage processor
model in Asim. Ports
are represented as
X, Y, Z, where X is
the port name, Y is
the port’s latency,
and Z is the port’s
bandwidth ex-
pressed as data
items sent per
cycle. Thus, for
example, the fetch
module can send
two instructions to
the decode module.

The Aint feeder, the most aggressive in this set of
instruction feeders,2 supplies instructions from a
program binary. The performance model directs
Aint to fetch and execute instructions on its behalf,
as determined by its timing model and predictors.
Additionally, Aint maintains enough internal state
to act as a verifier for the correct path. Aint fetches
and executes any instruction under the direction of
the performance model, but it refrains from com-
mitting instructions from incorrect paths. Aint can
help a performance model correctly simulate a
modern, dynamically scheduled, speculative micro-
processor. However, because Aint does significant
additional computation, it is somewhat slower than
the dynamic trace feeder.

Separation of feeder and performance model
Asim separates architectural instruction execu-

tion in the feeder from the timing predictions in the
performance model, which simplifies the models
by avoiding full architectural emulation. The fol-
lowing code snippet helps to illustrate this func-
tionality separation:

PC1: R1 ← (R2)
PC2: R3 ← R1 + R5
PC3: R3 → (R2)

This code shows a sequence of three instructions
at addresses PC1, PC2, and PC3. The first instruc-
tion loads a value from a memory location, the sec-
ond adds it, and the third stores the added value
back to the same location.

Table 1 shows a possible execution scenario in
the feeder and performance model, in which the
performance model emulates a five-cycle pipeline
that includes Fetch, Decode, Execute, Memory, and
Commit functions. In contrast, the feeder only per-
forms a fixed and smaller set of tasks to execute the
program correctly.

In Table 1, the performance model controls the
feeder’s operation. The feeder tracks all architec-
tural-state attributes such as register and memory
values. Typically, the performance model has no
notion of these values. Hence, the model obtains
the effective address of the load instruction from the
feeder and does not calculate it explicitly. The feeder
has no notion of cache or memory hierarchy, but
instead has a flat memory space. The performance
model maintains the cache, but it does not track the
cache data. Instead, it keeps the cache tags only for
timing purposes to check cache hits or misses.

As Table 1 shows, the performance model expe-
riences and simulates the timing of a cache miss,

but during this time the feeder performs no action
for the corresponding load instruction. After the
miss is resolved and its timing is simulated correctly,
the performance model directs the feeder to read
the value returned by the miss from the feeder’s
memory space.

A performance model communicates with a
feeder through a fixed interface that consists of a set
of method calls, including calls to decode, execute,
perform memory operations, kill, and commit an
instruction in the feeder. The performance model
can have several pipeline stages to account for the
actual working of a long microprocessor pipeline,
and must invoke these method calls in the correct
order.

For example, if a store feeds a load, the perfor-
mance model must ask the feeder to execute the
store before it executes the load. Alternatively, the
model must detect the store-load order violation,
avoid invoking the commit method call on the load
instruction, and request that the feeder kill the load
instruction to clean up the feeder’s internal state
corresponding to these instructions.

ARCHITECT’S WORKBENCH
The Architect’s Workbench is a collection of

tools for using, managing, and debugging Asim’s
performance models and benchmarks. AWB con-
sists of two basic features: the configuration files
and the tools to manipulate these files. The config-
uration files specify the architectural model and the
benchmark for a specific experiment. The configu-
rator is an interactive tool that manipulates these
configuration files and exposes the module alter-
natives to an Asim user. The configurator uses a
graphical user interface, but developers can also

February 2002 73

Table 1. Possible execution scenario in performance model and feeder.

Cycle Performance model Feeder

PC1 PC2 PC3 PC1 PC2 PC3

1 Fetch Decode
2 Decode Fetch Decode
3 Execute Decode Fetch Calculate Decode

effective
address

4 Memory Decode
cache miss

…
Load value

22 Commit Execute Commit Execute
23 Execute Calculate

effective
address

24 Commit Store Commit Store
value

25 Commit Commit

74 Computer

employ all GUI functions through noninteractive
command-line tools.

Configuration files
To run an experiment in Asim, developers need

both a performance model and a program or
benchmark. Asim captures both the performance
model and the benchmark configurations in struc-
tured, text-based configuration files. These config-
uration files let a user run the same model with
different benchmarks or different models with the
same benchmark, thereby allowing greater control
over the experimental setup.

An Asim performance model configuration file
provides a complete specification. Each file con-
tains all the modules in a provides-requires hierar-
chy needed to create a complete model and the
corresponding model parameters. Asim records the
default parameter values in .awb files, so the con-
figuration file need only record parameter values
that differ from the defaults.

A configuration file consists of information about
the benchmark and how to run it. The information
about the benchmark specifies the benchmark’s
name, directory, feeder, and so forth. The control
portion of the configuration file directs AWB’s exe-
cution of the benchmark, for example to specify
skip or sampling intervals. An interpreter inside the
model processes the commands.

GUI configurator
AWB provides Asim’s GUI, including a browser

for already configured models and benchmarks and
a builder to create and edit models and bench-
marks. Asim uses the builder dialog to build a com-

plete model from scratch. The builder in Figure 5
shows a preconfigured model, which Asim builds
by reading the model’s structure and user-specified
parameters from a performance model configura-
tion file. Alternatively, developers can create a com-
plete model from scratch by selecting modules from
the module pool. Asim determines the pool of avail-
able modules by reading their .awb files.

Model building proceeds hierarchically, starting
at the top, where the model requires an Asim system
module. Selecting the system node in the hierarchy
causes the builder to show all modules that imple-
ment the system type. When an Asim user selects a
system, the hierarchy includes the selected system
module and shows the set of submodules the selected
module requires. The system module in Figure 5
requires an instruction feeder, CPU pipeline, and
memory subsystem. Additionally, when the user
selects the specific system module, the builder dis-
plays all the module’s configurable parameters. Asim
can override default values for all the builder’s
and recursively select and set parameters for all the
system’s modules and submodules.

After selecting all modules and setting the appro-
priate parameters, the user can instruct the AWB to
save the new information as a model configuration
file. Asim then uses this file repeatedly to build the
same model and run experiments with it. This process
creates a build tree for compiling the specified model.
In this build tree, Asim represents all files that imple-
ment a module as symbolic links to the appropriate
files in the source tree. For each module in the model,
the tree also synthesizes and includes a new header
file, which specifies as constants the parameters in
the .awb and model configuration files.

Figure 5. AWB con-
figurator displaying
the builder dialog.
The builder dialog
builds a complete
model from scratch.
The displayed mod-
ule requires an
instruction feeder,
CPU pipeline, and
memory subsystem.

TYING IT ALL TOGETHER
The Asim controller ties together the interactive

display and module hierarchy, with the controller
and modeling framework running in the same
address space as separate threads. Unlike the mod-
eling framework, which runs on a cycle-by-cycle
basis, the Asim controller is event driven and thus
maintains an ordered event list. Events consist of
commands to or from the modeling framework.
Commands to the framework might be benchmark
control commands from a benchmark configura-
tion or generated interactively. When the AwbRun
command is sent, for example, the controller puts
this event on the event list. At the appropriate point,
the controller invokes an event to run the modeling
framework for the number of cycles or instructions
specified in the AwbRun command.

The modeling framework can also send commands
to the Asim controller. Currently, the modeling frame-
work only sends commands to create events for the
runtime display. This display, which resembles one
developed for an Alpha microprocessor,3 shows the
activity within a processor pipeline on a cycle-by-
cycle basis, a capability that has proven invaluable
for debugging microprocessor pipeline and perfor-
mance model operations on small, selected sections
of benchmark code. Thus, for example, the perfor-
mance model can use the Asim controller to send
event requests to the runtime display to show how
an instruction proceeds through different stages of a
microprocessor pipeline.

W e plan to extend Asim in several ways.
Currently, instantiating multiple Asim
modules to create a hybrid module is dif-

ficult. For example, we anticipate extending Asim
to compose bimodal and gshare branch predictors
to create a hybrid branch predictor. Additionally,
we hope to parallelize Asim in ways similar to the
Wisconsin Wind Tunnel II approach.4 We also plan
to mix and match detailed and approximate mod-
ule models to experiment with trading execution
speed for timing prediction accuracy. Finally, we
plan to look at more flexible clocking schemes and
extend Asim to simulate different instruction set
architectures and system models. �

Acknowledgments
We thank David Goodwin for helping to build

the initial Asim framework, the many Compaq
engineers and interns who developed several per-
formance models within Asim, and Michael Adler,

Geoff Lowney, and Paul Rubinfeld for providing
helpful feedback on initial drafts of this article.

References
1. M. Rosenblum et al., “Complete Computer Simula-

tion: The SimOS Approach,” IEEE Parallel and Dis-
tributed Technology, vol. 3, no. 4, Winter 1995, pp.
34-43.

2. A. Paithankar, “AINT: A Tool for Simulation of
Shared-Memory Multiprocessors,” master’s thesis,
Univ. of Colorado, Boulder, 1996.

3. M. Reilly and J. Edmondson, “Performance Simula-
tion of an Alpha Microprocessor,” Computer, May
1998, pp. 50-58.

4. S.S. Mukherjee et al., “Wisconsin Wind Tunnel II: A
Fast, Portable Parallel Architecture Simulator,” IEEE
Concurrency, Oct.-Dec. 2000, pp. 12-20.

Joel Emer is an Intel Fellow in VSSAD at Intel. His
current research interests include multithreaded
processors, processor pipeline organization, and
performance modeling frameworks. He received a
PhD in electrical engineering from the University of
Illinois. Contact him at joel.emer@intel.com.

Pritpal Ahuja is a microprocessor architect at Intel.
His current research interests include performance
modeling, benchmarking, and memory hierarchy
issues. He received an MS in computer science from
Princeton University. Contact him at pritpal.
ahuja@intel.com.

Eric Borch is a senior hardware engineer in VSSAD
at Intel. His current research interests include com-
puter architecture and performance modeling. He
received an MS in computer engineering from the
University of Colorado, Boulder. Contact him at
eric.borch@intel.com.

Artur Klauser is a microprocessor architect in
VSSAD at Intel. His current research interests
include speculation control, on-die communication
paradigms, and modular design. He received a PhD
in computer science from the University of Col-
orado, Boulder. Contact him at artur.klauser@
computer.org.

Chi-Keung Luk is a senior systems engineer in
VSSAD at Intel. His current research interests
include computer architecture and compilers. He
received a PhD in computer science from the Uni-
versity of Toronto. Contact him at chi-keung.luk@
intel.com.

February 2002 75

76 Computer

Srilatha Manne is a senior hardware engineer in
VSSAD at Intel. Her current research interests
include high-performance microarchitectures, low-
power processors, and performance modeling. She
received a PhD in electrical engineering from the
University of Colorado, Boulder. Contact her at
srilatha.manne@intel.com.

Shubhendu S. Mukherjee is a senior hardware engi-
neer in VSSAD at Intel. His current research inter-
ests include fault-tolerant processors, tightly
coupled network architectures, and performance
modeling. He received a PhD in computer science
from the University of Wisconsin–Madison. Con-
tact him at shubu.mukherjee@intel.com.

Harish Patil is a senior systems engineer in VSSAD
at Intel. His current research interests include com-
pilers and computer architecture. He received a PhD
in computer science from the University of Wiscon-
sin–Madison. Contact him at harish.patil@intel.com.

Steven Wallace is a senior computer engineer in
VSSAD at Intel. His current research interests
include computer architecture and dynamic opti-
mization. He received a PhD in computer engi-

neering from the University of California, Irvine.
Contact him at steven.wallace@intel.com.

Nathan Binkert is a doctoral candidate at the Uni-
versity of Michigan, Ann Arbor. His current research
interests include simultaneous multithreading, oper-
ating systems, and high-speed I/O. He received an
MSE in computer science and engineering from the
University of Michigan, Ann Arbor. Contact him at
binkertn@umich.edu.

Roger Espasa is an associate professor at Univer-
sitat Politècnica de Catalunya (UPC). His current
research interests include high-performance
microarchitectures, high-bandwidth memory sys-
tems, and simulation and modeling infrastructure.
He received a PhD in computer science from UPC.
Contact him at roger@ac.upc.es.

Toni Juan is an associate professor at Universitat
Politècnica de Catalunya (UPC). His current
research interests include high-performance micro-
architectures, high-fetch-bandwidth engines, and
technology implications for microarchitectures. He
received a PhD in computer science from UPC.
Contact him at antonioj@ac.upc.es.

Career
Service
Center

• Certification

• Educational Activities

• Career Information

• Career Resources

• Student Activities

• Activities Board

computer.org

Career Service Center

Introducing the
IEEE Computer Society

Career Service Center

Advance your career
Search for jobs
Post a resume

List a job opportunity
Post your company’s profile

Link to career services

computer.org/careers/

