Silent Stores for Free

Kevin M. Lepak and Mikko H. Lipasti
Electrical and Computer Engineering
University of Wisconsin
1415 Engineering Drive
Madison, WI 53706
{lepak,mikko}@ece.wisc.edu

Abstract

Silentstore instructionswrite valuesthat exactly mat the

valuesthatare alreadystoredat thememoryaddressthatis

beingwritten. Arecenistudyrevealsthatsignificantbenefits
canbegainedbydetectingandremawing sud storesfroma

program’s execution. This paper studiesthe problem of

detectingsilentstoresandshowghatanaverage of 31%and

50%of silentstorescanbedetectedor verylow implemen-
tation cost,by exploiting tempoal andspatiallocality in a

processors load and store queues\We also showthat over

83%ofall silentstorescanbedetectedisingidle cacheread
accesgports.Furthermoe, weshowthatprocessosthatuse
standad error-correctioncodego protectdatacachesfrom

transienerrorscanbemodifiedonlyslightlyto detectLl00%
of silentstoresthat hit in the cache Finally, we showthat

silentstore detectionvia thesemethodsanresultin a 11%
harmonic meanperformanceimprovementin a two-level

store-through on-chip cache hierarchy that is basedon a

real micooprocessor design.

1.0 Intr oduction

A recentstudy of storevalue locality notesthat many
storeinstructionswrite valuesthat are eithertrivially pre-
dictableor actuallymatchthevaluesthatarealreadystored
at the memoryaddresshat is being written. Suchstores
arecalledsilentstores sincetheyhaveno effecton system
state While surprisingat facevalue,this discoveryis logi-
cally consistentvith the plethoraof recentresearcton the
value locality of load instructions and register-writing
instructionge.g.[6,7,10,15,17])If indeedtheinputvalues
that are being loaded from memory exhibit significant
value locality, and the register-to-registercomputation
itself exhibits value locality, it follows naturally that the
output valuesbeing storedback to memory also exhibit
significantvalue locality. Source-levelnalysispresented
in [1] indicatesthat many silent storesare algorithmicin
nature Resultsreportedn [14] demonstrat¢hat20%-68%
of all store instructions are silent.

Detectingand squashingsilent storescanhavea num-
ber of beneficial effects: reducingthe pressureon cache
write ports,reducingthe pressureon storequeuesor other
microarchitecturastructureghatareusedto track pending
writes, reducingthe needfor store forwardingto depen-
dentloads,andreducingboth addressand databustraffic
outside the processorchip. Many of thesebenefits are
examinedand quantifiedin [14]. However,thereis alsoa
complexityandmicroarchitecturatesourceutilization cost

associatedvith detectingsilent stores.Namely,to detect
the fact that a storeis silent, the prior value mustfirst be

readout from the memorylocation,comparedo the new

value, and then conditionally overwritten in a process
called store squashing The simple store squashing
approactoutlinedin [14] simply issueseachstoreinstruc-

tion twice: first asa readfollowed by a compareandlater

asastoreif it is not silent. Thoughbeneficialoverall, it is

clear that such a simplistic approachplaces additional
pressureon cacheports, particularly when running pro-

grams with few silent stores.

Meanwhile,concernsverreliability andtheincreasing
susceptibilityof currentandfuture semiconductotechnol-
ogiesto soft errorsinducedby gammarays [24,25] and
alphaparticles[16] haveforcedadditionalcomplexityinto
the store-handlindogic of high-endmicroprocessord-or
example the latesthigh-endprocessorérom Compagand
IBM (the Alpha 21264andPowerPCRS64-II) protectL1
datacachedrom soft errorswith SEC-DEDerror-correc-
tion codesfor eachaligned 64-bit quantity. Performing
sub-64bitstoresinto SEC-DED-protecte¢achesequires
aread-merge-writprocedurdor recomputingandstoring
the ECC for the affected 64 bit parcel.

Storehandlinghasalsobeenheavilycomplicatecby the
introduction of out-of-order executionin many current
processorcores.In order to track pending requestsand
guaranteghat memoryorderingrulesare not violated, all
outstandinguncommittedloads and storesare trackedin
complex hardware structures commonly called load
gueuesand store queues.Thesequeuesin fact provide a
historicaland future contextfor everyindividual memory
referenceby surroundingit with memoryreferencegshat
occur near to it in the program order.

The emergencedf both SEC-DED protectionfor tran-
sienterror recoveryand load/storequeueso supportout-
of-order executioncreateinterestingopportunitiesfor a
microarchitect searching for low-cost approachesfor
implementingstore squashingln this paper,we examine
some of these opportunities, ranging from embedding
silent store detectioninto the read-merge-writesequence
required for subword stores; to read port stealing; to
exploiting temporaland spatial locality in the store and
load queuesall to perform storesquashingor negligible
or reasonablyow implementatiorcost. We find that31%
of silentstorescanbeidentifiedwith thesimplestapproach
that exploitstemporallocality only, while a more aggres-
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performancebenefitsof store squashingin a two-level

cache hierarchy with store-throughL1 cachesthat is

basedon theupcominglIBM Power4design[13]. In such
a configuration,we find that reducing pressureon the

memory system can provide up to 56% performance
improvementin one benchmarkwith a harmonicmean
improvement of 11%.

2.0 Free or Lon-Cost Squashing Options

Earlier work showedthat performancebenefitcanbe
obtainedby squashingsilent storesfor both uniprocessor
and multiprocessosystemg14]. Throughoutthis paper,
storesquashinglescribeshe overallprocesof suppress-
ing asilentstore;storeverificationrefersto the subtaslof
detectingthat a store is silent. Further, we assumea
weakly consistentmemory model when describingthe
various squashing and verification mechanisms. Of
course,someoptimizationsmay or may not be possible
with stricter consistencymodels. Further discussionof
consistencynodelissueds generallyomittedfor the sake
of brevity.

2.1 Explicit Store \erifies for All Stores

In orderto understandvhy we would like to exploit
free silent storesquashing FSSS),a review of the origi-
nal proposedmechanismis necessarnto understandts
implicit assumptionsand potential performanceprob-
lems. As originally explainedin [14], referredto in this
work as a standardstore verify, all store operationsare
convertedo explicit loads,comparisonsand conditional
stores. A pipeline diagram is shown in Figlre

Thisimplementatiorhassomeundesirableharacteris-
tics. First, explicitly converting all stores to loads
increasepressuren the availablecacheportsin the sys-
temandcanpotentiallydelaytheissueof loadswhich are
likely onthecritical path.Secondhavingasingleinstruc-
tion performmultiple datacacheaccesse&@ndpotentially
causemany data cachemisses)will increasescheduler
and control logic complexity. Finally, performing more
cacheaccesseqan additional read for each non-silent
store) can increasepower consumption.Therefore,we
would like to find moreefficientwaysof squashingsilent
stores.

In the next sections,we presentseveralalternative
implementationf store squashingeachmore efficient
thanthe standardstoresquashingnechanismWe usethe
termfreeratherlooselyto indicatethatthesemechanisms

have a qualitatively lower implementationcost than the
standard store verify. Detailed assessmenbf actual
implementatiorcomplexityis left to futurework. We will
usethetraditionalstoreverify mechanisnmasthe basisfor
comparison.

2.2 Error Correcting Codes (ECC)

With soft errorsin modernmicroprocessorbecoming
a largerconcernaswe moveto deepersub-micronfabri-
cation technologies and higher reliability systems
[11,16,21,22,24,25]microprocessordesignersare pro-
tectingthe areasof a chip which aremostdenselypacked
with transistorge.g.cachesmemoriesgtc.) againstran-
dom alpha-particlesndothercause®f soft errors.Error
checkingandcorrecting(ECC) codesareavery common
method for protection against soft errors.

With the incorporationof ECC logic into datacaches,
evenin the L1, asis donein the Alpha 21264[9] and
PowerPCRS64-111 [4], silent store squashingbecomes
much simpler to implement.We return to this point in
more detail in Section3.1 when a possibleimplementa-
tion of squashingn this cachestructureis presentedbut
the basic idea is the following:

ECCusingvariousencodingschemegwe focusonthe
SEC-DEDvariety of Hamming basedcodes[2,20], but
the commentsnadehereapply more generally)requires
somenumberof databits andcheckbits to enablethe cor-
rection of errors. The numberof checkbits is relatedto
the number of data bits by the following function:
n+ k< 2~ 1, wheren is thenumberof databits andk is
the numberof checkbits. Giventhetranscendentaiature
of this function, thereis no simpleclosedform for k, but
we illustrate the number of data bits and check bits
required for various ECC-word sizes in Table

Thereis an obvioustrade-off betweenthe granularity
onwhichwe keepECC (data-wordsize)andtheoverhead
of the checkbits. In the caseof 12 bit ECC-words(8 data
bits), thereis a 50%increasen storagespaceasoverhead
for ECC. For progressivelylarger ECC-words the over-
headis reduced--dowrto 3.5% in the caseof 265 bit
ECC-wordg256databits). However thislower overhead
doesnot comewithout penalty.We canonly correctasin-
gle bit erroranddetecta doublebit errorwithin the entire
ECC-word. Of course,as ECC-wordsize increasesthe
probability of multiple errorswithin a word increasesso
ECCis lesseffectivefor largerwordsanda designcom-
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FIGURE 2. ECC store erify occurs at commit.

promisemust be reached.In general,fairly large ECC-

word sizesare chosento minimize overheadand obtain
acceptablerror coverageln manymodernmicroproces-
sorsandsystembusses64 bit data-wordeCC or largeris

usedfor easeof implementatiorand becausef the con-

figuration of memorysystemg9,11]. As a point of refer-

ence, the Alpha 21264 and the PowerPC RS64-11|

implementL1 datacacheECC on quadword(64 bit) data
quantities.

The checkbits for a data-wordare generatedvhena
value is storedinto the cacheand comparedwhen the
valueis laterread(moredetailin Section3.1).In orderto
generateorrectcheckbits, all bits in the ECC-wordmust
be availableasinput to the ECC generatioriogic. There-
fore, if we performawrite operationthatis eitherimprop-
erly alignedon ECC-wordboundariespr is a sub-ECC-
word write, we must first fetch the rest of the original
ECC-wordstoredat the location, mergein the changes
(from the currentwrite), calculatethe new checkbits, and
store the ECC-word.

We canseethatin manycaseghe storeoperationinto
an ECC-protectedcachereally consistsof four opera-
tions: readoriginal ECC-word,storemerge,ECC check
bit generationandnew ECC-wordstore.This realization
illuminatesthe possibility of onetype of free silent store
squashing(FSSS). Since we are reading the original
ECC-wordanyway,we canperforma comparisorof the
newstorevalueto theoriginal valueandsquastthessilent
stores.This storeverify canbe performedn parallelwith
the storemergeandnew ECC checkbit generationadd-
ing verylittle delayto thestorelogic, aswill beexamined
in more detail in Section 3.1.

In comparisorto standardstoreverifies (Section2.1),
we can seethat store verifies carried out in ECC logic
requireno explicit load operation,but rathercan simply
be performedat commit, asiillustratedin Figure2. The
drawbacksof this approachare that a storeis squashed
relativelylatein the pipeline(at commitinsteadof during
the executestage)soit may not reducepressureon write
buffers; it cannotbe removedearly from the LSQ); and

finally that it cannot capture ECC-word-aligned stores.

2.3 Read Port Stealing

It is well knownthat programsare non-uniformin the
usageof systemresources.Therefore,in many cases,
someavailableidle resourcesan be usedfor otherpur-
poses.We proposean additional use of idle resources;
namely, exploiting free cacheread ports to implement
storeverifies. This mechanismis a simple extensionof
the standardstoreverify explainedin Section2.1. Since
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FIGURE 3. Read port stealing perbrms a load and
compare only if a cache port is idle.

storesmustcommitin order, it is possiblethat dueto a
pipelinestall a storecanwait in theLSQ for along period
of time beforeit completeslf a load port becomedree
while the storeis waiting to commit, we canusetheload
port to performa storeverify operation.Becausewne are
usingresourceshatareidle andavailable thesestorever-
ifies are free. If a load port never becomesavailable
beforethe storeis readyto commit, we foregoattempting
to squash the store and assume it is non-silent.

Relativeto standardstoreverifies, this methodhasthe
benefitof not delayingexecutionof load operationsdue
to resourceconflicts. However, it can createadditional
instructionschedulingdifficulties becausehe policy for
issuinga storeverify is dependenbn resourceusageand
notjustprogramorderor anotherstaticschedulingpolicy.
This technique of FSSS is shown in Fig8re

2.4 Load/Store Queue

In orderto obtainhigh performancemanyprocessors
implement aggressivememory systemswhich require
load/storequeues(LSQs) to perform store to load for-
warding and monitor speculativeload operationswhich
may be violations of the architectedconsistencymodel.
We canexploitlocality in theLSQ to obtainFSSSasout-
lined in the following sections.

2.4.1 Tempoal Locality in the LSQ

Storeto loadforwardingof memorydependences an
optimization commonly implementedin modernmicro-
processorsin the caseof storesquashinga storeverify
operatiomecessitatearead.If storeforwardingisimple-
mentedwe canextendit to squasHaterstoreso thesame
addressas an earlier store in the LSQ (WAW depen-
dence).We can do so without using a cacheread port,
hence making the squash free.

In asimilarfashion,we canalsosquaststoreso mem-
ory addressefor which an outstandingoad existsin the
LSQ. This is possiblebecausehe cacheaccesdor the
load will be performed,obtainingthe datavalue for the
storeverify. In somesensewe canconsiderthe storever-
ify for the storeto be “piggy-backed”on the explicit load
operationto the same memory address(WAR depen-
dence).Note that this optimizationis also possiblefor
loadswhich occurlaterin programorder,which generally
would havetheir load valueforwardedfrom the previous
storewe’re trying to squashThis is possiblebecausghe
usageof the cacheport is usually scheduledbeforeit is
knownwhetherthe valuewill be forwardedfrom anear-
lier storein the LSQ [8,13]. Therefore,since we have
scheduledhe loadfor cacheaccesanyway,theloadcan
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FIGURE 4. Block level LSQ cachedesign.Thetemporal
andspatialLSQ squashingperationsdataallocation,andstore
forwarding are illustrated for memory operations.

still be performedat no cost. Hence,the store verify is
again free in the case of a RAW memory dependence.

2.4.2 Spatial Locality in the LSQ

In a similar fashion,we canexpandthe scopeof stores
squashablevithin the LSQ to addresseshat inhabit the
samecacheline. Giventhat L1 datacachesare on-chip,
obtainingwide accesdo thesecachess relatively easy.
Therefore, one may imagine each memory operation
readingan entire cachelineon any referencebecauseof
the high bandwidthavailablefrom the L1 cache Assum-
ing that a memoryaccesgeadsthe entire line from the
cacheinto a LSQcache(shownin Figure4), we canuse
the spatially local data to perform additional squashing.

In the caseof a WAW dependenceg previousstoreto
the line readsthe line into the LSQ cacheandall subse-
quentstoresto that line can be squashedrom the LSQ
cache.ln the caseof a WAR and RAW dependences
similar processoccurs--theload operationallocatesthe
line in the LSQ cache,and storesto the sameline are
squashedrom it. We will showin Sectiord.4thatasmall
LSQ cacheis especiallyeffective in the caseof WAW
dependences.

The LSQ cacheis similar to the write cacheproposed
in [12], exceptit containsentirecacheliinesasopposedo
8 byte quantitiesand it buffers both load-allocatedand
store-allocatedines. Also notethatsinceissuingstoresis
generallynot astime critical asissuingloads(becausé¢he
storescanbe bufferedat commit) we serializethelookup
in the LSQ cacheand the accesgo the memorysystem
(shownin Figure4) to avoid unnecessaryisageof the
data cacheport. We can also exploit read port stealing
(Section2.3) and only readdatafor storesinto the LSQ
cacheif amemoryreadportis available Assumingwe do
S0, we also needa separatevalid bit both for the LSQ
cachelinedataandfor the entriesin the LSQ themselves
(shown in the Figure4) becausea store may fail to
acquirea freereadport, leavingthe datainvalid. Whenan
accessllocatesaline into the LSQ cachewe maychoose
to verify storesalreadypresenin the LSQ with the newly
allocateddata, but this may add complexity to the LSQ

andLSQ cachefor additionaldatapaths.We will discuss
this further in Section 4.4.

If weassumehattheLSQ caches FIFO allocatedand
is operatedn lock-stepwith the entriesin the LSQ such
thatwhenan entry leavesthe LSQ its LSQ cacheline is
also deallocatedwe can avoid having explicit tagsand
dirty bitsin theentries(becauseall necessaraddressand
dirty value forwarding is alreadyavailablein the LSQ
entriesfor store-forwarding)In the caseof aweaklycon-
sistentsystemiit is sufficientfor correctnesso flush the
LSQ cacheon memorybarriers(andthis is most likely
very effective becausef the small LSQ cachesize)and
avoid snoopingit for invalidates.In more strict consis-
tencymodels,snoopingthe LSQ may alreadybe required
to detectconsistencymodel violations, so snoopingthe
LSQ cache as well adds no additional complexity [23].

The benefitsof squashingn the LSQ relativeto stan-
dard store verifies are apparent.No additional cache
accesss requiredfor the load portion of the storeverify
and squashing stores is free.

3.0 ECC Free Silent Stoe Squashing

As touchedon briefly in Section2.2, soft errorsarea
growing concernfor microprocessoarchitectsn orderto
provide highly reliable systemsandbecausef manufac-
turing concernd11,16,21,22,24,25Having discussedn
Section2 the opportunitiesfor FSSS,in this sectionwe
elaborateon the ECC methodof FSSSin greaterdetail.
We show three possiblemechanismdor protectingL1
datacachedrom soft errorsandillustrateunderwhatcir-
cumstanceshe FSSStechniquescan be exploited. We
alsoexplorewhich of thetechniquesve expectto bemost
effective for different cache architectures.

3.1 L1 Data Cache with ECC

Soft error protectioncan be performedin the L1 data
cachedirectly, asis donein the Alpha 21264[9] andthe
PowerPCRS64-Ill [4]. The 21264 and PowerPCRS64-
[ll use64-bit ECC datawords.As shownin Section2.2,
this provideserrorcoveragdor relativelylow spaceover-
headof approximatelyl1%.As alsooutlinedin thatSec-
tion, FSSSis trivially implementableas part of ECC
checkbit generatiorfor subwordwrites. In orderto illus-
tratethe argumentmadein Section2.2, Figure5 showsa
datapathwith which ECC may beimplementedn a sub-
ECC-wordstoreoperationin an Alpha-like system.Note
thatwe use72-bit ECC words (insteadof the 71 usedin
standardHamming-basedodes)becauseahe Alpha uses
a slightly modified coding scheme with 72-bit words [9].

Implementationwill be slightly different to handle
smallerbit width storesbutfor easeof illustration,only a
32-bit storeis shown.We seethefour majoroperationss
discussedn Section2.2: readthe original quadwordfrom
the datacache mergethe storedatainto the input side of
the ECC Data Register,generateECC check bits, and
storethe quadwordandECC bits. Note thatif ECC-word
generatiortakesmultiple cycles(asonemight expectfor
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essentiallya read-modify-writesequence)ye mustmain-
tain atomicity of the sequenceitherthroughdesignof the
write buffer feedingthe ECC logic, or in the logic itself.
We have ignored this detail to simplify the diagram.

In Figure6, we showthe implementationof FSSSin
the sameECC logic structureas shownin Figure5. We
canseethatthechangego thedatapatharerelatively sim-
ple; the addition of an extramultiplexor anda compara-
tor. Figure6 alsoillustratesthatwe cannotperformsilent
storesquashingf anECCerroris encounteredntheread
of the datavalue from memory.This is becausehe cor-
rectedvalue is obtainedfrom the ECC correctionlogic
andthereforemustbewritten backto the memorysystem.
The logic implementsthe samefour stepsas described
previously. However, the store merge, ECC check bit
generationand new ECC-wordstore operationamay be
abortedf it is determinedhatthe storeis silentandthere
is no ECCerror. The abortoperationcanbe assimpleas
not re-acquiringthe cacheport for thewrite of the (silent)
ECC-word from the ECC Data Register.

The most important aspectof Figure6 is when the
silentstorecomparisorcanbe performed Fromthe data-
pathshown,we can seethat the comparisoncan be per-
formedin parallelwith the ECC checkbit correctionand
generation.In general,ECC correction and generation
logic consistsof treesof exclusive-orgates[20] which
havedelayon the sameorderasthe 32-bit comparisorfor
squashingTherefore FSSSfor sub-ECC-wordstorescan
be implementedin an ECC-protected_1 datacachefor
simply the cost of a few extra gateswhich should not
increase the ECC logic’s critical path.

3.2 Store-through L1 Cache with ECC L2

ImplementingECC protectiondirectly is not the only

way to combatsoft errorsin the L1 datacache.In fact,

adding ECC protectionto the L1 directly can contribute
negativelyto cycletime becaus¢he ECCcorrectionlogic

is now addedto the critical path on load operationsto

assureusageof correctedvalues from the cache. Of

course speculatiorcanbe usedin orderto movethe ECC

check/correctionogic off the critical pathby speculating
thatall load valuesarecorrectandrecoveringif the ECC

logic reportsan error. Of course,this addscontrol com-

plexity to trigger the recovery [9].

An alternativeis to useanL1 cachewith simpleparity
protectionand a store-througtpolicy backedup with an
ECCL2 cacheThel1l parity protectionhasa few advan-
tageswhen comparedwith ECC in the L1. First, parity
caneasilybe kepton a byte basiswith the sameoverhead
asthe 72-bit ECC-wordasin the 21264(in bothcaseghe
overheads approximatelyl3%.) With byte parity in the
L1, there are no merging issueswith store operations
becausethe smallestatom for memory operationsis a
byte--thereforestoresinto the L1 do not requirea read-
modify-write sequenceThe parity for eachbyte canbe
calculatedvery earlyin the pipelinewhenthe storevalue
is known and can simply be written into the cache.The
single bit of parity for eachbyte providessingle error
detectionon the byte level, as opposedto double error
detectionover 64 databits as provided by 64-bit SEC-
DED. If anerroris detectedn the L1 datacachevia par-
ity, the correct value is fetched from the ECC L2 cache.

Of coursea major caveatof this approactis the addi-
tional bus traffic generatedby implementinga store
throughL1 cache[12]. This traffic can be reducedwith
techniqueslike aggressivewrite combining and other
buffering techniquesput specialcare must be takento
handle the extra L1 to L2 bandwidth requirements.
Weaker consistencymodels allow greaterfreedom for
store combining than stricter models.

In the caseof a store-throughL1 cache,silent store
squashinganhavea noticeableperformancebenefit. To
furtherimproveperformancewe canuseECC squashing
for sub-ECC-wordwritesin an ECC-protected 2 cache.
However,this will notreducestore-througtraffic onthe
L1 to L2 interface.lnstead we rely on the othermethods
of FSSS--squashing theLSQ andstealingreadports--in
orderto reducestore-througttraffic. Performanceesults
of the differentmethodsof FSSSfor sucha memorysys-
tem configuration are given in Section 4.

3.3 Duplication of L1 Data Cache

We canalso obtain single error detectionand correc-
tion capabilityin the L1 cacheby duplicatingit andpro-
tecting both copieswith parity. If we encountera parity
erroronthereadof anybyte,we canfetchthecorrectbyte
from theothercopyof thecacheo recoverfrom theerror.
This schemeavoids a read-modify-write sequencefor
sub-wordstores.It also provideseffectively doublethe
read-portbandwidthinto the L1 datacachebecauseach
copy of thedatacachecanbe accessewith loadsto arbi-
trary addresses.



However,this schemeis not without its flaws. First,
this schemehas high overheadof 100% comparedto a
cachewith only parity. Second,this schemedoes not
allow easyscalingof storebandwidthbecausdothcopies

must be consistent, requiring stores to write both copies.

FSSScan still provide performancebenefit in this
cachestructurebecauset is biasedtowardsmore read
ports than write ports. Therefore,we would expectthe
performancemprovemenbf FSSSin this cacheconfigu-
rationto be similar to resultsreportedin [14] anddo not
explore this configuration further in this work.

4 .0 FSSS Rrformance Benefit

We haveshownin Section2 and Section3 thatmany
opportunitiesexistfor FSSS.In this Section,we quantify
the performancebenefit of the mechanismscompared
with a standardarchitecture.As we have statedprevi-
ously,the squashingnechanismsve evaluatearefree (as
defined in Section 2.1) so any non-negligible perfor-

mance benefit is proof that these methods are effective.

We perform only uniprocessorsimulationsto show
proof-of-concept for the proposed mechanisms. Of
courseasshownin [14], thereareadditionalsavingsfor
communicationmissesin multiprocessorsthat are not
considered in these results.

4.1 Machine Model

To determinethe performanceimpact of FSSS,we
usedan executiondriven simulator of the SimpleScalar
architecturewith anenhancednemorysystemmodel[5].
The defaultSimpleScaladoesnot accurately(or in some
casesat all) model finite memory systemcomponents
such as write buffers, writeback buffers, schedulingof
write/writebacktraffic over the L1 to L2 interface,etc.
SinceFSSSocusenimprovingmemorysystemperfor-
mance modellingtheseresourcesccuratelyis necessary
for our results to reflect true performance.

In orderto modeltheincreasinglemand®namemory
subsystemwe usedan aggressiveout of order design.
The configurationof the executionengineis 8 issue;64
entryRUU; GSharebranchpredictorwith 64K entries, 16
bit globalhistory; 6 integerALUs, and2 integermultipli-
ers.The cacheconfigurationsare 64KB eachsplit I/D L1
and512KB unified L2 with latencies?, 8, and50 clocks
for the L1, L2, and main memory, respectively.The I-
cacheis 2 way associativewith a line size of 64 bytes;
The D-cachesare4 and8 way associativewith line sizes
of 32 and64 bytes,respectively Storeto loadforwarding
isimplementedn the simulatorwith alatencyof 2 clocks
to matchthe L1 hit latency.All binariesareSimpleScalar
PISA and compiled with SimpleScalar gcc at -O3.

The machinehastwo fully pipelinedgeneralmemory
accesgortseachof which canhandleeitheroneload or
onestorepercyclewith no addressestrictions.If a store
hasbegunverification, we countthis storeasverified in
the percentageseported but we do not force verification
to finish before committing the store.If a storehasnot

finishedverifying whenit reachesommit, it is assumed
to be non-silentandentersthe memorysystem Readport
stealing for squashingoccurs regardlessof where an
addresshits in the memory hierarchy. The simulator
implementstwo write buffers outsideof the instruction
window (i.e. only for committedstores)vherecommitted
storesare held until their completion.Aggressivewrite-
combiningis implementedn the write buffer sothatany
store to the samelLl cachelinecan be combinedwith
otherstoresto the sameline in the buffer. TheLSQ cache
only allocates for stores when it can steal a read port.

The L1 cachehasa write-through,write-allocatepol-
icy backedby awritebackL2. In all casegexceptSection
4.5 where we considerthis bandwidth specifically) we
makethe very aggressiveassumptiorthat thereis a full
L1 cachdine width interfacebetweerL1 andL2 thatcan
begin a new transactionevery clock cycle, as might be
possiblewith on-dielL2 cachesBoth store-througtband-
width andL1 fill bandwidthare modeledover this inter-
face. Fill transactions (i.e. demand misses) take
precedence over store-through traffic on this interface.

The memory accessconfiguration of this machine
modelis similar, thoughnotidentical,to the Power4[13]
which implementsa store-throughL1 and writebackL2
for ECC protection(asoutlinedin Section3.2). It is not
our goalin this Sectionto advocatea specific methodof
error correction, but ratherto show how FSSScan be
exploitedfor performancebenefitin onepossibleconfig-
uration.

4.2 ECC Squashing

We do not showperformanceesultsfor this methodof
FSSSbecausdat doesnot makesenseto complicatethe
resultsdiscussiorwith two incomparablemachinemod-
els.As discussedn Section3, if astore-through.1 cache
is implementedfor the purposesof error protection,we
haveno needfor ECCin the L1, sincethe store-through
to an ECC-protected.2 providesadequataeliability. In
order to meaningfully demonstratehe performanceof
ECC squashingwe needa writebackL1. Resultsfor a
machine model similar to this were published in [14].

However,it shouldbenotedthatthe key assumptiorof
Section2.2 and Section3.1, namelythat storeoperations
mustbe sub-ECC-wordor ECC FSSS;is realisticgiven
commercially available processorstoday. One would
expectthat no architectwould designa systemwith the
maximal store atom size being smaller than the ECC-
word-sizeso that every storeincurs a read-modify-write
for ECCgenerationHowever this occursfrequently.The
IBM RS64-Ill (Pulsar)processorin usein IBM S80serv-
ersand other machines executesxactly this way when
running32-bitcode.ln theRS64-111,theL1 caches ECC
protectedirectly (similarto themannerdiscussedh Sec-
tion 3.1)usingan ECC-data-wordaizeof 64 bits. In 32 bit
mode, the largestinteger store atom is 32 bits, hence
incurring the read-modify-write on every store [3,4].
Therefore,we expectECC squashingo provide signifi-
cant performance benefit in this and similar systems.
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stealing vs. no squashing.
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4.3 Available Read Prt Squashing

Figure7 showsthe performancémprovementof read
port stealing over the baseline performancewith no
squashingWe seeimprovementsangingfrom a low of
0% in li andvpr to a high of 56% in mcf The harmonic
mean acrossall benchmarksshowsa 10.3% improve-
ment.

It is worthwhile to note that we do not seea perfor-
mancedecreasen any benchmarkThis occursbecause
we areonly usingcachereadportsavailableafterall other
readyloadsandstoreshavehada chanceo issue/commit.
The performancebenefitcomesprimarily from two fac-
tors:a)areductionof bandwidthrequiredbetween_1 and
L2 cachesby eliminating store traffic on the interface,
and b) reduced pressure on write buffers.

It is alsointerestingto note how few store squashing
opportunitieswe missby only usingavailablecacheread
portsasopposedo trying to squastall storesin Figure8
we showthe percentagef storeoperationsve areableto
store verify for free using read port stealing.

We canseethatin all caseswe areableto verify over
83% of storeoperationsusingavailablecachereadports
with an averageof 89%. This indicatesthat we are
achievingalmostall availablebenefitfrom squashinghat
usesthe standardstoreverify, but withoutimpactingper-
formance of critical load and store operations.

4.4 LSQ Squashing
In Figure9, we showthe performancémprovemenbf
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FIGURE 9. Performance of LSQ squashing The
stacled barsindicate the performanceof the baselinesysten
(without squashing)sameaddresgtemporal)LSQ squashing,
and same cacheline (spatial) LSQ squashing, resphcti
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FIGURE 10. Temporal LSQ squashing provided by
WAR, WAW, and RAN dependences.

temporal and spatial LSQ squashingover the baseline
performancewith no squashingasdiscussedn Section
2.4.1and Section2.4.2, respectively).The stackedbars
showthe contributionof eachmechanisnto overall per-
formance FortemporalLSQ squashingye seeimprove-
mentsin IPC rangingfrom alow of 0% in gzipandmcfto

ahigh of 3%in vortexwith overallperformancémproved
by 0.6% as indicated by the harmonic mean over all

benchmarkswhenwe addspatialLSQ squashingwe see
totalimprovementsverthe baselindrom alow of 0% in

gzip to a high of 56% in mcf with the harmonicmean
improving by 11.3%.

When examiningtemporalsquashingit is interesting
to notethat mostof the storesaresquashedby preceding
or subsequentioad operations(the RAW and WAR
dependencesdiscussedn Section2.4.1), as opposedto
previousstore operationg WAW dependencesgsillus-
trated in Figurel0. In most benchmarks(exceptcom-
press ijpeg, vpr, and mcf, temporal LSQ squashing
capturenver 25% of all silent storeswithin the dynamic
programexecution.Somepossibleexplanationsfor this
are providedin [1], and could include program model
considerationdike stackframeusageln the resultspre-
sentedn Figurel0, eachdynamicsilent storeis counted
at most once (it is presentin only one section of the
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FIGURE 11. LSQ store verifies provided by same
address (temporal locality), previous load to line,
previous store to line, subsequentstore to line, and
read port stealing.

stackedbars), with the following priority counting on
multiple aliases:previousload (WAR), previous store
(WAW), subsequent load (RAW).

In the caseof spatialLSQ squashingthe samestate-
ment regardingcounting of squashablestoresholds (a
dynamicsilent storeis only countedonce).However,the
priority of counting changesslightly due to simulator
implementationissues.In this case,the counting prece-
denceis: WAR, WAW, cacheline previousload, cache
line previousstore,RAW, cachelinesubsequernibad,and
readport stealing.We showthe resultsof this methodof
counting in Figurell (results from all same address
squashingnethodsarecombinedn the SameAddressbar
for readability and the subsequentine load sectionis
removed becauseit did not contribute meaningfully).
Notethatthetotal percentagef silentstorescapturedoy
this mechanismis greaterthan the resultspresentedn
Figure8 (simple read port stealing) becausethe LSQ
cacheis store-allocatingusing free readports,aswell as
exploiting locality in the LSQ. Becausd.SQ storeveri-
fies do not consumea cacheport, a port tendsto be free

more often for additional read port stealing store verifies.

We seethatthe percentag®f sameaddresstoreveri-
fies decreasesverFigure10, mainly dueto countingpre-
cedenceAlso, substantiapreviousline storeverifiesare
observedijndicatingthatthe LSQ cacheproposedn Sec-
tion 2.4.2is useful. Theseresultsalsoindicate,dueto the
smallfractionof subsequeritne verifies,thatverification
from aline allocatedby a subsequenaccesdo previous
storesin the LSQ is unnecessarfor squashingpurposes,
potentially saving some complexity in the LSQ cache.

Finally, we seethat in all benchmarkqexceptcom-
pressandmcf), over 40% of all silent storesare captured
by exploiting locality in the LSQ. Readport stealingfor
LSQ cacheline allocationbringsthe total percentagef
silent stores captured to over 90% (exceptjfmy).

In comparingtemporalto spatialLSQ squashingwe
see only two benchmarksthat benefit from temporal
squashing(perl gains 1.5% and vortex 3.3%). It is not
until spatialLSQ squashingds appliedthatwe seenotice-
ableimprovementsn instructionthroughput.This occurs
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FIGURE 12. Percentreductionof L1 to L2 traffic by
performing FSSS. The bars and bullets indicate the
percentagef write throughtraffic reductionandthe percentag
of total dynamic stores remed, respectely, by FSSS.

becauseheoverallpercentagef silentstoresdetectedy
the spatialschemg(including free readport squashing)s
much higher.

4.5 Increasing Effectve Write-Thr ough
Bandwidth via FSSS

Given that FSSScan squashmany silent stores, it is
interestingto examinewhat kind of trade-offswe can
makeasan architectwith this type of memorysystemto
obtain sufficient throughput betweenthe L1 and L2
cachesWe canusethe “brute force” methodandimple-
ment a fully-pipelined, write-combining, cache-line-
width interfacebetweenL1 andL2 (asusedin all results
presentedso far) which can induce significant circuit
design complexity. Or, we can exploit FSSSto obtain
“effective” throughputover the L1 to L2 interfacewith
less physical throughput.In order to illustrate this, we
presentFigure12 which showsthe store-throughtraffic
reductionoverthe L1 to L2 interfaceaswell asthe per-
centageof dynamicstoresremovedby FSSS.We seean
averagetraffic reductionof 15% acrossall benchmarks
and up to 45% in m88ksim Sincethis interfaceis wide
(32B) andfast (singlecycle pipelined),it is reasonabléo
assumehatthis traffic reductionwould leadto a savings
in chip power.

Notethat,aswe would expectthe percentagef write
throughtraffic reductioncloselymirrorsthe percentagef
successfullyremoved, squashedstores.In the caseof
vortex and mcf, the traffic reductionis slightly greater
thanthe percentag®ef removedstoreswhich we attribute
to second-ordeincreasein write combining efficiency.
Becausesquashedstoresdo not allocatea write buffer,
therearemorebuffersavailablefor combiningnon-silent
stores.Thepercentagef removedstoress lowerthanthe
overall percentagef silent stores(and alsothe percent-
agesof squashedtorespresentegbreviously)becausave
do not wait for storeverifiesto completebeforecommit-
ting stores(explainedin Section4.1). In further experi-
mentsnot detailedhere,we foundthatalthoughwe could
decreaseraffic by waiting for storesthathit in the L1 to
finish verifying, becauseommitof somestoresis stalled
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in this case pverallinstructionthroughputs lower. There
is a potentialperformancevs. power consumptiortrade-

off here that could be exploited in power-aware designs.

In order to determinehow effective this bandwidth
reduction is on instruction throughput, we present
Figure13,which showsthe performancecrossall bench-
markswith varying width interfacesbetweenL1 andL2,
with and without FSSSsquashingn its mostaggressive
form (spatialLSQ squashingvith readport stealing) We
keepthe L1 cachelinesizeat 32B in all simulations,but
illustrate the performanceof 32B, 16B, and 8B wide
interfacesbetweenthe L1 andL2. In eachcase,we are
progressivelylowering the physicalbandwidthof the L1
to L2 interfacebecauseén the caseof 16B and8B widths
more transactionsacrossthe interfaceare requiredfor a
cachelingransfer(two andfour transactiongor 16B and
8B, respectively)However,we changethe write combin-
ing width to matchthe physicalinterfacewidth so that
flushing a write buffer takes only a single cycle.

If we compareFSSSwith an interfacewidth of 8B to
no squashingvith aninterfacewidth of 32B, we seethat
the effective bandwidth(as evidencedby IPC) of FSSS
with the 75% lower physicalbandwidthinterfaceis more
effective than the higher physical bandwidth interface
without FSSS(theonly exceptiongo this arego andgzip;
in thesebenchmarksthe percentagesf silent storesare
low, 27% and16%respectivelyjeadingusto expectless
benefitfrom FSSS)In fact, asevidencedy theharmonic
mean,the FSSSlow physical bandwidthinterfaceactu-
ally provides9% greatereffective bandwidthon average
than the fastestphysicalinterfacewe model. Therefore,
we canpotentiallytradethe implementatiorof FSSSfor
physicalbandwidth.Of course,asalsoshown,FSSSstill
providesbenefit no matter what physical bandwidthis
available.Note that eventhoughthe actualreductionin
physicalbandwidthfor the narrowerinterfaceg50% and
75% for 16B and 8B wide interfaces,respectively)is
larger than the percentreductionsshownin Figurel2,
FSSSalso decreasepressureon other hardwarestruc-
tures,suchaswrite buffers,sothe performanceémprove-

ment is not solely due to the reduced L2 bandwidth.

We also observein Figurel3 that the performance
degradatiorfrom the widest(32B) to the narrowest(8B)
interfaceis lowerin thecaseof FSSSthanfor thebaseline
systemwith no squashing(40% lower accordingto the
harmonicmean).This occursbecausesquashings rela-
tively more effective as the write-combiningwidth nar-
rows. With respectonly to physicalinterfacebandwidth,
combiningand squashingare equivalent.We can either
saveatransactiorovertheL1 to L2 interfaceby combin-
ing with a previousstoreor by squashinghe store.How-
ever, there is some overlap betweenthe methods(i.e.
somestoresthataresquashedould alsohavebeencom-
bined,andvice-versaascanbeeseenin Figurel2in the
differencebetweenremoveddynamicstoresandreduced
write through traffic). Of course,the combining width
directly affectsthe numberof storesthat can be com-
bined,butdoesnot directly affectthe numberof squashed
silent stores.Therefore,FSSSwill capturesome stores
thatcanno longerbe combined(but canstill be squashed
atanycombiningwidth), sotherelativebenefitof squash-
ing increasesas the combining width decreaseslong
with the width of the L1 to L2 interface.

4.6 Results Discussion

Comparingthe performanceesultsfor thethreeFSSS
methodssimulatedfor our machinemodel, we seethat
readport stealingandaggressiveSQ squashingexploit-
ing bothtemporalandspatiallocality in the LSQ provide
nearly equivalent performance,with harmonic mean
speedupsof 10% and 11%, respectively. This occurs
becauseboth methodscapturegreaterthan 83% of all
silent storesandcloseto 90% on averageso both meth-
ods are suitable for exploiting FSSSfor IPC benefit.
However,aggressive.SQ squashingeduceghe number
of storeverifiesissuedto the memorysystemby 50%,on
average(comparingthe read port stealing percentages
from Figure8 and Figurell). Therefore,in a machine
model with relatively fewer memory ports, aggressive
LSQ squashingmay have greater benefit becauseof
reducedport contention.Reducingdata cacheaccesses
may also reduce overall power consumption.

TemporalLSQ squashingy itself providesonly mod-
estspeedupn thesebenchmarkdessthan1%, becausef
thelow percentagef silentstorescaptured31%onaver-
age)andthe correspondin@®@% averagereductionin total
committed dynamic stores. Therefore, while temporal
LSQ squashinghasthe benefitof neverstealinga cache
readport,in our machine solelyimplementingthis mech-
anism does not seem worthwhile.

5.0 Conclusion

We make four contributionsin this paper.First, we
explainwhy standardstoreverifies, asinitially proposed
in [14] havesomeundesirablecharacteristicsand intro-
duce the conceptof free silent store squashingwhich
usesexistingresourcess-isor with slight modificationto



squasha significant portion of all silent stores.Second,
we explainthreewaysin which we canimplementfree
silent store squashing:) using pre-existingECC logic

thatis presentandwill becomemoreprevalentjn current
and future microarchitecturesiji) using idle read port

stealingto performstoreverifies; iii) enhancingan exist-

ing load/storegueueto exploittemporalandspatiallocal-

ity for storesquashingWe showthatin currentandnext
generationmicroarchitectureghat opportunitiesexist to

exploit thesemechanismsusing real examplesfrom the

Alpha 21264[9], IBM RS64-IIl [4], and IBM Power4
[13]. We further showthat substantiaperformanceéene-
fit canbe obtainedby exploiting free silent storesquash-
ing and that two of the three mechanisms--reagbort

stealingandaggressivé.SQ squashing--captur@signifi-

cantportion of silentstoresdetectedvy the standardstore
verify mechanism(greaterthan 83% and 89% on aver-
age).Theydo soata substantiallyreducedcostfor perfor-

mance benefits averaging 10% and 11% across the

SPECINT95and a subsetof the SPECINT-2000bench-
marksfor eachmethodrespectively.Third, we illustrate
that “effective” bandwidthbetweenthe L1 and L2 data
cachescan be increasedby free silent store squashing,
andindicatethata substantialljower bandwidthphysical
interface betweenthe two cachesprovidesthe sameor

better performancewhen performing free silent store
squashingFinally, we provide additional characterizing
information aboutsilent storesby showingthat, in most
benchmarksgreaterthan 40% of all silent storescanbe

squashedby simply examiningdatathataretemporallyor

spatially local to dataalreadyexisting in the LSQ. We

alsoillustrate that, on average,31% of silent storesare

detectedwith temporallocality, and an additional 19%

are detectedwith spatiallocality, in the LSQ. The work

reiteratesthat silent storescan be exploited for perfor-

manceimprovementandillustratesthat taking advantage
of themajority of silentstoreds relativelyeasygivencur-

rent microarchitecturesiowering the barriersto exploit-

ing them in the future.
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