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Abstract

The register file accesstime is one of the critical delaysin current
superscalar processors. Its impact on processor performance is
likely to increase in future processor generations, as they are
expected to increase the issue width (which implies more register
ports) and the size of the instruction window (which implies more
registers), and to use some kind of multithreading. Under this
scenario, theregister file accesstime could be adominant delay and
a pipelined implementation would be desirable to alow for high
clock rates.

However, a multi-stage register file has severe implications
for processor performance (e.g. higher branch misprediction
penalty) and complexity (more levels of bypass logic). To tackle
these two problems, in this paper we propose a register file
architecture composed of multiple banks. In particular we focus on
amulti-level organization of the register file, which provides low
latency and simple bypass logic. We propose several caching
policies and prefetching strategies and demonstrate the potential of
this multiple-banked organization. For instance, we show that a
two-level organization degrades IPC by 10% and 2% with respect
to a non-pipelined single-banked register file, for Specint95 and
SpecFP95 respectively, but it increases performance by 87% and
92% when the register file accesstimeis factored in.

Keywords: Register file architecture, dynamically-scheduled
processor, bypass logic, register file cache.

1. I ntroduction

Most current dynamically scheduled microprocessors have aRISC-
like instruction set architecture, and therefore, the majority of
instruction operands reside in the register file. The access time of
the register file basically depends on both the number of registers
and the number of ports [8]. To achieve high performance,
microprocessor designers strive to increase the issue width.
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However, wider issue machines require more ports in the register
file, which may significantly increaseits accesstime[2]. Moreover,
a wide issue machine is only effective if it is accompanied by a
large instruction window [14] or some type of multithreading [13].
Large instruction windows and multithreading imply a large
number of instructions in-flight, which directly determines the
number of required registers [2]. However, increasing the number
of register also increases the register file access time. On the other
hand, technology evolution produces successive reductions in
minimum feature sizes, which resultsin higher circuit densities but
it also exacerbates theimpact of wiredelays[7]. Since asignificant
part of the register file access time is due to wire delays, future
processor generations are expected to be even more affected by the
access time problem.

Current trendsin microprocessor design and technology lead
to projections that the access time of a monoalithic register file will
be significantly higher than that of other common operations, such
asinteger additions. Under this scenario, apipelined register fileis
critical to high performance; otherwise, the processor cycle time
would be determined by the register file access time. However,
pipelining a register file is not trivial. Moreover, a multi-cycle
pipelined register file still causes a performance degradation in
comparison with a single-cycle register file, since a multi-cycle
register file increases the branch misprediction penalty. Besides, a
multi-cycleregister file either requires multiplelevels of bypassing,
which is one of the most time-critical components in current
microprocessors, or processor performance will be significantly
affected if only asingle-level of bypassing isincluded.

In this paper we propose a register file architecture that can
achieve an IPC rate (instructions per cycle) much higher than a
multi-cyclefile and closeto asingle-cyclefile, but at the sametime
it requires just a single level of bypass. The key idea is to have
multiple register banks with a heterogeneous architecture, such that
banks differ in number of registers, number of ports and thus,
access time. We propose a run-time mechanism to allocate values
to registers which aims to keep the most critical values in the fast
banks, whereas the remaining values are held in slower banks.

We show that the proposed organization degrades IPC by
10% and 2% with respect to a one-cycle single-banked register file
for Speclnt95 and SpecFP95 respectively, assuming an infinite
number of ports. However, when the register file cycle time is
factored in and the best configuration in terms of instruction
throughput (instruction per time unit) is chosen for each register file
architecture, the proposed architecture outperforms the single-
banked register file by 87% and 92% respectively. When compared
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Figure 1: IPC for a varying number of physical registers. The
harmonic mean for SpecInt95 and SpecFP95 is
shown. (for this experiment we assume the
architectural parameter described in section 4.1, but
a reorder buffer and an instruction queue of 256
entries).

with atwo-stagepipelined single-bankedegisterfile with justone
level of bypass,the proposed architecture provides a 10%
(SpecInt95pnd4% (SpecFP95ncreasén IPCfor infinite number
of portsanda 9% (SpecInt95)ncreasen instructionthroughpufor
the bestconfiguration.Moreover,the performancdiguresfor the
two-stagepipelined organizationare optimistic sincewe assume
thattheregisteraccesganbepipelinedinto two stageof thesame
duration and without any inter-stage overhead.

The rest of this paperis organizedas follows. Section?2
motivatesthis work by presentingsomestatisticsabouttheimpact
of registerfile accesgime on processoiperformanceand bypass
logic. Section3 presentsdifferent multiple-bankedarchitectures
anddescribesn detailtheregisterfile cachearchitecturewhichis
the main contribution of this work. Performancestatistics are
discussedn section4. Section5 outlinesthe relatedwork and

finally, section 6 summarizes the main conclusions of this work.

2. Impact of the Register File Architecture

Theregisteffile providesthesourceoperandsndstoresheresults
of mostinstructions Dynamicallyschedulegrocessorsenameat
run-timelogical registergo physicalregisterssuchthateachresult
producedby any instructionin-flight is allocatedto a different
physicalregisterln thisway,namedependenceareeliminatedand
instructionparallelismis increasedThe costof this techniqueis
thatalargenumberof registersnayberequired Figurel showsthe
harmonicmeanof the IPC of an 8-way issue processomwith a
varying number of physical registers for the SpecInt95 and
SpecFP9%enchmarksDetailsabouttheevaluatiorframeworkcan
be foundin section4.1. Acrossthe whole paperwe usethe same
architecturalparameterawith the exceptionthat in Figure 1 we
assumea reorderbuffer andaninstructionqueueof 256 entriesin
orderto evaluatelarger registerfiles. Note that the performance
curves start to flatten beyond 128 registers.

Thepreviousexperimentissume@one-cycldatencyfor the
registerfile. However,aregisterfile with 128registeraand16 read
portsand8 write portsis unlikely to havesucha low accesgime.
However atwo-cycleregisterfile hassomeimportantimplications
for processoperformanceandcomplexitycomparedvith asingle-
cycle register file, as observed by Tullsen et al. [12]:

317

o 1-cycle, 1-bypass level

4+ SpeCI nt95 = 2-cycle, 2-bypass levels
m 2-cycle, 1-bypass level
3A
g 2-
1;_
Q Qo = =
6 geg8=f38f §
S = % g £
5 Q I
o IS
5 SpecFP95
o 1-cycle, 1-bypass level
m 2-cycle, 2-bypasslevels
= 2-cycle, 1-bypass level
44
34
O
a
24
1;
>3 28 T 5 E 3
ERESEESEELE B
< 38 E 3 E 3 = £
< -
Figure 2: IPC for a 1-cycle register file, a 2-cycle register file

and a 2-cycle register file with just one level of
bypass.

» The branchmispredictionpenaltyis increasedincebranches
are resolved one cycle later.

* The register pressureis increasedsince the time that
instructions are in-flight is increased.

« An extralevel of bypasdogic is required.Eachbypasdevel
requiresa connectiorfrom eachresultbusto eachfunctional

unit input, if full bypassis implemented. This incurs
significant complexity.

An alternative approachto reducing complexity, at the
expensef alower performanceis to keepjustonelevel of bypass.
In this caseonly thelastlevel of bypasss keptin orderto avoid
‘holes’ in theaccesgo registerdata.In this contexta holerefersto
thefact thata valueis availablein a given cycle (from the bypass
network),thenis notavailablein asubsequentycle,andlateronis
availableagain(from theregisterfile). Holesareundesirablesince
theywould significantlyincreasehe complexityof theissuelogic.

Figure 2 showsthe IPC for the whole SPEC95benchmark
suite comparingthree different architecturesof the registerfile
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architecturesa) one-cycldatencyandonelevel of bypassp) two-
cycle latencyandtwo levels of bypass;and c) two-cycle latency
with one level of bypass.

We canseethatanadditionalcyclein theregisterfile access
time slightly degradegerformancewhen all additionalbypasses
are implemented. Not surprisingly, performance significantly
decreases only asinglelevel of bypasss available Theimpactis
higherfor integercodes,duein partto their much higherbranch
mispredictiorrates Moving from atwo-cycleregisteffile with one
bypasslevel to a two-cycle registerfile with two bypasslevels
producesanaveragancreasen IPC of 20%for SpecInt95A one-
cycleregisterfile resultsin anaveragespeedumf 22%. Note that
all programsare significantly affectedby the registerfile latency
andthenumberof bypasdevels.For SpecFP95thedifferencesare
lower (6% and 7% respectively)but still quite significant. This
resultsare consistentwith the study of Tullsenet al. [12], who
reportedalessthan2% performancelecreasehentheregisteffile
latency increased from 1 to 2 cycles with two levels of bypass.

Theregisteffile optimizationgproposedn this paperarealso
basedon the observationthat a very small numberof registers
wouldberequiredto keepthe processoatits maximumthroughput
if they were more effectively managed.This is becausemany
physical registers are “wasted” due to several reasons:

« Registersareallocatedearlyin the pipeline (decodestage)to
keeptrackof dependencesiowevertheydonotholdavalue
until the instruction reaches the write-back stage.

* Some registers hold values that will be used by later

instructions that have not yet entered the instruction window.

« Forreason®f simplicity, registersarereleasedate.Insteadf
freeinga registeras soonasits last consumercommits, it is
freed when the next instruction with the same logical
destination register commits.

* Someregisterareneverreadsincethevaluethattheyholdis
eithersuppliedto its consumershroughbypasgathsor never
read.

Figure 3 showsin solid lines the cumulativedistribution of
the numberof registersthat contain a value that is the source
operandf atleastoneunexecutednhstructionin thewindow. Only
averagemumberdor Specint9mndSpecFP9%areshown.Notethat
90% of the time about4 and5 registersare enoughto hold such
valuesfor integer and FP codesrespectively.If the processor
providedlow latencyin the accesgo theseoperandsperformance
couldnot be degradeckvenif the remainingregistershada much
higher latency.In fact, the numberof requiredregistersmay be
evenlower, sincesomeof theseoperandsnay not be usefulto any
instructionatthattime, sincetheinstructionghatconsumehemare
waiting for other operandsThe critical valuesare thosethat are
sourceoperandsof an instructionin the window that hasall its
operandsready. The cumulative distribution of this measureis
shownin Figure3 by meansf adashedine. Notethaton average,
the numberof critical valuesis lessthan4 (resp.lessthan 3) for
90% of the time in SpecInt95 (resp. SpecFP95).

3. A Multiple-Banked Register File

The main conclusionfrom the previoussectionis thata processor
needgnanyphysicalregistersutavery smallnumberareactually
requiredfrom aregisterfile atagivenmoment.Moreover register
file accesdime hasa significantimpacton the performanceand
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Figure 3:  Cumulative distribution of number of registers.

complexityof bypasdogic. We proposeto usea registerfile with
multiple banks to tackle these problems.

A multiple-banked register file architecture consists of
several banks of physical registers with a heterogeneous
organizationeachbankmayhaveadifferentnumberof registersa
differentnumberof portsandtherefore a differentaccesgime. A
multiple-bankedegisteffile canhaveasingle-levelrganizatioror
a multi-level organizationasshownin Figure4 for the particular
caseof two banks.In a single-level organization,eachlogical
registeris mappedto a physicalregisterin one of the banks.All
bankscanprovidesourceoperandso thefunctionalunits,andeach
result is stored just in one of the banks. In a multi-level
organizationpnly the uppermostevel candirectly providesource
operandgo the functionalunits. A subsebf registersn thelower
levelsarecachedn the upperlevelsdependingntheexpectations
of beingrequiredin the nearfuture. Resultsare alwayswritten to
the lowestlevel, which containsall the values,and optionally to
upperlevelsif they are expectedo be usefulin the nearfuture.
Since this multi-level organizationhas many similarities with a
multi-level cachememoryorganizationwe will alsoreferto it asa
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register file cache. In this paper, we focus on this register file
architecture.

A register file cache can have a bank at the upper level that
has many ports but few registers, which may resultin asingle-cycle
access time. Banks at the lower levels have many more registers
and a somewhat lower number of ports, which may result in an
increased latency. However, it requires the same bypass logic as a
monolithic register file with one-cycle latency, since source
operands are always provided by the uppermost level.

When results are produced they are cached in upper levels,
based on heuristics described below. In addition, thereisaprefetch
mechanism that moves values from lower to upper levels of the
hierarchy. Note that datais never moved from upper to lower levels
since registers are written only once, and the lowest level isaways
written.

The approach to deciding which values are cached in the
upper level of the hierarchy is a critical issue. Like in cache
memories, a criterion based on locality seems appropriate, that is,
upper levels should contain those values that are more likely to be
accessed in the near future. However, the locality properties of
registers and memory are very different. First of al, registers have
amuch lower temporal re-use. In fact, most physical registers are
read only once, and there is even a significant percentage that are
never read. Spatial locality is also rare, since physical register
allocation and register references are not correlated at all.

We need then different criteria to predict which values are
most likely to be accessed in the near future. We propose a caching
policy based on the observation that most register values areread at
most once. We have observed that this happens for 88% of the
values generated by the SpecInt95 and 85% of the FP register
values produced by SpecFP95. For a two-level organization, one
option is to cache only those results that are not read from the
bypass logic. These values will be written in both register banks,
whereas bypassed values are written only in the lowest bank. We
refer to this policy as non-bypass caching.
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With non-bypass caching, we still cache some values whose
first use does not occur for many cycles because they may be source
operands of instructions whose other operands take a long time to
be produced. In this case, we are wasting a precious space in the
uppermost level to store avalue that is not needed for many cycles.
The second policy we have investigated tackles this problem by
caching just those results that are source operands for an instruction
that isnot yet issued, but which now hasall operandsready. In such
caseswe can be sure the value will be required soon, but will not be
available via the bypass logic. We refer to this policy as ready
caching.

Orthogonal to these two caching policies we have
investigated two fetching mechanisms. The first one we call fetch-
on-demand. In this policy, registers from the lower level are
brought down to the upper level whenever an instruction has al its
operands ready and some of them arein the lowest level (provided
that the bus between both levels is available). This policy is very
conservative since it brings to the uppermost levels only those
operands that are ready to be used. However, it may delay the
execution of some instructions for several cycles, since after
identifying a ready instruction with some operands in the lower
level, these operands must be read from that level, then written into
the upper level, and then read from there to be issued.

A more aggressive fetching mechanism could prefetch the
values before they are required. Like in cache memories,
prefetching must be carefully implemented to prevent premature or
unnecessary fetching from polluting the upper levels. In general,
prefetching can be implemented by software or hardware schemes.
In this paper we focus on the latter. For cache memories, hardware
prefetching is based on predicting the addresses of future references
before they are known. For a register file cache, prefetching can
exploit knowledge about the instructions in-flight. In fact, the
rename and issue logic of a conventional processor can identify al
the operand communications between the instructions in the
window. Therefore, the processor knows some of the future access
to theregister file.
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We propose the following prefetching scheme that exploits

o ready caching + fetch-on-demand

) S . . N 49 Int95 |
this predictability of register references. Whenever aninstruction is Specin ° ?;ﬁywﬁrf;hhjgf;fcﬁﬁ?;;?’;‘;ﬁ'"a“d
issued, it brings to the uppermost level of the hierarchy the other M = non-bypass caching + prefetch-first-pair
source operand of the first instruction that uses the result of the
current one. For instance, in the following code (already renamed): 2l | )
(1) pl = p2+p3 il 1
(2) p4 = p3+p6
(3) p7 = pl+ps o,
when instruction (1) isissued, aprefetch of register p8isissued. In -
this way, part of the latency of bringing p8 to the uppermost level
of the hierarchy can be overlapped with the execution of instruction
(1). Werefer to this prefetching scheme as prefetch-first-pair. 1 L LER L
683 E" 588 §
4.  Performance Evaluation £ - g 2 =
4.1. Experimental Framework - SpecFPO5
o ready caching + fetch-on-demand
o non-b hing + fetch-on-d d
The performance of the proposed register file architecture has been - ?:;y?acaﬁrﬁ Ipr:gfetc?-iir:t?paﬁman
evaluated through a cycle-level simulator of a dynamically- 4 = non-bypass caching + prefetch-first-pair
scheduled superscalar processor and an analytical model of the area
and access time of the register file. 1 )
The processor simulator models a 6-stage pipeline 37
(instruction fetch; decode and rename; read operands, execute; Q
write-back; commit). Each stage takes one cycle except for the read =
and execute stages, which can take severa cycles depending on the 2+
instruction and the particular architecture. The main features of the
microarchitecture are described in Table 1.
1- L Ll
22 88 2 5 E 3348
Parameter Value AN S EEEEEN E
Fetch width 8 instructions (up to 1 taken branch) Figure 5:  IPC for different register file cache architectures.
-cache 64K B, 2-way set-associative, 64 byte lines, o
1 cycle hit time, 6 cycle misstime at the upper level. The upper level has a fully-associative
- - - organization with a pseudo-LRU replacement. The aim of this
Branch predictor Gshare with 64K entries experimental evaluation is to analyze the effect of register file
; bandwidth, at each level, on area and performance.
Instruction : ' '
window size 128 entries

Functional units | 6 Simpleint (1); 3int mult/div (2 for mult

(latency in and 14 for div); 4 smple FP (2); 2 FP div
brackets) (14); 4 load/store
L oad/store queue 64 entries with store-load forwarding

8-way out-of-order issue
loads may execute when prior store
addresses are known

128int/ 128 FP

| ssue mechanism

Physical registers

64K B, 2-way set-associative, 64 bytelines,
1 cycle hit time, write-back, 6-cycle miss

Deache time if not dirty, 8-cycle misstimeif dirty,
up to 16 outstanding misses
Commit width 8 instructions

Table 1: Processor microarchitectural parameters

Based on the results presented in Section 2, our experiments
use 128 physical registersat thelower level with a16-register cache
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The analytical models of the area and access time are
described in [4]. The area model measures the areain A2 units and
is generic for different technological processes. The access time
model is an extension of the CACTI model [16]. The model is
configured with the technology parameters corresponding to a
process with A=0.5 um. This is somewhat old for current designs
but is the most aggressive configuration that we have available.
However, we have aways compared different architectures
assuming the same A, and the performance gains are aways
reported as speedups relative to a base architecture.

Our experiments used the complete Spec95 benchmark suite.
Programs were compiled with the Compag/Alpha compiler using -
O4 and -O5 optimization flags for integer and FP codes
respectively. The resulting programs were simulated for 100
million instructions, after skipping theinitialization part.

4.2. Performanceresults

Wefirst evaluated the performance of the register file cache for an
unlimited number of ports. In fact, the number of ports for
maximum performance is bounded by the number of instructions
that can simultaneously issue and complete. Figure 5 showsthe IPC
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Register file cache versus a single bank with full bypass.

(instructions committed per cycle) for four register file
configurations that arise from combining the two caching policies
and the two fetch strategies presented in the previous section.
Results show that non-bypass caching outperforms ready caching
by 3% and 2% for integer and FP programs respectively. The non-
bypass policy is also much easier to implement, since identifying
which values are not bypassed is straightforward. The second
conclusion of this graph is that the proposed prefetching scheme
isonly effective for afew programs: it provides significant speed-
upsformgri d, f pppp, and wave5 and slight improvementsfor
i j peg, apsi andappl u. However, it isimportant to point out
that these figures refer to register files with an unrestricted
bandwidth. We will lately show that for a limited number of

register file ports the benefits of prefetching are more noticeable.

Figure 6 compares the IPC of the best register file cache
configuration (non-bypass caching with prefetch-first-pair) with
that of a single-banked register file with a single level of bypass
and an access time of either 1 or 2 cycles. These three
architectures all have the same bypass hardware complexity, but
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their performance characteristics differ significantly. In genera,
integer codes are more sensitiveto register filelatency than the FP
codes. For integer codes, the register file cache has 10% higher
I PC than the conventional two-cycle register file, on average. For
FP codes the average benefit is 4%. Note that the register file
cache exhibits significant speed-ups for amost all Spec95
programs. The IPC of the register file cacheis still 10% and 2%
lower than that of a one-cycle register file for integer and FP
codes respectively, which suggests that further research on
caching and fetching policies may be worthwhile. However, when
the cycle time is factored in, the register file cache outperforms
the one-cycle register file as shown below.

Figure 7 compares the IPC of the register file cache with
that of asingle bank with atwo-cycle accesstime and full bypass.
We can observethat the | PC of theregister file cacheislower than
that of the conventiona register file (8% and 2% on average for
integer and FP codes respectively). However, the register file
cache requires a much simpler bypass network (asingle level).
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When the number of ports is varied, the different
configurations provide different levels of performance as well as
different implementation costs. Figure 8 compares the
performance of the three register file architectures with a single
level of bypass (one-cycle single-banked, two-cycle single-
banked, register file cache). Performanceis shown as|PC relative
to the IPC of the one-cycle single-banked with an unlimited
number of ports. For each particular areacost (in 10K A2 units) the
best configuration in terms of number of read and write ports has
been shown. In fact, for each register file architecture we have
analyzed al possible combinations of number of read and write
ports. Then, we have eliminated those configurations for which
thereisanother configuration of the sameregister file architecture
that has lower area and higher IPC. We can observe that the
register file cache offers a significant speed-up over thetwo-cycle
single-banked architecture, especially for integer programs, and
its performance is close to that of the one-cycle single-banked
architecture, especialy for FP programs, for the whole range of
area cost.

For some particular programs such as ngri d, hydr o2d
and vor t ex, the register file cache outperforms, in some cases,
the one-cycle single-banked configuration with the same area.
This is because for a given area cost, the register file cache can
have a larger number of ports in the uppermost level at the
expense of alower number of portsin the lowest level.

Performance is ultimately determined by execution time.
When the number of instructions and the cycletime does not vary,
execution time is proportional to 1/IPC. In our experiments, the
number of instructions of a given program is fixed but the cycle
time depends on the register file access time, which in turn
depends on its number of ports. Thus, when aterations to the
micro-architecture are critical to cycle time, one must combine
predicted cycles with simulated IPC values to obtain a more
realistic model of expected performance.

Figure 9 compares the performance of the register file
cache with that of a single-banked register file assuming that the
register file access time determines the cycle time of the
processor. For the single-banked configuration with 2-cycle
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accesstime, we have assumed that the processor cycletimeis half
the register file cycle time (i. e., we suppose that the register file
can be pipelined into two stages of equal duration and without any
inter-stage overhead, which is somewhat optimistic). We have
chosen four different configurations that represent different costs
in terms of area, as described in Table 2. For each area cost, the
optimal number of ports for each architecture has been chosen.
The area of the single-banked architectures and the register file
cache are very similar for each configuration, although they are
not exactly the same since it isimpossible to find configurations
with identical area due to their differing architectures.
Performance is measured as instruction throughput (instructions
committed per time unit) relative to the throughput of aone-cycle
single-banked architecture with configuration C1.

We can see in Figure 9 that performance increases as the
area rises, up to a certain point where a further increase in area
degrades performance, This point is reached when an increase in
cycle timeis not offset by the boost in IPC provided by a larger
number of ports. If we choose the best configuration for each
architecture we can see that the speed-up of theregister file cache
over the single-banked architecture is very high, averaging 87%
for Speclnt95 and 92% for SpecFP95. Comparing the register file
cache with the two-cycle single-banked architecture, we observe
an average speed-up of 9% for SpecInt95 and about the same
performance for SpecFP95. However, note that the figuresfor the
two-cycle single-banked architecture are optimistic as
commented above.

5. Related work

The organization and management of the register file has been
extensively researched in the past. However, there are very few
proposals based on a multiple-banked organization for a single
cluster architecture.

A two-level register file organization was implemented in
the Cray-1 [10]. The Cray-1 processor had 8 first-level and 64
second-level registers for addresses (referred to as A and B
registers respectively) and the same organization for scalars
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relativeinstruction throughput
relative instruction throughput

0-

0
C1

Figure 9:

Cc2 Cc3 C4

Performance of different register file
architectures are described in Table 2.

Cl

SpecFP95

c2

== 1-cycle
== non-bypass caching + prefetch-first-pair
= 2-cycle, 1-bypass

C3 C4

architectures when the access time is factored in. The different

one-cycle single-bankd two-cycle single-bankd register file cache
upperm
cont. cycle cycle cycle ost I(l)c\%lll/gft
Area ti)r/n s | R |y | Area ti)r/n s | R |w | Area ti)r/n A level B
(10K A9 (10K A3 (10K A3
R|W w
Cl 10921 471 3 2 10921 2.35 3 2 10593 2.45 3 2 2 2
c2 15070 4.98 3 3 15070 2.49 3 3 15487 2.55 4 3 3 2
C3 18855 5.22 4 3 18855 2.61 4 3 20529 2.61 4 4 4 2
C4 24163 5.48 4 4 24163 2.74 4 4 25296 2.67 4 4 4 3

Table 2: Number of read (R) write (W) ports of each configuration. For the register file cache, number of buses (B) between the two
levels are also specified. Each bus implies a read port in the lowest level and an additional write port in the uppermost level.

(referred to as Sand T respectively). Datamovement between the
first and second levels was done completely under software
control by means of explicit instructions. Another hierarchical
register file that is very similar to the Cray-1 organization was
proposed in [11].

A replicated multiple-banked organization is awell-known
technique to reduce the number of ports of each bank. This
approach is used for instance by the Alpha 21264 microprocessor
[3]. The integer unit of this processor has atwo-bank register file
with aone-level organization (both banks can feed the functional
units) and full replication of registers. Each functional unit can be
fed only by one of the banks and the results are aways writtenin
both, with a one-cycle delay for the non-local bank.

A multiple-banked register file organization was aso
proposed in [15]. Thisis a one-level organization with two read

323

and one write ports per bank. Register allocation was done at the
end of the execution in order to avoid conflictsin the write ports.

The non-consistent dual-register file [5] is a two-bank
organization for VLIW architectures with partial replication of
registers. It is a one-level organization with homogeneous banks,
in which the allocation of registers to banks was done by the
compiler.

The Sack [6] is a one-level two-bank architecture with
heterogeneous organization (different number of ports) and no
replication, which was proposed again for VLIW architectures.
The alocation of registers to banks was done at compile-time.

A two-level register file organization for a windowed
register file of an in-order issue processor was proposed in [1]. In
this case, the uppermost level stored a small number of register
windows, including the active one, whereas the lowest level held
the remaining windows. Overflow/underflow in the uppermost
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level (dueto a call/returnrespectivelywashandledby haltingthe

processorand using a special mechanismto transferan entire
windowto/fromthelowestlevel. Theideaof cachingasubsebf the

registersin a fast bank was also proposedin [17]. That paper
presentedomestatisticsaboutthehit rateof suchacacheassuming
that every result was cachedunderan LRU replacemenpolicy.

They alsoderivedsomeperformancemplicationsfor anin-order
processor based on some simple analytical models.

Several partitioned register file organizationsfor media
processingvereproposedn [9]. Thatwork presentsataxonomyof
partitionedregisterfile architecturesacrossthree axes.Register
files canbe split alongthe data-parallebxis resultingin a SIMD
organizationpr alongtheinstruction-leveparallelaxisresultingin
a distributed register file organization,or along the memory
hierarchy axis resulting in a hierarchical organization. They
concludedthat partitionedregisterfile organizationgeducearea,
delay, and power dissipationin comparisonto the tradicional
central register file organization.

Thispapeiis thefirst work, to thebestof ourknowledgethat
proposesregisteffile cachegor adynamicallyscheduleghrocessor
and evaluatest with respectto other single-bankedarchitectures
with different levels of bypass.It also proposesa prefetching
scheme for a register file cache.

6.

This paper tackles the problem of the increasingimpact on
performancef theregisterfile accesdime. The proposedsolution
is basedn amultiple-bankedegisterfile architectureAmongthe
different multiple-bankedorganizationsoutlinedin this paperwe
focuson atwo-level organizatiorthatwe call aregisterfile cache.
This organizatiorallowsalow latencyregisteraccesanda single
level of bypass,whilst supportinga large number of physical
registers.

A multiple-bankedregister file architectureallows for a
heterogeneousrganizationin which somebankshave a higher
bandwidthand/orlower latencythan others.The effectivenesof
the cachingandfetchingpoliciesis critical to performanceln this
paperwe have proposediwo cachingpolicies and a prefetching
scheme.

Conclusions

We have shownthat the registerfile cacheoutperformsa
non-pipelinedsingle-bankedarchitecturewith the same bypass
complexity by 87% and 92% for SpecInt95 and SpecFP95
respectively.

Different cachingand prefetchingpolicies as well astheir
extension to the one-level organization are currently being
investigated.
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