
Performance Improvement with Circuit-Level Speculation

Tong Liu and Shih-Lien Lu
Intel Corporation

tl999@yahoo.com; shih-lien.l.lu@intel.com

Abstract

Current superscalar microprocessors’ performance
depends on its frequency and the number of useful
instructions that can be processed per cycle (IPC). In this
paper we propose a method called approximation to
reduce the logic delay of a pipe-stage. The basic idea of
approximation is to implement the logic function partially
instead of fully. Most of the time the partial
implementation gives the correct result as if the function is
implemented fully but with fewer gates delay allowing a
higher pipeline frequency. We apply this method on three
logic blocks. Simulation results show that this method
provides some performance improvement for a wide-issue
superscalar if these stages are finely pipelined.

1. Introduction

The performance of microprocessor has been
accelerating rapidly in recent years. This gain has been
achieved through two fronts. On one front,
microarchitecture innovations have been able to take
advantage of the increase number of devices to process
more useful instructions per cycle (IPC). Superscalar is the
predominant scheme used. A superscalar processor issues
multiple instructions and execution them with multiple
identical function unit. It employs dynamic scheduling
techniques and executes instructions out of the original
program order. The main goal is to exploit as much
instruction level parallelism as possible in the program. On
the other front, the miniaturization of devices improves
layout density and makes the circuits run faster since
electrons and holes need only to travel shorter distance.
Clever circuit techniques have also been invented to
further speed up the logic. Together with finer pipestages,
modern microprocessor has accelerated its frequency
greatly in recent years.

However, it is believed more complexity is necessary to
continue the exploitation of parallelism. This complexity
increase tends to cause more circuit delay in the critical
path of the pipeline, thus limiting the frequency to go up
further. The current approach is to allow logic structures
with long delays to spread over multiple pipe-stages
resulting in structures that complete the computation in

single pipe-stage previously to take more than one cycle.
However, finer pipelined machine leads to longer pipeline
latency and imposes higher penalty due to branch miss-
prediction and miss-speculation. Moreover, other
instructions that depend on the results of these multi-
staged functional blocks will have to wait until they finish
in order to move forward in the pipeline. Figure 1
illustrates the effect of executing consecutive dependent
instructions. Therefore, these long delay structures may
become the performance bottleneck of microprocessor as
clock frequency continues to rise in the future. Thus, one
of the essential challenges in achieving performance in
future microprocessors is the ability to increase IPC
without compromising the ever-increasing clock
frequency.

Much work had been devoted to finding methods to
increase IPC. One possible approach is to increase the
width of the superscalar processor [1-6]. Another approach
considered by many researchers is multi-threading [7-12].
Both methods tend to increase the size of the structures
used internally such as instruction window and re-order-
buffer. Larger size means longer delay and may affect the
growth in clock frequency. Work done by Cotofana and
Vassiliadis [13] identified the delay complexity of issue
logic in a superscalar processor to be a function of issue

width. Work by Palacharla et. al. [14, 15] concluded that
possible clock limiting structures in a

IF ID EX EX M W

IF ID EX EX M W

IF ID EX EX M W

IF ID EX EX M W

IF ID EX EX M W

IF ID EX EX M W

IF ID EX EX M W

IF ID EX EX M W

(a) Pipeline with Independent Instructions

(b) Pipeline with Dependent Instructions

Figure 1. Example of Dependent and Independent
 Instructions Pipeline Execution

superscalar processor include, register rename logic and
issue logic. Also as the machine data and address width
increases (currently moving from 32 to 64 bits), we
believe adder may also become a bottleneck limiting the
increase in frequency because many groups reporting the
design of high performance microprocessors include their
add circuits in their papers [16-18]. This suggests that
adder may limit the frequency of microprocessor if we
want to have finer pipeline stages in the future.

In this paper, we propose to use circuit level
“prediction” to “speculate” the output of critical logic
blocks. The approach calls for a simpler and faster circuit
implementation to approximate the original complex
function. We termed this technique approximation.
Approximation circuit should be designed so that it
produces the correct result most of the time. Since it is not
100% correct it does require a way to verify the
correctness of the approximation. A duplicated logic
block, which implements the true function and samples the
output at the original worst case delay is used for
verification. Results from the approximation and
verification blocks are compared to determine if the
approximated result used to advance the pipeline is correct
or not. When the comparison result is negative we kill the
instruction and use the correct result to continue. The
recovery mechanism is similar to what is reported in [19].
A modified SimpleScalar [20] tool set in section is used to
compare performance.

2. Background and Baseline Design

The logic structures we have considered are adder,
issue logic and register rename logic. Adder circuit delay
is not related to issue width. However address calculation
done by integer adder is the key operation for instruction
fetch, branch prediction and data supply from memory
[21]. Moreover, we are observing a trend in the growth of
datapath width. Currently we are in transition from 32 bits
to 64 bits. Designing very fast large adder has been a
constant research topic [22, 23]. The latter two are key
structures used to exploit ILP in a wide-issue superscalar
microprocessor and generally considered as single cycle
function logic that are proved to be difficult to pipeline
inside. We called these structures cycle limiter. In order to
compare performance improvement, a baseline
microarchitecture is needed. There are different ways to
implement an out-of-order superscalar. Our baseline uses a
centralized issue window, which combines the reorder
buffer and instruction window together, and can provide
precise interrupt [1, 14, 24].

2.1. Adder

Many instructions contain add. Load, store and branch
use adder for address calculation. Arithmetic instructions

use adder for add, subtract, multiply and divide. There are
many different kinds of adders. Due to performance
requirement, most of the current high performance
processors employ one of the known parallel adders [25].
These parallel adders, such as Carry Look Ahead (CLA),
Brent-Kung Adder (BKA), Kogge-Stone Adder (KSA)
and Carry Select Adder (CSA), all have comparable
asymptotic performance [26] proportional to log (N),
where N is the number of bits of the adder. The cost
complexity of parallel adders approaches N2 when fan-in
and fan-out of gates used are fixed.

2.2. Register Rename Logic

Register renaming eliminates storage conflicts (anti-
and output dependencies). When an instruction is decoded,
its destination register is assigned to a physical register
(renamed). Usually the number of physical registers is
greater than the number of architectural or logical
registers. When a later instruction refers to a previously
renamed destination register (with its logical binding), it
must be able to traverse the renaming and obtains the
value stored inside the corresponding physical register or
just the tag of the physical register if the value has not yet
been produced. Thus, the register rename logic is used to
translate logical register designators into physical register
designators and is accomplished by accessing a mapping
table with the logical register designator as the index.
From [14, 15], there are two different implementations:
RAM and CAM. In the RAM scheme, the number of
entries (i.e., rows) in the mapping table is equal to the
number of logical registers and is independent of the
number of physical registers. However the mapping
table’s entry length (i.e., columns) of the RAM scheme
depends on the number of checkpoints needs to be stored.
As we issue more instructions per cycle we need to predict
over nested branches that will increase the width of the
mapping table. The CAM scheme, on the other hand, has
fixed table width but requires a larger number of entries.
We use the CAM structure in our baseline machine. A
block diagram of the renaming logic is shown in Figure 2
(in this figure the horizon entries are rows). It consists of a
set of physical registers, a mapping table and a priority
encoding logic block. The number of entries in the
mapping table is equal to the number of physical registers.
When a decoded instruction enters into the rename logic,
its destination register is assigned a new entry in the
physical register and the corresponding physical register is
stored with the logical register binding. The same decoded
instruction’s source registers binding will be used to
lookup the mapping table associatively. Since it is possible
that a logical register can match multiple physical registers
due to earlier instructions specify the same destination
registers, the result from this associative lookup is
channeled into the priority encoding logic. The priority

encoder converts the multiple ones into a single active line
to be used to access the physical register. The critical path

of register rename using this scheme is the time for
mapping table lookup and the priority encoding logic
when multiple matches are found. In the worst case, when
the matched entry is at the head of the mapping table, N-
bit adder-like ripple structure will be formed through the
entire priority encoder. A carry look ahead structure
(parallel-prefix) can be used and the delay will be in the
order of log (N), where N is number of physical registers.

2.3. Instruction Issue Logic

The issue logic contains three different parts, and all of
them are speed critical [13, 14, 15]. When an instruction is
finished from the functional unit, it writes result back to its
destination register. Status of its dependent instructions
will be updated by broadcasting the tag associated with the
result register to all the instructions in the issue window. If
there is a match that particular operand is marked ready. If
all operands of an instruction are marked ready, it is ready
to be issued. If multiple dependent instructions are ready
to issue, there may be contentions on issue bandwidth and
functional unit. A selection logic is needed to arbitrate
which ready instruction to be issued first. There are
different kinds of selection policy, and oldest-first policy,
which grant instruction occurs earliest in program order
first, is one of most popular policies. In a superscalar
machine, since out-of-order issued instructions usually
retire in-order, this policy is necessary because issuing old
instruction first can resolve dependency quicker and
committing earlier instruction first can leave space in the
instruction window for newly decoded instructions. When
a ready instruction is granted to issue, writeback data of
the instruction it depends on will be bypassed from output
of the corresponding functional unit to the source register.
The delay of wakeup-selection-bypass logic increases with
increasing issue window size. The selection logic will start
to check the request of instructions from earliest to latest
in program order, which is the order of RUU [28] from
head to tail. In the worst case, when the only request is

from tail of RUU, an adder like ripple carry will be formed
through all entries of RUU. A carry look ahead structure
can be used to make this process parallel and the delay is
the order of log (N), where N is the window size. For
wakeup and bypass logic, the RC delay dominates the
circuit speed. Circuit simulation shows that RC delay is
more sensitive to window size than logic gate level [14].
For the multiple issue case, the delay analysis will be
similar.

3. Circuit Level Speculation

Previous study [29] shows that for random input data,
the average carry length of a CLA is only 1/3 of its data
length. Moreover, other works have shown that there is
redundancy exits in programs [30-32], i.e., many
instructions perform the same computation with similar
input data pattern repeatedly. This could be used for adder
output speculation. For example, in address calculation,
one of the input to the adder is static. Moreover the other
operand is usually incrementing with a regular stride.
Therefore the actual adder delay is much shorter than the
worst case maximum delay. We use the approximation
technique described in the introduction section by
generating a part of the whole carry chain. As for the
register renaming logic, we believe that the renaming will
mostly happen among instructions close to each other, so
we employ the approximation method described
previously and use a simpler priority encoding logic. For
issue logic, we only select among a small group of
instructions close to the head of instruction queue to issue.
Due to this selection strategy, the wakeup and bypass logic
can be prioritized to work on the corresponding
instructions closer to head of instruction queue first, and
work on the rest of instructions later. Because of the
approximation techniques, the total pipestages of machine
are shorter, the dependency chain will be resolved faster,
and results in higher IPC. As other prediction methods,
circuit level value prediction is not 100% accurate. If the
prediction is wrong, the false speculated instruction has to
be re-issued and re-executed. This will cause more
resource contention, and dependency chain will be
resolved even slower than the baseline structure. If the
prediction accuracy goes down to a certain point, the
speculatively architecture will perform worse than the
baseline architecture. So we can only work on the logic
structure whose behavior is highly predictable. If the
prediction accuracy is high enough to overcome the replay
penalty of false speculation, the performance improvement
is expected. Also the wrongly speculated instruction
output will trigger its dependent instructions to start
execution and produce more false result. These false
results will trigger their own dependent instructions to
execute, and cause a chain reaction resulting in large
overhead and overall performance loss. Therefore it is

 Physical register
 Most recent Match

 Priority logic

 1 Multiple matches
 . . .

Rename CAM

 Rk R3 R5 R2 . . . R2 R4 R6
 P0 P1 P2 . . . Pn

 (rows)

R3 R5 R2

Figure 2. Rename CAM and priority logic, R
is logical register, and P is physical register

important to stop the write-back of the speculative
instructions as soon as the false prediction is detected. We
describe the details of our design and analysis used in the
following sections.

3.1. Adder

The critical path of an adder is its full carry chain. For
an N-bit adder, we denote the individual bits of the two
input operands as ai, bi and intermediate carries as ci (i=0,
…, N-1). Each intermediate carry signal - ci depends on all
its previous input bits. i.e.,

ci = f(ai-1, bi-1, ai-2, bi-2, …, a0, b0)
Thus, in order to generate the correct final result, we must
consider all input bits (look ahead all inputs) to obtain the
final carry out. However in real programs, inputs to the
adder are not completely random and the effective carry
chain is much shorter for most cases. Our approximated
design considers only the previous k inputs (lookahead k-
bits) instead of all previous input bits for the current carry
bit. i.e.,
ci = f(ai-1, bi-1, ai-2, bi-2, …, ai-k, bi-k) where 0 < k < i+1 and

aj, bj = 0 if j<0
If we choose k = N , our new approximation adder only
need half of the original delay (log N = ½ log N). The
prediction rate of an N-bit adder with k bits carry chain is:

P(N, k) = 11)
2

1(2

−−
+− kN

k

For example, a 64-bit approximation adder with 8-bit (8
= 64) look-ahead gives correct result 95% of the time
assuming random input data.

3.2. Rename Logic

As mentioned previously, the critical path of the
register rename logic is the delay of the associative
lookup and the priority logic when multiple matches are
found. By experimenting with benchmarks, we found that
dependent instructions may have spatial locality. In other
words, they are most likely to be close to each other. Thus,
we propose to use a smaller CAM to implement the
mapping table. The CAM table basically contains a
portion of the whole map. When a new instruction enters
the rename logic, its destination binding is assigned a new
physical binding. The mapping table is updated if the table
is not full. Otherwise the oldest one is dropped to leave
room for the newly renamed destination binding. At the
same time the source bindings are used to lookup the
partial CAM. If there is no physical mapping found in the
small CAM but the mapping does exist in the full CAM, A
mis-speculation occurs. Since the number of inputs to the
priority encoder is equal to the number of entry in the
smaller CAM, the delay for the rename logic is also
smaller. In order to double the speed, we propose to use a

much smaller CAM table containing only the latest N

number of instruction’s register mapping table in it, where
N is the window size. Because of the locality property of
register dependency, we hope to get most of the reading
operation from the rename logic correctly. Beside the
faster (approximation) renaming logic, we still keep a
regular full CAM and the associated full length priority
encoder. It will be used to recover the mis-speculation and
provide the correct renaming result in the next cycle.

3.3. Issue Logic

We use the same idea as rename logic by targeting the
issue logic on the earliest N entries (N = window size),
so that the issue logic only needs to consider waking up,
selecting and bypassing data to instructions within N

entries to the head of RUU. Since the wakeup and bypass
delay are RC dominated, and RC delay is more sensitive to
the window size, we will have more than twice speed up in
these two logics. So the total speculative issue logic delay
will be less than half of the issue logic in baseline
microarchitecture if only N entries are considered.
There is no replayed needed for the approximated issue
logic since there is no false result generated.

4. Implementation and Recovery

4.1. Implementation Cost

Our new microarchitecture uses the speculative adder,
rename and issue logic as described previously. A pair of
duplicated normal adders and rename logic is also
included in the machine being sampled at a slower
frequency. Since the slower verification logic is running
half speed as the speculative logic in the main data path,
two identical ones are needed to interleave the input data
so as to catch up with the fast frequency. The size of the
above mentioned circuit-level speculation logic for rename
and issue is smaller than the original logic used in the
baseline machine, since the speculative window size is
scaled down (in our case the size is the square root of the
original size). For an N-bit adder with k-bit carry look-
ahead, a total of N k-bit adders are needed. When k is
large, the new design may have a significantly larger area.
Fortunately, from our benchmark experiment, 4 bits of
carry look-ahead can achieve an average of 85%
prediction rate for 64 bits adder (random inputs give only
40% accuracy), this is due to the redundancy in program
data. Each pieces of small carry chain only has local wire
routings, so the device size can be smaller and layout can
be rather compact. Thus, in general, our duplicated
hardware used to speculate is smaller in size than the
original hardware. This is different from DIVA processor
proposed by Austin [33], which requires an almost

identical hardware as checker. Both approaches speculate
on circuit timing and both can avoid metastability.

4.2. Recovery

After the verification logic finished, the result is
compared with corresponding “speculative result” . If they
match, no other action is required. Otherwise instructions,
which generate a false result, will be issued again and
write back with the correct result from verification logic.
We assume that it takes an extra cycle for the slow
(original) logic to finish and verify the speculative result.
Also, as soon as the false speculation is known, the
writeback of the speculative instruction is stopped so that
it won’ t trigger the next dependent instructions. For issue
speculation, there won’ t be any false result generated, so
no replay is needed.

The issue mechanism in the superscalar
microarchiteture is event triggered. This means an
instruction will check the readiness of all of the source
registers and decide to send a request to issue only when
new data is written to any of the source registers. This can
happen in two cases:
I. In rename stage, if all source register data are

available, either in physical register it matched with,
or direct from architectural register file, then the
instruction is ready to issue immediately.

II. In writeback stage, when an instruction finishes
execute and writeback data, its dependent instructions
will be waked up, instructions with all source data
available are ready to issue.

We now discuss the detail on how the newly proposed
microarchitecture handles speculation and replay. In our
design, RUU has the same content as baseline
microarchitecture except every entry has flags showing the
bogus speculation, one per each source register. We call it
value prediction flag (VPF). Initially all VPFs are reset.
The VPF of a register will be set when the verification
logic finds out that the speculation done on the
corresponding instruction before is wrong, or that register
is written back by an earlier instruction whose VPF has
been set. The VPF will be cleared when the corresponding
register is written back by an earlier instruction whose
VPF is cleared. VPF will gate the writeback of the
instructions so that they won’ t contaminate its dependents.
Because it takes one extra pipestage for the verification
logic to figure out the result of the speculation, VPF will
be updated one cycle later than the speculation stage. If an
instruction’s writeback stage is immediately following it
speculation stage, it will trigger its dependent instruction
to issue because VPF hasn’ t been set yet. However, after
the dependent instruction issues, its VPF will be assigned
and its writeback will be stopped if false speculation
happens. Since updating VPF for the dependent
instructions can be done in parallel with their executions,

it won’ t degrade the performance. We didn’ t use
speculative adder for branch instruction. The reason is that
branch will be resolved in the next cycle immediately after
the adder calculates the address, and before VPF of the
branch instruction is assigned. The false speculation of
adder will cause spurious branch mispredictions. In other
words, a correctly predicted branch will be considered
mispredicted because the adder that is used to calculate
target address and to verify the branch prediction is wrong.
The penalty of recovering from spurious branch
mispredictions will be higher than the benefits we get from
the value prediction of add. For rename speculation,
because it happens at front end of the machine pipeline,
the VPF of the false speculated instruction would be set
before the branch resolved. So no spurious branch miss-
predictions will happen.

5. Simulation Result

Table 1. Common parameters of base simulator

Fetch
width

4 inst. per cycle

Instruction
cache

16K byte, Direct mapped, 32 byte line, 6
cycle miss latency

Branch
Predictor

Bimodel, 2048 BTB entries with 2 bit
saturating counter

Issue
mech.

Out-of-order issue, commit at 4
operations per cycles, load may execute
when all prior store addresses are known

FU 2 load/store, 4 fp adders, 1 fp MUL/DIV
FU
latency
(total/issue)

load/store 1/1, int ALU 1/1, int MUL
3/1, int DIV 29/19, fp adder 2/1, fp
MUL 4/1, fp DIV 12/12, fp SQRT 24/24

Data
cache

16K byte, 4 way set associate, 32 byte
line, 6 cycle miss latency

Table 2. Parameters of four cases of base
simulator

Issue
width

RUU,
LSQ

ALU MUL Speculation
window

carry
chain

I4R64 4 64, 64 4 1 8 4
I8R64 8 64, 64 8 2 8 4
I4R32 4 32, 32 4 1 4 4
I4R16 4 16, 16 4 1 4 4

We use SimpleScalar tool set to compare the
performance of our speculative microarchitecture with the
baseline machine. Assume both models run with the same
frequency. In the baseline machine, in order to keep up the
frequency the cycle limiter logic blocks all take 2 cycles.
While in the new speculative machine with approximation
circuits, these same logic blocks take only 1 cycle.
However the speculative machine will need to replay

when the result is incorrectly generated and incur miss
speculation (replay) penalty. Independent simulation
experiment is performed for each of the above mentioned
cycle limit logic - rename logic, issue logic and adder,
with the assumption that only one of them is the main
performance limiter. We run eight integer benchmarks
from the spec95 suite, using the reference input database.
First, we set the RUU window size = 64, issue width = 4,
integer adder number = 4, integer multiplier number = 1,
and run 2 billion instructions for each benchmark. Then by
shuffling the parameters: window size of 16, 32, issue
width of 8, integer adder number of 8 and integer
multiplier number of 2, we run each benchmark for 500
million instructions. These parameters are listed in Table 1
and 2. The speedup results are summarized in Figure 3-5.
The speedup is basically the ratio of IPC with baseline
machine normalized to one. Bars labeled HM in all figures
are the harmonic mean over all the benchmarks simulated.

From these diagrams, we can see that circuit-level
speculation method described does improve the overall
performance of the new microarchitecture. Also from
simulation result, the average prediction rates for
speculative adder, rename logic and issue logic are 88%,
80% and 36% respectively. For adder speculation, the
performance improvement is less than the other two
speculations. This is because addition completes close to
the back end of the machine, it is more likely to pollute the
dependent instructions by false writeback and cause more
penalties. By reducing window size, the adder speculation
performance relative to the baseline machine increased.
This reason is smaller number of independent instructions
is available in a smaller issue window. So the speculation
is more important and efficient to resolve dependencies.
On the other hand, increasing issue width and number of
function units degrades the relative performance, since
wider issue width, larger window size and more functional
units potentially cause larger instruction level parallelism,
and the mis-speculation penalty will overcome the
performance gain by resolving dependency chain.
However, for rename and issue speculation, the
speculative window size will change to match the baseline
window size so that to achieve the circuit speedup of twice
fast. This will compromise the relationship between
relative performance and window size, issue width and
functional unit. For case I8R64, which means wide issue,
large window and more functional unit, the relative
performance of ijpeg degrades a lot in issue and add
speculation. The predication accuracy of issue speculation
means the percentage of ready instructions in speculation
window over the total ready instructions. It is as low as
24% for ijpeg, causing huge waste of execution
bandwidth. Since ijpeg is a computational intensive
program, it is full of independent data processing
instructions, which means there are fewer dependencies
than other benchmarks. This explains the low performance

Figure 3. Speedup by speculative issue logic

Figure 4. Speedup by speculative rename logic

Figure 5. Speedup by approximation adder

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Speedup

cc
1

co
m go

ijp
eg

li

m
88 pe

rl

vo
rt

ex

H
M

Benchmarks

I4R64

I8R64

I4R32

I4R16

0

0.2

0.4

0.6

0.8

1

1.2

Speedup

cc
1

co
m go

ijp
eg

li

m
88 pe

rl

vo
rt

ex

H
M

Benchmarks

I4R64

I8R64

I4R32

I4R16

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Speedup
cc

1

co
m go

ijp
eg

li

m
88 pe
rl

vo
rt

ex H
M

Benchmarks

I4R64

I8R64

I4R32

I4R16

gain with issue and adder circuit-level speculation.

6. Conclusion

In this paper, we first try to identify some possible
cycle limiters in a superscalar microprocessor, namely
adder, rename logic and issue logic and analyze their
speed path. Then we propose a circuit level speculation
method – approximation to speedup these critical logic
blocks. For adder, carry chain is generated by a subset of
the input data. For rename and issue logic, we only target
on a subset of instructions in the issue window. For adder
and rename logic, the corresponding verification logic
must be duplicated to detect the correctness of value
prediction. In case of false speculation, the instruction will
be replayed. Our simulation of SPEC95 benchmarks with
different window size, issue width and number of function
units shows performance improvement for this newly
proposed microarchitecture over the baseline machine.
Our conclusion is that circuit level speculation method is a
potential way to speedup some cycle limiting logic
structures and achieve better performance in wide issue
superscalar microprocessor. Approximation method works
better on program with more dependencies than that with
high ILP originally. The extra hardware cost both for
duplicated logic blocks and verification logic is somewhat
limited.

References

[1] James E. Smith, and Gurindar S. Sohi, “The
Microarchitecture of Superscalar Processors,” in Proc. of
the IEEE, Vol.: 83 12, Dec. 1995, pp. 1609 –1624.

[2] P. Michaud, A. Seznec, and S. Jourdan, “Exploring
instruction-fetch bandwidth requirement in wide-issue
superscalar processors,” in Proc. of the Int. Conf. on Parallel
Architectures and Compilation Techniques, 1999, pp. 2 –10.

[3] S. Dutta, and M. Franklin, “Control flow prediction schemes
for wide-issue superscalar processors,”
IEEE Transactions on Parallel and Distributed Systems,
Vol.: 10 4, April 1999, pp. 346 –359.

[4] Sangyeun Cho; Pen-Chung Yew; Gyungho Lee,
“Decoupling local variable accesses in a wide-issue
superscalar processor,” in Proc. of the 26th Int. Symp. on
Comp. Arch., 1999, pp. 100 –110.

[5] J. Farrell and T. C. Fischer, “ Issue Logic for a 600-MHz
Out-of-Order Execution Microprocessor,” IEEE JSSC, Vol.
33, No. 5, May 1998, pp. 707-712.

[6] S. J Patel, D. H. Friendly and Y. N. Patt, ”Evaluation of
design options for the trace cache fetch mechanism,” IEEE
Transactions on Computers, Vol.: 48 2, Feb. 1999, pp.193 -
204

[7] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous
multithreading: Maximizing on-chip parallelism,” in Proc.
of 22nd Ann. Int. Symp. Comp. Arch., 1995, pp. 392 –403.

[8] C. B. Zilles, J. S. Emer and G. S. Sohi, “The use of
multithreading for exception handling,” in Proc. of 32nd
Ann. Int. Symp. on Microarchitecture, 1999, pp. 219 –229.

[9] P. Marcuello, J. Tubella, and A. Gonzalez, “Value
prediction for speculative multithreaded architectures,” in
Proc. of 32nd Ann. Int. Symp. on Microarchitecture, 1999,
pp. 230 –236.

[10] S. Wallace, D. M. Tullsen and B. Calder, “ Instruction
recycling on a multiple-path processor,” in Proc. of Fifth
Int. Symp. On High-Performance Comp. Arch., 1999, pp.
44 –53.

[11] J. -M. Parcerisa, and A. Gonzalez, “The synergy of
multithreading and access/execute decoupling,”
in Proc. of Fifth Int. Symp. On High-Performance Comp.
Arch., 1999, pp. 59 –63.

[12] H. Akkary, and M. A. Driscoll, “A dynamic multithreading
processor,” in Proc. of 31st Ann. Int. Symp. on
Microarchitecture, 1998, pp. 226 –236.

[13] S. Cotofana, and S. Vassiliadis, “On the Design Complexity
of the Issue Logic of Superscalar Machines,” in Proc. of the
24th Euromicro Conf., 1998, pp. 277 –284.

[14] Subbarao Palacharla, Norman P. Jouppi, J. E. Smith,
“Complexity-Effective Superscalar Processors,” in Proc. of
the 24th Int. Symp. on Comp. Arch., June 1997.

[15] Subbarao Palacharla, Norman P. Jouppi, J. E. Smith,
“Quantifying the Complexity of Superscalar Processors,”
Technical Report CS-TR-96-1328, University of Wisconsin-
Madison, November 1996.

[16] R. Bechade et. al., “A 32b 66 MHz 1.8 W microprocessor,”
in Digest of Technical Papers of the 41st IEEE Int. Solid-
State Circuits Conf., 1994, pp. 208 –209.

[17] D. Dobberpuhl et. al., “A 200 MHz 64 b dual-issue CMOS
microprocessor,” in Digest of Technical Papers of the 39th
IEEE Int. Solid-State Circuits Conf., 1992, pp. 106 -107,
256.

[18] H. Sanchez et. al., “A 200 MHz 2.5 V 4 W superscalar
RISC microprocessor,” in Digest of Technical Papers of the
43rd IEEE Int. Solid-State Circuits Conf., 1996, pp. 218 -
219, 448.

[20] M. H. Lipasti, and J. P.Shen, “Exceeding the dataflow limit
via value prediction,” in Proc. of the 29th Ann. IEEE/ACM
Int. Symp. on Microarchitecture, 1996, pp. 226 –237.

[21] D.C. Burger and T.M. Austin, “The SimpleScalar Tool Set,
Version 2.0,” University of Wisconsin Computer Science
Technical Report #1342, June 1997.

[22] Y. Shintani et. al., “A Performance and Cost Analysis of
Aplying Superscalar method to Mainframe Computers,”
IEEE Trans. On Computers, Vol. 44, No. 7, July 1995, pp.
891-902

[23] Wei Hwang; Gristede, G.; Sanda, P.; Wang, S.Y.; Heidel,
D.F, “ Implementation of a Self-resetting CMOS 64-bit
Parallel Adder with Enhanced Testability,” IEEE JSSC,
Vol.: 34 8, Aug. 1999, pp. 1108 –1117.

[24] L.A. Lev et. al., “A 64-b microprocessor with multimedia
support ,” IEEE JSSC, Vol.: 30 11 , Nov. 1995 , pp. 1227 -
1238.

[25] Mike Johnson, Superscalar Microprocessor Design. Prentice
Hall Series in Innovative Technology. 1991.

[26] C. Nagendra, M.J. Irwin, and R.M. Owens, “Area-time-
power tradeoffs in parallel adders,”
Circuits and Systems II: Analog and Digital Signal
Processing, IEEE Transactions on
Vol.: 43 10 , Oct. 1996 , pp. 689 –702.

[27] T. Lynch,and E. Swartzlander, “The redundant cell adder,”
in Proc..of the 10th IEEE Symp. on Computer Arithmetic,
1991, pp. 165 –170.

[28] G. Sohi, “ Instruction Issue Logic for High Performance,
Interruptible, Multiple Functional Unit, Pipelined
Computers,” IEEE T. on Computers, Vol. 39, No. 3, March
1990, pp.349-359.

[29] R. Ramachandran and S. L. Lu, "Carry Logic," Wiley
Encyclopedia of Electrical and Electronics Engineering,
Edited by John G. Webster, 1999.

[30] Avinash Sodani and Gurindar S. Sohi, “Dynamic Instruction
Reuse,” Proc. of the 24th Int. Symp. on Comp. Arch., June,
1997.

[31] Avinash Sodani and Gurindar S. Sohi, “An Empirical
Analysis of Instruction Repetition,” in Proc. of 8th Int.
Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-VIII), Oct 1998.

[32] Avinash Sodani and Gurindar S. Sohi, “Understanding the
Differences between Value Prediction and Instruction
Reuse,” in Proc. of 31st Int. Symp. on Microarchitecture,
Nov-Dec 1998.

[33] T. M. Austin, “DIVA: a reliable substrate for deep
submicron microarchitecture design,” in Proc. of the 32nd
Ann. Int. Symp. on Microarchitecture, 1999, pp. 196-207.

