
Silent Stores for Free
Kevin M. Lepak and Mikko H. Lipasti

Electrical and Computer Engineering
University of Wisconsin
1415 Engineering Drive

Madison, WI 53706
{lepak,mikko}@ece.wisc.edu

Abstract

Silentstore instructionswrite valuesthatexactlymatch the
valuesthatarealreadystoredat thememoryaddressthat is
beingwritten.Arecentstudyrevealsthatsignificantbenefits
canbegainedbydetectingandremovingsuch storesfroma
program’s execution.This paper studiesthe problem of
detectingsilentstoresandshowsthatanaverageof31%and
50%of silentstorescanbedetectedfor verylow implemen-
tation cost,by exploiting temporal andspatial locality in a
processor’s load andstore queues.We alsoshowthat over
83%ofall silentstorescanbedetectedusingidlecacheread
accessports.Furthermore, weshowthatprocessorsthatuse
standarderror-correctioncodestoprotectdatacachesfrom
transienterrorscanbemodifiedonlyslightlytodetect100%
of silent storesthat hit in thecache. Finally, weshowthat
silentstoredetectionvia thesemethodscanresultin a 11%
harmonicmeanperformanceimprovementin a two-level
store-throughon-chip cache hierarchy that is basedon a
real microprocessor design.

1 .0 Intr oduction

A recentstudyof storevalue locality notesthat many
storeinstructionswrite valuesthat areeithertrivially pre-
dictableor actuallymatchthevaluesthatarealreadystored
at the memoryaddressthat is being written. Suchstores
arecalledsilentstores, sincetheyhavenoeffectonsystem
state.While surprisingat facevalue,this discoveryis logi-
cally consistentwith theplethoraof recentresearchon the
value locality of load instructions and register-writing
instructions(e.g.[6,7,10,15,17]).If indeedtheinputvalues
that are being loaded from memory exhibit significant
value locality, and the register-to-registercomputation
itself exhibits value locality, it follows naturally that the
output valuesbeing storedback to memory also exhibit
significantvalue locality. Source-levelanalysispresented
in [1] indicatesthat manysilent storesarealgorithmic in
nature.Resultsreportedin [14] demonstratethat20%-68%
of all store instructions are silent.

Detectingandsquashingsilent storescanhavea num-
ber of beneficialeffects: reducingthe pressureon cache
write ports,reducingthepressureon storequeuesor other
microarchitecturalstructuresthatareusedto trackpending
writes, reducingthe needfor store forwarding to depen-
dentloads,andreducingboth addressanddatabustraffic
outside the processorchip. Many of thesebenefits are
examinedandquantifiedin [14]. However,thereis alsoa
complexityandmicroarchitecturalresourceutilizationcost

associatedwith detectingsilent stores.Namely, to detect
the fact that a storeis silent, the prior valuemust first be
readout from the memorylocation,comparedto the new
value, and then conditionally overwritten in a process
called store squashing. The simple store squashing
approachoutlinedin [14] simply issueseachstoreinstruc-
tion twice: first asa readfollowed by a compare,andlater
asa storeif it is not silent.Thoughbeneficialoverall, it is
clear that such a simplistic approachplaces additional
pressureon cacheports, particularly when running pro-
grams with few silent stores.

Meanwhile,concernsoverreliability andtheincreasing
susceptibilityof currentandfuturesemiconductortechnol-
ogies to soft errors inducedby gammarays [24,25] and
alphaparticles[16] haveforcedadditionalcomplexityinto
the store-handlinglogic of high-endmicroprocessors.For
example,the latesthigh-endprocessorsfrom Compaqand
IBM (theAlpha 21264andPowerPCRS64-III) protectL1
datacachesfrom soft errorswith SEC-DEDerror-correc-
tion codesfor eachaligned 64-bit quantity. Performing
sub-64bitstoresinto SEC-DED-protectedcachesrequires
a read-merge-writeprocedurefor recomputingandstoring
the ECC for the affected 64 bit parcel.

Storehandlinghasalsobeenheavilycomplicatedby the
introduction of out-of-order execution in many current
processorcores.In order to track pendingrequestsand
guaranteethat memoryorderingrulesarenot violated,all
outstandinguncommittedloadsand storesare trackedin
complex hardware structures commonly called load
queuesand storequeues.Thesequeuesin fact provide a
historicalandfuture contextfor everyindividual memory
referenceby surroundingit with memoryreferencesthat
occur near to it in the program order.

The emergenceof both SEC-DEDprotectionfor tran-
sienterror recoveryandload/storequeuesto supportout-
of-order executioncreateinterestingopportunitiesfor a
microarchitect searching for low-cost approachesfor
implementingstoresquashing.In this paper,we examine
some of these opportunities, ranging from embedding
silent storedetectioninto the read-merge-writesequence
required for subword stores; to read port stealing; to
exploiting temporaland spatial locality in the store and
load queues;all to performstoresquashingfor negligible
or reasonablylow implementationcost.We find that31%
of silentstorescanbeidentifiedwith thesimplestapproach
that exploitstemporallocality only, while a moreaggres-



sive approachthat also exploits spatial locality captures
an additional 19% on average.Finally, we explore the
performancebenefitsof store squashingin a two-level
cache hierarchy with store-throughL1 cachesthat is
basedon theupcomingIBM Power4design[13]. In such
a configuration,we find that reducingpressureon the
memory system can provide up to 56% performance
improvementin one benchmark,with a harmonicmean
improvement of 11%.

2 .0 Free or Low-Cost Squashing Options

Earlier work showedthat performancebenefit canbe
obtainedby squashingsilent storesfor bothuniprocessor
andmultiprocessorsystems[14]. Throughoutthis paper,
storesquashingdescribestheoverallprocessof suppress-
ing asilentstore;storeverificationrefersto thesubtaskof
detecting that a store is silent. Further, we assumea
weakly consistentmemory model when describingthe
various squashing and verification mechanisms.Of
course,someoptimizationsmay or may not be possible
with stricter consistencymodels.Further discussionof
consistencymodelissuesis generallyomittedfor thesake
of brevity.

2.1 Explicit Store Verifies for All Stor es
In order to understandwhy we would like to exploit

free silent storesquashing(FSSS),a review of the origi-
nal proposedmechanismis necessaryto understandits
implicit assumptionsand potential performanceprob-
lems.As originally explainedin [14], referredto in this
work as a standardstore verify, all storeoperationsare
convertedto explicit loads,comparisons,andconditional
stores. A pipeline diagram is shown in Figure1.

This implementationhassomeundesirablecharacteris-
tics. First, explicitly converting all stores to loads
increasespressureon theavailablecacheportsin thesys-
temandcanpotentiallydelaytheissueof loadswhich are
likely on thecritical path.Second,havingasingleinstruc-
tion performmultipledatacacheaccesses(andpotentially
causemany data cachemisses)will increasescheduler
and control logic complexity. Finally, performingmore
cacheaccesses(an additional read for each non-silent
store) can increasepower consumption.Therefore,we
would like to find moreefficient waysof squashingsilent
stores.

In the next sections,we presentseveralalternative
implementationsof storesquashing,eachmore efficient
thanthestandardstoresquashingmechanism.We usethe
term freeratherlooselyto indicatethatthesemechanisms

havea qualitatively lower implementationcost than the
standard store verify. Detailed assessmentof actual
implementationcomplexityis left to futurework. Wewill
usethetraditionalstoreverify mechanismasthebasisfor
comparison.

2.2 Err or Corr ecting Codes (ECC)
With soft errorsin modernmicroprocessorsbecoming

a largerconcernaswe moveto deepersub-micronfabri-
cation technologies and higher reliability systems
[11,16,21,22,24,25],microprocessordesignersare pro-
tectingtheareasof a chip which aremostdenselypacked
with transistors(e.g.caches,memories,etc.)againstran-
domalpha-particlesandothercausesof soft errors.Error
checkingandcorrecting(ECC)codesarea very common
method for protection against soft errors.

With the incorporationof ECClogic into datacaches,
even in the L1, as is done in the Alpha 21264 [9] and
PowerPCRS64-III [4], silent store squashingbecomes
much simpler to implement.We return to this point in
more detail in Section3.1 whena possibleimplementa-
tion of squashingin this cachestructureis presented,but
the basic idea is the following:

ECCusingvariousencodingschemes(we focuson the
SEC-DEDvariety of Hammingbasedcodes[2,20], but
the commentsmadehereapply moregenerally)requires
somenumberof databitsandcheckbits to enablethecor-
rectionof errors.The numberof checkbits is relatedto
the number of data bits by the following function:

, wheren is thenumberof databitsandk is
thenumberof checkbits.Giventhetranscendentalnature
of this function,thereis no simpleclosedform for k, but
we illustrate the number of data bits and check bits
required for various ECC-word sizes in Table1.

Thereis an obvioustrade-offbetweenthe granularity
onwhichwekeepECC(data-wordsize)andtheoverhead
of thecheckbits. In thecaseof 12 bit ECC-words(8 data
bits), thereis a50%increasein storagespaceasoverhead
for ECC. For progressivelylargerECC-words,the over-
head is reduced--downto 3.5% in the caseof 265 bit
ECC-words(256databits).However,this loweroverhead
doesnotcomewithoutpenalty.Wecanonly correctasin-
gle bit erroranddetecta doublebit errorwithin theentire
ECC-word.Of course,as ECC-wordsize increases,the
probabilityof multiple errorswithin a word increases,so
ECC is lesseffectivefor largerwordsanda designcom-

FIGURE 1. A standard store verify consistsof load
and compare operations in the execute stage..

Table 1: ECC data words and required check bits.

Data-word
Size (bits)

ECC Check
Size (bits)

ECC-word
Size (bits)

ECC Check
Bit Overhead

8 4 12 50.0%

16 5 21 31.3%

32 6 38 18.8%

64 7 71 10.9%

128 8 136 6.3%

256 9 265 3.5%

n k+ 2k 1–≤



promisemust be reached.In general,fairly large ECC-
word sizesare chosento minimize overheadand obtain
acceptableerrorcoverage.In manymodernmicroproces-
sorsandsystembusses,64 bit data-wordECCor largeris
usedfor easeof implementationandbecauseof the con-
figurationof memorysystems[9,11]. As a point of refer-
ence, the Alpha 21264 and the PowerPC RS64-III
implementL1 datacacheECCon quadword(64 bit) data
quantities.

The checkbits for a data-wordaregeneratedwhena
value is stored into the cacheand comparedwhen the
valueis laterread(moredetail in Section3.1). In orderto
generatecorrectcheckbits,all bits in theECC-wordmust
beavailableasinput to theECCgenerationlogic. There-
fore, if weperformawrite operationthatis eitherimprop-
erly alignedon ECC-wordboundaries,or is a sub-ECC-
word write, we must first fetch the rest of the original
ECC-wordstoredat the location, mergein the changes
(from thecurrentwrite), calculatethenewcheckbits,and
store the ECC-word.

We canseethat in manycasesthestoreoperationinto
an ECC-protectedcachereally consistsof four opera-
tions: readoriginal ECC-word,storemerge,ECC check
bit generation,andnewECC-wordstore.This realization
illuminatesthe possibility of onetype of free silent store
squashing(FSSS). Since we are reading the original
ECC-wordanyway,we canperforma comparisonof the
newstorevalueto theoriginal valueandsquashthesilent
stores.This storeverify canbeperformedin parallelwith
the storemergeandnew ECC checkbit generation,add-
ing very little delayto thestorelogic, aswill beexamined
in more detail in Section 3.1.

In comparisonto standardstoreverifies (Section2.1),
we can seethat storeverifies carriedout in ECC logic
requireno explicit load operation,but rathercansimply
be performedat commit, as illustrated in Figure2. The
drawbacksof this approachare that a store is squashed
relativelylatein thepipeline(at commit insteadof during
theexecutestage)so it maynot reducepressureon write
buffers; it cannotbe removedearly from the LSQ; and
finally that it cannot capture ECC-word-aligned stores.

2.3 Read Port Stealing
It is well knownthatprogramsarenon-uniformin the

usageof systemresources.Therefore, in many cases,
someavailableidle resourcescanbe usedfor otherpur-
poses.We proposean additional use of idle resources;
namely, exploiting free cacheread ports to implement
storeverifies. This mechanismis a simple extensionof
the standardstoreverify explainedin Section2.1. Since

storesmust commit in order, it is possiblethat due to a
pipelinestall astorecanwait in theLSQfor a longperiod
of time beforeit completes.If a load port becomesfree
while thestoreis waiting to commit,we canusethe load
port to performa storeverify operation.Becausewe are
usingresourcesthatareidle andavailable,thesestorever-
ifies are free. If a load port never becomesavailable
beforethestoreis readyto commit,we foregoattempting
to squash the store and assume it is non-silent.

Relativeto standardstoreverifies,this methodhasthe
benefitof not delayingexecutionof load operationsdue
to resourceconflicts. However, it can createadditional
instructionschedulingdifficulties becausethe policy for
issuinga storeverify is dependenton resourceusageand
not justprogramorderor anotherstaticschedulingpolicy.
This technique of FSSS is shown in Figure3.

2.4 Load/Store Queue
In orderto obtainhigh performance,manyprocessors

implement aggressivememory systemswhich require
load/storequeues(LSQs) to perform store to load for-
warding and monitor speculativeload operationswhich
may be violations of the architectedconsistencymodel.
We canexploit locality in theLSQ to obtainFSSSasout-
lined in the following sections.

2.4.1 Temporal Locality in the LSQ
Storeto loadforwardingof memorydependencesis an

optimization commonly implementedin modernmicro-
processors.In the caseof storesquashing,a storeverify
operationnecessitatesaread.If storeforwardingis imple-
mented,wecanextendit to squashlaterstoresto thesame
addressas an earlier store in the LSQ (WAW depen-
dence).We can do so without using a cachereadport,
hence making the squash free.

In asimilar fashion,wecanalsosquashstoresto mem-
ory addressesfor which anoutstandingloadexistsin the
LSQ. This is possiblebecausethe cacheaccessfor the
load will be performed,obtainingthe datavalue for the
storeverify. In somesense,wecanconsiderthestorever-
ify for thestoreto be“piggy-backed”on theexplicit load
operation to the samememory address(WAR depen-
dence).Note that this optimization is also possiblefor
loadswhichoccurlaterin programorder,whichgenerally
would havetheir loadvalueforwardedfrom theprevious
storewe’re trying to squash.This is possiblebecausethe
usageof the cacheport is usually scheduledbeforeit is
knownwhetherthevaluewill be forwardedfrom anear-
lier store in the LSQ [8,13]. Therefore,since we have
scheduledthe loadfor cacheaccessanyway,the loadcan

FIGURE 2. ECC store verify occurs at commit. FIGURE 3. Read port stealing performs a load and
compare only if a cache port is idle.



still be performedat no cost. Hence,the storeverify is
again free in the case of a RAW memory dependence.

2.4.2 Spatial Locality in the LSQ
In a similar fashion,we canexpandthescopeof stores

squashablewithin the LSQ to addressesthat inhabit the
samecacheline. Given that L1 datacachesareon-chip,
obtainingwide accessto thesecachesis relatively easy.
Therefore, one may imagine each memory operation
readingan entire cachelineon any referencebecauseof
thehigh bandwidthavailablefrom theL1 cache.Assum-
ing that a memoryaccessreadsthe entire line from the
cacheinto a LSQcache(shownin Figure4), we canuse
the spatially local data to perform additional squashing.

In thecaseof a WAW dependence,a previousstoreto
the line readsthe line into the LSQ cache,andall subse-
quentstoresto that line can be squashedfrom the LSQ
cache.In the caseof a WAR and RAW dependences,a
similar processoccurs--theload operationallocatesthe
line in the LSQ cache,and storesto the sameline are
squashedfrom it. Wewill showin Section4.4thatasmall
LSQ cacheis especiallyeffective in the caseof WAW
dependences.

TheLSQ cacheis similar to thewrite cacheproposed
in [12], exceptit containsentirecachelinesasopposedto
8 byte quantitiesand it buffers both load-allocatedand
store-allocatedlines.Also notethatsinceissuingstoresis
generallynot astime critical asissuingloads(becausethe
storescanbebufferedat commit)we serializethelookup
in the LSQ cacheand the accessto the memorysystem
(shown in Figure4) to avoid unnecessaryusageof the
datacacheport. We can also exploit readport stealing
(Section2.3) andonly readdatafor storesinto the LSQ
cacheif amemoryreadport is available.Assumingwedo
so, we also needa separatevalid bit both for the LSQ
cachelinedataandfor the entriesin the LSQ themselves
(shown in the Figure4) becausea store may fail to
acquirea freereadport, leavingthedatainvalid. Whenan
accessallocatesa line into theLSQcache,wemaychoose
to verify storesalreadypresentin theLSQwith thenewly
allocateddata,but this may add complexity to the LSQ

andLSQ cachefor additionaldatapaths.We will discuss
this further in Section 4.4.

If weassumethattheLSQcacheis FIFOallocatedand
is operatedin lock-stepwith the entriesin the LSQ such
that whenan entry leavesthe LSQ its LSQ cacheline is
also deallocated,we can avoid having explicit tagsand
dirty bits in theentries(becauseall necessaryaddressand
dirty value forwarding is alreadyavailable in the LSQ
entriesfor store-forwarding).In thecaseof a weaklycon-
sistentsystem,it is sufficient for correctnessto flush the
LSQ cacheon memorybarriers(and this is most likely
very effectivebecauseof the small LSQ cachesize)and
avoid snoopingit for invalidates.In more strict consis-
tencymodels,snoopingtheLSQ mayalreadyberequired
to detectconsistencymodel violations, so snoopingthe
LSQ cache as well adds no additional complexity [23].

Thebenefitsof squashingin theLSQ relativeto stan-
dard store verifies are apparent.No additional cache
accessis requiredfor the load portion of the storeverify
and squashing stores is free.

3 .0 ECC Free Silent Store Squashing

As touchedon briefly in Section2.2, soft errorsarea
growingconcernfor microprocessorarchitectsin orderto
providehighly reliablesystemsandbecauseof manufac-
turing concerns[11,16,21,22,24,25].Havingdiscussedin
Section2 the opportunitiesfor FSSS,in this sectionwe
elaborateon the ECC methodof FSSSin greaterdetail.
We show three possiblemechanismsfor protectingL1
datacachesfrom soft errorsandillustrateunderwhatcir-
cumstancesthe FSSStechniquescan be exploited.We
alsoexplorewhichof thetechniquesweexpectto bemost
effective for different cache architectures.

3.1 L1 Data Cache with ECC
Soft error protectioncanbe performedin the L1 data

cachedirectly, asis donein theAlpha 21264[9] andthe
PowerPCRS64-III [4]. The 21264and PowerPCRS64-
III use64-bit ECC datawords.As shownin Section2.2,
thisprovideserrorcoveragefor relativelylow spaceover-
headof approximately11%.As alsooutlinedin thatSec-
tion, FSSS is trivially implementableas part of ECC
checkbit generationfor subwordwrites.In orderto illus-
tratetheargumentmadein Section2.2,Figure5 showsa
datapathwith which ECCmaybeimplementedon a sub-
ECC-wordstoreoperationin anAlpha-like system.Note
that we use72-bit ECC words(insteadof the 71 usedin
standardHamming-basedcodes)becausethe Alpha uses
a slightly modified coding scheme with 72-bit words [9].

Implementationwill be slightly different to handle
smallerbit width stores,but for easeof illustration,only a
32-bit storeis shown.Weseethefour majoroperationsas
discussedin Section2.2: readtheoriginal quadwordfrom
thedatacache,mergethestoredatainto the input sideof
the ECC Data Register,generateECC check bits, and
storethequadwordandECCbits. Notethat if ECC-word
generationtakesmultiple cycles(asonemight expectfor

FIGURE 4. Block level LSQ cachedesign.Thetemporal
andspatialLSQsquashingoperations,dataallocation,andstore
forwarding are illustrated for memory operations.



essentiallya read-modify-writesequence),wemustmain-
tainatomicityof thesequenceeitherthroughdesignof the
write buffer feedingthe ECC logic, or in the logic itself.
We have ignored this detail to simplify the diagram.

In Figure6, we showthe implementationof FSSSin
the sameECC logic structureasshownin Figure5. We
canseethatthechangesto thedatapatharerelativelysim-
ple; the additionof an extramultiplexor anda compara-
tor. Figure6 alsoillustratesthatwe cannotperformsilent
storesquashingif anECCerroris encounteredontheread
of the datavaluefrom memory.This is becausethe cor-
rectedvalue is obtainedfrom the ECC correctionlogic
andthereforemustbewrittenbackto thememorysystem.
The logic implementsthe samefour stepsas described
previously. However, the store merge,ECC check bit
generation,andnew ECC-wordstoreoperationsmay be
abortedif it is determinedthatthestoreis silentandthere
is no ECCerror.Theabortoperationcanbeassimpleas
not re-acquiringthecacheport for thewrite of the(silent)
ECC-word from the ECC Data Register.

The most important aspectof Figure6 is when the
silentstorecomparisoncanbeperformed.Fromthedata-
pathshown,we canseethat the comparisoncanbe per-
formedin parallelwith theECCcheckbit correctionand
generation.In general,ECC correction and generation
logic consistsof treesof exclusive-orgates[20] which
havedelayon thesameorderasthe32-bit comparisonfor
squashing.Therefore,FSSSfor sub-ECC-wordstorescan
be implementedin an ECC-protectedL1 datacachefor
simply the cost of a few extra gateswhich should not
increase the ECC logic’s critical path.

3.2 Store-through L1 Cache with ECC L2
ImplementingECC protectiondirectly is not the only

way to combatsoft errorsin the L1 datacache.In fact,
addingECC protectionto the L1 directly cancontribute
negativelyto cycletimebecausetheECCcorrectionlogic
is now addedto the critical path on load operationsto
assureusageof correctedvalues from the cache. Of
course,speculationcanbeusedin orderto movetheECC
check/correctionlogic off thecritical pathby speculating
thatall loadvaluesarecorrectandrecoveringif theECC
logic reportsan error. Of course,this addscontrol com-
plexity to trigger the recovery [9].

An alternativeis to useanL1 cachewith simpleparity
protectionanda store-throughpolicy backedup with an
ECCL2 cache.TheL1 parityprotectionhasa few advan-
tageswhen comparedwith ECC in the L1. First, parity
caneasilybekepton a bytebasiswith thesameoverhead
asthe72-bit ECC-wordasin the21264(in bothcasesthe
overheadis approximately13%.)With byte parity in the
L1, there are no merging issueswith store operations
becausethe smallestatom for memory operationsis a
byte--thereforestoresinto the L1 do not requirea read-
modify-write sequence.The parity for eachbyte can be
calculatedvery early in thepipelinewhenthestorevalue
is known andcansimply be written into the cache.The
single bit of parity for eachbyte providessingle error
detectionon the byte level, as opposedto doubleerror
detectionover 64 databits as providedby 64-bit SEC-
DED. If anerror is detectedin theL1 datacachevia par-
ity, the correct value is fetched from the ECC L2 cache.

Of course,a majorcaveatof this approachis theaddi-
tional bus traffic generatedby implementing a store
throughL1 cache[12]. This traffic canbe reducedwith
techniqueslike aggressivewrite combining and other
buffering techniques,but specialcaremust be taken to
handle the extra L1 to L2 bandwidth requirements.
Weaker consistencymodels allow greater freedom for
store combining than stricter models.

In the caseof a store-throughL1 cache,silent store
squashingcanhavea noticeableperformancebenefit.To
further improveperformance,we canuseECCsquashing
for sub-ECC-wordwrites in anECC-protectedL2 cache.
However,this will not reducestore-throughtraffic on the
L1 to L2 interface.Instead,we rely on theothermethods
of FSSS--squashingin theLSQandstealingreadports--in
orderto reducestore-throughtraffic. Performanceresults
of thedifferentmethodsof FSSSfor sucha memorysys-
tem configuration are given in Section 4.

3.3 Duplication of L1 Data Cache
We canalsoobtainsingleerror detectionandcorrec-

tion capabilityin the L1 cacheby duplicatingit andpro-
tectingboth copieswith parity. If we encountera parity
erroronthereadof anybyte,wecanfetchthecorrectbyte
from theothercopyof thecacheto recoverfrom theerror.
This schemeavoids a read-modify-writesequencefor
sub-wordstores.It also provideseffectively double the
read-portbandwidthinto theL1 datacachebecauseeach
copyof thedatacachecanbeaccessedwith loadsto arbi-
trary addresses.

FIGURE 5. L1 data cacheECC-word generationon a
sub-ECC-word store.

FIGURE 6. L1 data cacheECC-word generationon a
sub-ECC-word store with free silent store squashing.



However,this schemeis not without its flaws. First,
this schemehashigh overheadof 100% comparedto a
cachewith only parity. Second,this schemedoes not
allow easyscalingof storebandwidthbecausebothcopies
must be consistent, requiring stores to write both copies.

FSSS can still provide performancebenefit in this
cachestructurebecauseit is biasedtowardsmore read
ports than write ports. Therefore,we would expectthe
performanceimprovementof FSSSin this cacheconfigu-
ration to be similar to resultsreportedin [14] anddo not
explore this configuration further in this work.

4 .0 FSSS Performance Benefit

We haveshownin Section2 andSection3 that many
opportunitiesexist for FSSS.In this Section,we quantify
the performancebenefit of the mechanismscompared
with a standardarchitecture.As we have statedprevi-
ously,thesquashingmechanismswe evaluatearefree(as
defined in Section 2.1) so any non-negligible perfor-
mance benefit is proof that these methods are effective.

We perform only uniprocessorsimulationsto show
proof-of-concept for the proposed mechanisms.Of
course,asshownin [14], thereareadditionalsavingsfor
communicationmissesin multiprocessorsthat are not
considered in these results.

4.1 Machine Model
To determinethe performanceimpact of FSSS,we

usedan executiondriven simulatorof the SimpleScalar
architecturewith anenhancedmemorysystemmodel[5].
ThedefaultSimpleScalardoesnot accurately(or in some
casesat all) model finite memory systemcomponents
such as write buffers, writeback buffers, schedulingof
write/writebacktraffic over the L1 to L2 interface,etc.
SinceFSSSfocuseson improvingmemorysystemperfor-
mance,modellingtheseresourcesaccuratelyis necessary
for our results to reflect true performance.

In orderto modeltheincreasingdemandsonamemory
subsystem,we usedan aggressiveout of order design.
The configurationof the executionengineis 8 issue;64
entryRUU; GSharebranchpredictorwith 64K entries,16
bit globalhistory;6 integerALUs, and2 integermultipli-
ers.Thecacheconfigurationsare64KB eachsplit I/D L1
and512KB unified L2 with latencies2, 8, and50 clocks
for the L1, L2, and main memory,respectively.The I-
cacheis 2 way associativewith a line size of 64 bytes;
TheD-cachesare4 and8 way associativewith line sizes
of 32 and64 bytes,respectively.Storeto loadforwarding
is implementedin thesimulatorwith a latencyof 2 clocks
to matchtheL1 hit latency.All binariesareSimpleScalar
PISA and compiled with SimpleScalar gcc at -O3.

The machinehastwo fully pipelinedgeneralmemory
accessportseachof which canhandleeitheroneload or
onestorepercyclewith no addressrestrictions.If a store
hasbegunverification,we count this storeasverified in
thepercentagesreported,but we do not forceverification
to finish beforecommitting the store.If a storehasnot

finishedverifying whenit reachescommit, it is assumed
to benon-silentandentersthememorysystem.Readport
stealing for squashingoccurs regardlessof where an
addresshits in the memory hierarchy. The simulator
implementstwo write buffers outsideof the instruction
window (i.e. only for committedstores)wherecommitted
storesare held until their completion.Aggressivewrite-
combiningis implementedin thewrite buffer so thatany
store to the sameL1 cachelinecan be combinedwith
otherstoresto thesameline in thebuffer.TheLSQ cache
only allocates for stores when it can steal a read port.

The L1 cachehasa write-through,write-allocatepol-
icy backedby awritebackL2. In all cases(exceptSection
4.5 where we considerthis bandwidthspecifically) we
makethe very aggressiveassumptionthat thereis a full
L1 cacheline width interfacebetweenL1 andL2 thatcan
begin a new transactionevery clock cycle, as might be
possiblewith on-dieL2 caches.Both store-throughband-
width andL1 fill bandwidtharemodeledover this inter-
face. Fill transactions (i.e. demand misses) take
precedence over store-through traffic on this interface.

The memory accessconfiguration of this machine
modelis similar, thoughnot identical,to thePower4[13]
which implementsa store-throughL1 and writebackL2
for ECC protection(asoutlined in Section3.2). It is not
our goal in this Sectionto advocatea specificmethodof
error correction,but rather to show how FSSScan be
exploitedfor performancebenefitin onepossibleconfig-
uration.

4.2 ECC Squashing
Wedonotshowperformanceresultsfor thismethodof

FSSSbecauseit doesnot makesenseto complicatethe
resultsdiscussionwith two incomparablemachinemod-
els.As discussedin Section3, if astore-throughL1 cache
is implementedfor the purposesof error protection,we
haveno needfor ECC in the L1, sincethe store-through
to an ECC-protectedL2 providesadequatereliability. In
order to meaningfully demonstratethe performanceof
ECC squashing,we needa writebackL1. Resultsfor a
machine model similar to this were published in [14].

However,it shouldbenotedthatthekeyassumptionof
Section2.2 andSection3.1,namelythatstoreoperations
mustbe sub-ECC-wordfor ECC FSSS,is realisticgiven
commercially available processorstoday. One would
expectthat no architectwould designa systemwith the
maximal store atom size being smaller than the ECC-
word-sizeso that everystoreincursa read-modify-write
for ECCgeneration.However,thisoccursfrequently.The
IBM RS64-III (Pulsar)processor,in usein IBM S80serv-
ersandothermachines,executesexactly this way when
running32-bit code.In theRS64-III, theL1 cacheis ECC
protecteddirectly (similar to themannerdiscussedin Sec-
tion 3.1)usinganECC-data-wordsizeof 64bits. In 32bit
mode, the largest integer store atom is 32 bits, hence
incurring the read-modify-write on every store [3,4].
Therefore,we expectECC squashingto providesignifi-
cant performance benefit in this and similar systems.



4.3 Available Read Port Squashing
Figure7 showsthe performanceimprovementof read

port stealing over the baseline performancewith no
squashing.We seeimprovementsrangingfrom a low of
0% in li andvpr to a high of 56% in mcf. The harmonic
mean acrossall benchmarksshows a 10.3% improve-
ment.

It is worthwhile to note that we do not seea perfor-
mancedecreasein any benchmark.This occursbecause
weareonly usingcachereadportsavailableafterall other
readyloadsandstoreshavehadachanceto issue/commit.
The performancebenefit comesprimarily from two fac-
tors:a)areductionof bandwidthrequiredbetweenL1 and
L2 cachesby eliminating store traffic on the interface,
and b) reduced pressure on write buffers.

It is also interestingto notehow few storesquashing
opportunitieswe missby only usingavailablecacheread
portsasopposedto trying to squashall stores.In Figure8
we showthepercentageof storeoperationswe areableto
store verify for free using read port stealing.

We canseethat in all cases,we areableto verify over
83% of storeoperationsusingavailablecachereadports
with an averageof 89%. This indicates that we are
achievingalmostall availablebenefitfrom squashingthat
usesthestandardstoreverify, but without impactingper-
formance of critical load and store operations.

4.4 LSQ Squashing
In Figure9, we showtheperformanceimprovementof

temporal and spatial LSQ squashingover the baseline
performancewith no squashing(as discussedin Section
2.4.1 and Section2.4.2, respectively).The stackedbars
showthe contributionof eachmechanismto overall per-
formance.For temporalLSQ squashing,we seeimprove-
mentsin IPCrangingfrom a low of 0%in gzipandmcfto
ahighof 3%in vortexwith overallperformanceimproved
by 0.6% as indicated by the harmonic mean over all
benchmarks.WhenweaddspatialLSQsquashing,wesee
total improvementsoverthebaselinefrom a low of 0% in
gzip to a high of 56% in mcf with the harmonicmean
improving by 11.3%.

Whenexaminingtemporalsquashing,it is interesting
to notethatmostof thestoresaresquashedby preceding
or subsequentload operations(the RAW and WAR
dependencesdiscussedin Section2.4.1), as opposedto
previousstoreoperations(WAW dependences),as illus-
trated in Figure10. In most benchmarks(except com-
press, ijpeg, vpr, and mcf), temporal LSQ squashing
capturesover25%of all silentstoreswithin thedynamic
programexecution.Somepossibleexplanationsfor this
are provided in [1], and could include programmodel
considerationslike stackframeusage.In the resultspre-
sentedin Figure10, eachdynamicsilent storeis counted
at most once (it is presentin only one section of the

FIGURE 7. Performance impr ovement of read port
stealing vs. no squashing.

FIGURE 8. Percentageof all dynamic storesverified
using only available cache read ports.

FIGURE 9. Performance of LSQ squashing. The
stacked bars indicate the performanceof the baselinesystem
(without squashing),sameaddress(temporal)LSQ squashing,
and same cacheline (spatial) LSQ squashing, respectively.

FIGURE 10. Temporal LSQ squashingprovided by
WAR, WAW, and RAW dependences.



stackedbars), with the following priority counting on
multiple aliases:previous load (WAR), previous store
(WAW), subsequent load (RAW).

In the caseof spatialLSQ squashing,the samestate-
ment regardingcounting of squashablestoresholds (a
dynamicsilentstoreis only countedonce).However,the
priority of counting changesslightly due to simulator
implementationissues.In this case,the countingprece-
denceis: WAR, WAW, cacheline previousload, cache
line previousstore,RAW, cachelinesubsequentload,and
readport stealing.We showthe resultsof this methodof
counting in Figure11 (results from all same address
squashingmethodsarecombinedin theSameAddressbar
for readability and the subsequentline load section is
removed becauseit did not contribute meaningfully).
Note that the total percentageof silentstorescapturedby
this mechanismis greaterthan the resultspresentedin
Figure8 (simple read port stealing) becausethe LSQ
cacheis store-allocatingusingfree readports,aswell as
exploiting locality in the LSQ. BecauseLSQ storeveri-
fies do not consumea cacheport, a port tendsto be free
more often for additional read port stealing store verifies.

We seethat thepercentageof sameaddressstoreveri-
fiesdecreasesoverFigure10,mainlydueto countingpre-
cedence.Also, substantialpreviousline storeverifies are
observed,indicatingthat theLSQ cacheproposedin Sec-
tion 2.4.2is useful.Theseresultsalsoindicate,dueto the
smallfractionof subsequentline verifies,thatverification
from a line allocatedby a subsequentaccessto previous
storesin theLSQ is unnecessaryfor squashingpurposes,
potentially saving some complexity in the LSQ cache.

Finally, we seethat in all benchmarks(exceptcom-
pressandmcf), over40%of all silentstoresarecaptured
by exploiting locality in the LSQ. Readport stealingfor
LSQ cacheline allocationbrings the total percentageof
silent stores captured to over 90% (except forijpeg).

In comparingtemporalto spatialLSQ squashing,we
see only two benchmarksthat benefit from temporal
squashing(perl gains 1.5% and vortex 3.3%). It is not
until spatialLSQ squashingis appliedthatwe seenotice-
ableimprovementsin instructionthroughput.This occurs

becausetheoverallpercentageof silentstoresdetectedby
thespatialscheme(including freereadport squashing)is
much higher.

4.5 Incr easing Effective Write-Thr ough
Bandwidth via FSSS

Given that FSSScan squashmany silent stores,it is
interestingto examinewhat kind of trade-offswe can
makeasan architectwith this type of memorysystemto
obtain sufficient throughput between the L1 and L2
caches.We canusethe “brute force” methodandimple-
ment a fully-pipelined, write-combining, cache-line-
width interfacebetweenL1 andL2 (asusedin all results
presentedso far) which can induce significant circuit
designcomplexity. Or, we can exploit FSSSto obtain
“effective” throughputover the L1 to L2 interfacewith
less physical throughput.In order to illustrate this, we
presentFigure12 which showsthe store-throughtraffic
reductionover the L1 to L2 interfaceaswell asthe per-
centageof dynamicstoresremovedby FSSS.We seean
averagetraffic reductionof 15% acrossall benchmarks
and up to 45% in m88ksim. Sincethis interfaceis wide
(32B) andfast (singlecyclepipelined),it is reasonableto
assumethat this traffic reductionwould leadto a savings
in chip power.

Notethat,aswe would expect,thepercentageof write
throughtraffic reductioncloselymirrorsthepercentageof
successfullyremoved,squashed,stores.In the caseof
vortex and mcf, the traffic reduction is slightly greater
thanthepercentageof removedstores,which we attribute
to second-orderincreasein write combiningefficiency.
Becausesquashedstoresdo not allocatea write buffer,
therearemorebuffersavailablefor combiningnon-silent
stores.Thepercentageof removedstoresis lower thanthe
overall percentageof silent stores(andalso the percent-
agesof squashedstorespresentedpreviously)becausewe
do not wait for storeverifies to completebeforecommit-
ting stores(explainedin Section4.1). In further experi-
mentsnot detailedhere,we foundthatalthoughwe could
decreasetraffic by waiting for storesthathit in theL1 to
finish verifying, becausecommitof somestoresis stalled

FIGURE 11. LSQ store verifies provided by same
address (temporal locality), previous load to line,
previous store to line, subsequentstore to line, and
read port stealing.

FIGURE 12. Percent reduction of L1 to L2 traffic by
performing FSSS. The bars and bullets indicate the
percentageof write throughtraffic reductionandthepercentage
of total dynamic stores removed, respectively, by FSSS.



in thiscase,overall instructionthroughputis lower.There
is a potentialperformancevs. powerconsumptiontrade-
off here that could be exploited in power-aware designs.

In order to determinehow effective this bandwidth
reduction is on instruction throughput, we present
Figure13,whichshowstheperformanceacrossall bench-
markswith varying width interfacesbetweenL1 andL2,
with andwithout FSSSsquashingin its mostaggressive
form (spatialLSQ squashingwith readport stealing).We
keepthe L1 cachelinesizeat 32B in all simulations,but
illustrate the performanceof 32B, 16B, and 8B wide
interfacesbetweenthe L1 and L2. In eachcase,we are
progressivelylowering the physicalbandwidthof the L1
to L2 interfacebecausein thecaseof 16B and8B widths
more transactionsacrossthe interfaceare requiredfor a
cachelinetransfer(two andfour transactionsfor 16B and
8B, respectively).However,we changethewrite combin-
ing width to match the physical interfacewidth so that
flushing a write buffer takes only a single cycle.

If we compareFSSSwith an interfacewidth of 8B to
no squashingwith an interfacewidth of 32B, we seethat
the effective bandwidth(as evidencedby IPC) of FSSS
with the75%lower physicalbandwidthinterfaceis more
effective than the higher physical bandwidth interface
withoutFSSS(theonly exceptionsto thisaregoandgzip;
in thesebenchmarks,the percentagesof silent storesare
low, 27%and16%respectively,leadingusto expectless
benefitfrom FSSS).In fact,asevidencedby theharmonic
mean,the FSSSlow physicalbandwidthinterfaceactu-
ally provides9% greatereffectivebandwidthon average
than the fastestphysical interfacewe model.Therefore,
we canpotentiallytradethe implementationof FSSSfor
physicalbandwidth.Of course,asalsoshown,FSSSstill
providesbenefit no matter what physical bandwidth is
available.Note that eventhoughthe actualreductionin
physicalbandwidthfor thenarrowerinterfaces(50%and
75% for 16B and 8B wide interfaces,respectively)is
larger than the percentreductionsshown in Figure12,
FSSSalso decreasespressureon other hardwarestruc-
tures,suchaswrite buffers,so theperformanceimprove-

ment is not solely due to the reduced L2 bandwidth.
We also observein Figure13 that the performance

degradationfrom the widest(32B) to the narrowest(8B)
interfaceis lower in thecaseof FSSSthanfor thebaseline
systemwith no squashing(40% lower accordingto the
harmonicmean).This occursbecausesquashingis rela-
tively more effective as the write-combiningwidth nar-
rows.With respectonly to physicalinterfacebandwidth,
combiningand squashingare equivalent.We can either
savea transactionovertheL1 to L2 interfaceby combin-
ing with a previousstoreor by squashingthestore.How-
ever, there is some overlap betweenthe methods(i.e.
somestoresthataresquashedcouldalsohavebeencom-
bined,andvice-versa,ascanbeeseenin Figure12 in the
differencebetweenremoveddynamicstoresandreduced
write through traffic). Of course,the combining width
directly affects the numberof storesthat can be com-
bined,butdoesnotdirectlyaffectthenumberof squashed
silent stores.Therefore,FSSSwill capturesomestores
thatcanno longerbecombined(but canstill besquashed
atanycombiningwidth), sotherelativebenefitof squash-
ing increasesas the combining width decreasesalong
with the width of the L1 to L2 interface.

4.6 Results Discussion
Comparingtheperformanceresultsfor thethreeFSSS

methodssimulatedfor our machinemodel, we seethat
readport stealingandaggressiveLSQ squashingexploit-
ing bothtemporalandspatiallocality in theLSQ provide
nearly equivalent performance,with harmonic mean
speedupsof 10% and 11%, respectively.This occurs
becauseboth methodscapturegreaterthan 83% of all
silent storesandcloseto 90% on average,so both meth-
ods are suitable for exploiting FSSS for IPC benefit.
However,aggressiveLSQ squashingreducesthenumber
of storeverifiesissuedto thememorysystemby 50%,on
average(comparingthe read port stealing percentages
from Figure8 and Figure11). Therefore,in a machine
model with relatively fewer memory ports, aggressive
LSQ squashingmay have greater benefit becauseof
reducedport contention.Reducingdata cacheaccesses
may also reduce overall power consumption.

TemporalLSQ squashingby itself providesonly mod-
estspeedupin thesebenchmarks,lessthan1%,becauseof
thelow percentageof silentstorescaptured(31%onaver-
age)andthecorresponding9% averagereductionin total
committed dynamic stores. Therefore, while temporal
LSQ squashinghasthe benefitof neverstealinga cache
readport, in ourmachine,solelyimplementingthismech-
anism does not seem worthwhile.

5 .0 Conclusion

We make four contributionsin this paper.First, we
explainwhy standardstoreverifies,asinitially proposed
in [14] havesomeundesirablecharacteristics,and intro-
duce the conceptof free silent store squashing,which
usesexistingresourcesas-isor with slightmodificationto

FIGURE 13. Performance comparison betweenmost
aggressive FSSSand no squashingfor narr ower L1 to
L2 interfaces. The stacked bars indicate the performance
obtainedby squashingwith 32B, 16B, and8B wide L1 to L2
interfaces, respectively.



squasha significant portion of all silent stores.Second,
we explain threeways in which we can implementfree
silent store squashing:i) using pre-existingECC logic
thatis present,andwill becomemoreprevalent,in current
and future microarchitectures;ii) using idle read port
stealingto performstoreverifies; iii) enhancinganexist-
ing load/storequeueto exploit temporalandspatiallocal-
ity for storesquashing.We showthat in currentandnext
generationmicroarchitecturesthat opportunitiesexist to
exploit thesemechanismsusing real examplesfrom the
Alpha 21264 [9], IBM RS64-III [4], and IBM Power4
[13]. We furthershowthatsubstantialperformancebene-
fit canbeobtainedby exploiting freesilent storesquash-
ing and that two of the three mechanisms--readport
stealingandaggressiveLSQ squashing--capturea signifi-
cantportionof silentstoresdetectedby thestandardstore
verify mechanism(greaterthan 83% and 89% on aver-
age).Theydosoatasubstantiallyreducedcostfor perfor-
mance benefits averaging 10% and 11% across the
SPECINT95anda subsetof the SPECINT-2000bench-
marksfor eachmethodrespectively.Third, we illustrate
that “effective” bandwidthbetweenthe L1 and L2 data
cachescan be increasedby free silent store squashing,
andindicatethatasubstantiallylowerbandwidthphysical
interfacebetweenthe two cachesprovidesthe sameor
better performancewhen performing free silent store
squashing.Finally, we provide additionalcharacterizing
informationaboutsilent storesby showingthat, in most
benchmarks,greaterthan40% of all silent storescanbe
squashedby simplyexaminingdatathataretemporallyor
spatially local to dataalreadyexisting in the LSQ. We
also illustrate that, on average,31% of silent storesare
detectedwith temporal locality, and an additional 19%
aredetectedwith spatiallocality, in the LSQ. The work
reiteratesthat silent storescan be exploited for perfor-
manceimprovementandillustratesthat takingadvantage
of themajorityof silentstoresis relativelyeasygivencur-
rent microarchitectures,lowering the barriersto exploit-
ing them in the future.
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