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Abstract

This paper evaluates performance characteristics of the
Compaq ES40 shared memory multiprocessor. The ES40
system contains up to four Alpha 21264 CPU’s together
with a high-performance memory system. We qualitatively
describe architectural features included in the 21264
microprocessor and the surrounding system chipset. We
further quantitatively show the performance effects of these
features using benchmark results and profili ng data
collected from industry-standard commercial and technical
workloads. The profile data includes basic performance
information – such as instructions per cycle, branch
mispredicts, and cache misses – as well as other data that
specifically characterizes the 21264. Wherever possible, we
compare and contrast the ES40 to the AlphaServer 4100 – a
previous-generation Alpha system containing four Alpha
21164 microprocessors – to highlight the architectural
advances in the ES40. We find that the Compaq ES40 often
provides 2 to 3 times the performance of the AlphaServer
4100 at similar clock frequencies. We also find that the
ES40 memory system has about five times the memory
bandwidth of the 4100. These performance improvements
come from numerous microprocessor and platform
enhancements, including out-of-order execution, branch
prediction, functional units, and the memory system.

1.  INTRODUCTION

The Compaq ES40 is a shared memory multiprocessor
containing up to four third-generation Alpha 21264
microprocessors [1][2]. Figures 1 and 2 ill ustrate the ES40
performance relative to other vendor systems on the
SPEC95 benchmarks. Figure 1 compares single processor
SPEC95 performance using published results as of March
2000. Figure 2 shows a similar comparison in the
multiprocessor SPECrate_fp95. (We use SPECfp95
workloads rather than SPECint95 for the multiprocessor
comparison since several of the SPECfp95 benchmarks

Figure 1 - SPEC95 Comparison

  Figure 2 - SPECfp_rate95 Comparison
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stress the memory system, while all SPECint95 benchmarks
fit well i n 4MB caches and thus are not a good indicator of
memory system performance.)

The single processor results show the ES40 between 3% to
a factor of three faster than other leading-vendor systems.
The multiprocessor results indicate that ES40 scales well i n
memory-bandwidth intensive workloads and has between
60% and a factor of 3.5 advantage over other vendor
platforms. We analyze key performance characteristics of
the ES40 in this paper to expose the techniques that were
needed to reach these performance levels.

The ES40 contains many architectural advances – both in
the microprocessor and in the surrounding memory system
- that contribute to its performance. The 21264 includes
many techniques to expose instruction-level parallelism:
numerous prediction techniques, out-of-order execution,
and the hardware to manage many in-flight instructions.
The surrounding memory system services many parallel
cache misses at high-bandwidth with low latency. We
describe and analyze these architectural advances and
present key results and profili ng data to clarify the analysis.
We evaluate the benefits of these architectural techniques.
We quantify the performance improvements with
performance/profili ng data gathered from hardware
measurements. We use a previous-generation Alpha four-
processor system (the AlphaServer 4100) as a comparison
point when possible to highlight the architectural advances
made from the 21164 Alpha generation [3][8] to the 21264
[1][2][13].

We include on-line transaction processing (pseudo TPC-C
workload [9]) and technical/scientific workloads (SPEC95
[10]) in our results. The transaction-processing workload
exercises processor power, but also memory interface, as
well as I/O. The SPEC95 benchmarks exercise processor,
memory hierarchy, and compiler performance.
We use profile data from the ProfileMe and DCPI tools
based on built -in non-intrusive CPU hardware monitors
[4][5]. These monitors collect various events including
stalls, retired and non-retired instructions, branch
mispredicts, replay traps, TB misses, cache misses, etc. The
monitors are useful tools for analyzing system behavior
with various workloads. We use the data from these tools
extensively in our architectural analysis. The detailed
program profiles (at image, procedure, or instruction level)
generated with these tools can also be used by compiler and
application developers for code optimization.

The remainder of this paper is organized as follows:
Section 2 describes the architecture of the 21264
microprocessor and the ES40 system. Section 3 describes
the fetch and execution improvements in the 21264.
Section 4 describes the memory system improvements.
Section 5 concludes.

2. SYSTEM OVERVIEW

Figure 3 shows the instruction execution pipeline in the
21264 microprocessor. The 21264 is a superscalar
microprocessor that can fetch up to four instructions and
execute up to six instructions in any given cycle. Like the
previous-generation Alpha processors, the 21064 and
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21164, high clock speed is a large contributor to the
industry-leading performance of the 21264. But the 21264
also adds out-of-order and speculative execution to expose
more instruction parallelism – ultimately improving
(retired) instructions per cycle. The 21264 manages up to
80 in-flight instructions – a large number compared to
some currently available processors.

Section 3 analyzes many of the architectural features in the
early stages of the instruction pipeline. The first stage
(stage 0) fetches four instructions per cycle. The large (64
KB) and associative instruction cache, line-and-way
prediction, and branch prediction all enable high-
bandwidth instruction fetch. Stage 1 is largely consumed
transferring instructions from fetch to map. It slots
instructions to the integer or floating-point pipelines.

Stages 2 and 3 – the map and queue stages - implement the
out-of-order execution in the 21264. Here the user-visible
(virtual) registers are remapped into internally-visible
(physical) registers. This process removes all except for
read-after-write register dependencies. It also allows for
more internal registers than are programmer visible (e.g.
there are 31 visible floating-point registers and 72
internally). The queues issue up to six instructions.
Instructions execute out-of-order from the issue queue,
prioritized from oldest to newest. Once they issue, they
proceed through pipeline stages 4, 5, and beyond.

Section 4 describes the memory system of the ES40. Pipe
stages 5, 6, and beyond in Figure 3 depict some features of
the 21264’s internal memory system. The queue can issue
up to two memory operations per cycle. These two
operations simultaneously access the large (64 KB) and
associative level-one data cache. References that miss in
this cache access the off-chip level-two cache (of 8 MB,
direct-mapped). References that miss in the level-two (L2)
cache are serviced by the surrounding off-chip memory
system.

Figure 4 shows a block diagram of a 4-processor ES40.
The control chip manages the system and enforces write-
invalidate cache coherence. The 21264’s pass the L2 miss
requests to the control chip. The control chip then
simultaneously forwards the request to read the DRAM and
broadcasts the address of the request (i.e. probes) to the
other 21264’s. The other 21264’s check for necessary
coherence violations and respond to the probe. The control
chip examines the probe responses and responds to the
requesting 21264 with data from either the DRAM memory
or another 21264, as appropriate. Note that the control chip
does not keep a copy of the L2 tags from the four CPU’s to
determine coherence actions. It shares the 21264’s L2
cache tags via the probing mechanism. This coherence
implementation is lower cost than an implementation that
duplicates the L2 tags. It is also lower latency for requests
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that must be serviced by data from another 21264's cache.
It performs well for the four-processor systems we analyze
in this paper but can be limited by the available probe
bandwidth (as discussed later).

The ES40 architecture has an address broadcasting
coherence scheme that is similar to those commonly used in
bus-based multiprocessors, but is a crossbar-based design.
The interconnects in Figure 4 are unidirectional point-to-
point. This allows for very high bandwidth transfers. The
eight switch chips provide the crossbar functionality
between the four 21264’s, the DRAM memory, and the
(PCI) IO interface.

We compare the 21264-based Compaq ES40 to the 21164-
based AlphaServer 4100 at many points in this paper. The
4100 is the previous-generation four-processor Alpha
server. It is bus-based, unlike the ES40. Table 1 compares
the performance results of the two generations from some
important benchmarks. The ES40 provides 2 to 3 times the
performance of the 4100 server for most benchmarks. The
clock speed improvement (667 MHz vs. 600 MHz)
provides a maximum 11% potential gain; the majority of
the gain comes from 21264 microprocessor and system
platform improvements.

The technical-scientific workloads (SPECfp95) benefit the
most from memory bandwidth and thus show the highest
improvement on ES40 vs. 4100. The small i nteger
workloads (SPECint95) benefit mostly from the processor
architectural and compiler improvements. The Linpack
benchmark does benefit from processor and Bcache
improvements, but the number of floating-point pipelines
limits its improvement to less than other benchmarks. The
commercial workloads benefited from both system/memory
improvements and processor enhancements. In addition to
processor and platform-specific enhancements, re-
compili ng with compilers tuned for 21264 provides
additional performance improvement: typically 5-15% (up
to 30% in some applications). That is due to better code
scheduling and enhanced prefetching.

More detailed descriptions of the 21264 and 21164, and
systems based on those chips can be found in
[1][2][3][6][7][8][13], and in the remainder of this paper.

3. FETCH AND EXECUTION IMPROVEMENTS IN
THE 21264

3.2 INSTRUCTION FETCH

The level one instruction cache in the 21164 is 8 KB
direct-mapped and the 21264’s is 64 KB two-way
associative. Figure 5 compares the instruction cache miss
rates in the two cases. The 64KB Icache in 21264 greatly
reduces the number of Istream misses compared to 21164.
There are almost no remaining misses in SPECfp95 since
their code sizes are so small . Increased instruction cache
size and associativity is a very important contributor to
improved fetch eff iciency in the 21264.

The 21264 prefetches more aggressively when there is an
instruction cache miss. It can prefetch up to 256 bytes
sequentially ahead while the 21164 can only prefetch 96
bytes ahead. Note that the 21264 instruction cache miss
counter does not consider a prefetched block to be a miss.

Instruction cache misses still remain high in the transaction
processing workload on the 21264, indicating that there is
room for further improvement in future systems. The

Icache misses: 21264 vs. 21164
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   Figure 5 – Instruction Cache Miss Rate Comparison

  ES40 4100 Ratio
MHz   667 600 1.11
SPECint95 1-CPU   40.0 18.8 2.13
SPECfp95 1-CPU   82.7 29.2 2.83
SPECfp95           4-CPU   147 51.4 2.86
SPECint_rate95 4-CPU   1390 657 2.12
SPECfp_rate95  4-CPU   2686 858 3.13
Linpack 1000x1000
(MFLOPS)          4-CPU   3721 2634 1.41
Transactions Per Minute   31K 16K 1.94

Table 1 - Benchmark Performance of the ES40 and 4100
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instruction misses in the transaction processing workload
are caused by frequent branches, process context switches,
TB misses, subroutine calls, run time library, and system
calls. Larger and faster caches can provide more benefits in
future designs. Even more instruction prefetching may
improve performance, but strict linear prefetching may only
benefit the highly-sequential code segments.

The 21264 implements line and way prediction to improve
instruction fetching. This predictor indicates the next four
instructions to be fetched from the instruction cache. It can
eliminate branch-taken stalls and improve fetch
performance for other non-sequential control flows. It also
can predict indirect subroutine jumps.

The 21264 branch predictor is more sophisticated than the
21164’s simple two-bit scheme. Branch prediction is very
important in speculative-execution architecture like the
21264 since it allows the out-of-order execution engine to
speculatively issue the instructions down the predicted
path. If the prediction is incorrect, all the instructions
executed down the mispredicted path are wasted.

The 21264 branch predictor keeps both local and global
history in a tournament branch predictor. The predictor
learns complex patterns predicted by the (local) history of
individual instructions, learns complex patterns predicted
by the (global) history of multiple branch instructions, and
chooses the best predictor of the two. This led to a
significant reduction in mispredicted branches, as indicated

in Figure 6. The branch mispredicts are almost completely
eliminated in the floating-point codes, and are considerably
reduced in most of the integer benchmarks.

The transaction processing workload is an interesting case
since there are slightly more branch mispredicts in the
21264 than in the 21164. The instruction footprint of
transaction processing workloads is large, with many
branches, so it is challenging for the 1024-entry local
history file and the 4096-entry global history file to contain
history for all the relevant branches. The 21164’s much
simpler 2048-entry by two-bit predictor, indexed by
program counter, provides slightly better branch prediction
performance under the same overflow condition. This data
hints that there is an opportunity for improved transaction
processing branch prediction in future systems.

3.3 INSTRUCTION MAP AND QUEUEING

The map and queue pipeline stages provide much of the
out-of-order and speculative execution functionality in the
21264 that was not present in the 21164. Register results
are renamed to one of the 80 available integer registers and
72 available floating-point registers. An instruction is
considered in-flight from the map stage until the instruction
retires. The 21264 can allow up to 80 instructions to be in
flight.

Figure 7 shows the average number of in-flight instructions
on the 21264 for the applications we analyze. The results
show that few applications average more than half the 80
maximum in-flight instructions. This indicates that the
average number of in-flight instructions is less often limited
by the maximum in-flight count. Queue overflows, physical
register availabilit y, and instruction cache misses more
often stop instruction fetch. Branch (and other) mispredicts
also limit the number of in-flight instructions because they
remove mis-speculated instructions from the in-flight
inventory.

 The floating-point applications generally have more
instructions in flight than the other applications. They tend
to have more large loops with fewer control-flow changes
and longer-latency instructions. They also have integer
instructions, so both the integer and floating-point queues
and registers can be utili zed. Load and other integer
instructions are siloed only in the integer queue,
independent of the floating-point operation instructions,
providing more buffering. All of these factors make it
easier to keep more instructions in flight in the floating-
point applications.

The integer and transaction applications have fewer
instructions in flight. This is likely limited by branch
mispredicts, instruction cache misses, and queue overflows.

Branch Mispredicts: 21264 vs. 21164
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  Figure 6 – Branch Mispredicts Comparison
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Figure 8 compares the instructions per cycle (IPC) for the
ES40 (21264) and the 4100 (21164) systems. Note that IPC
in 21264 actually measures number of retired instructions
per cycle (the number of retired instructions is lower than
the number of issued instructions). The Compaq ES40
results were obtained with code specifically scheduled for
the 21264. It also benefited from other generic compiler
enhancements not included in the AlphaServer 4100 code.

The 21264 achieves an average IPC in the range of 1.5 to
2.5 for the majority of workloads. This is 2 to 3 times the
21164. Note that IPC improvements exclude gains due to
clock speed.

All the architectural improvements discussed in this paper
contribute to the IPC improvement of the 21264. Perhaps
out-of-order execution – primarily implemented by the map
and queue pipeline stages – is the primary contributor. Out-
of-order execution reduces processor stalls by executing
younger instructions sooner. Earlier execution reduces the
latency to execute critical-path computations. For example,
the 21264 can execute load instructions earlier, allowing
other operations to be overlapped with the data access of
the load. This increases functional unit utili zation and
lowers dependency on the detailed instruction schedule.
The obtained 21164 performance is very dependent on the
instruction schedule, as are other static compiler-scheduled
microprocessors. The 21264 hardware, however, can

schedule around stalls that are diff icult to predict at
compile time, such as many cache misses. It also can
improve performance on workloads that have not been
tuned for optimum schedule.

The improvement in IPC is higher in floating-point than
integer workloads. This is partially due to the architectural
advancements discussed so far, and also due to the memory
system improvements that will be discussed in the next
section.

Though the 21264 substantially improved the transaction-
processing IPC, it still requires more than two cycles to
execute every instruction. This is substantially higher than
in the other workloads we examined. The transaction-
processing workload contains many mispredicts and cache
misses and is sensitive to memory latency. It presents an
opportunity for further improvements in the future-
generation Alpha systems.

3.4 INSTRUCTION EXECUTION

The 21264 has four integer execution pipelines while the
21164 has only two. The 21264 has lower floating-point
divide latency and new square-root instructions, but
otherwise the floating-point functional units are similar.
Functional unit improvements are only a small contributor
to faster floating-point execution.

Instructions in Flight: 21264
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A few of the applications (m88ksim in particular) sustain
integer IPC’s on the 21264 that are more than the peak
integer performance of the 21164 - two instructions per
cycle. Clearly, the extra 21264 integer functional units are
necessary for the highest performance in those cases.

The fastest floating-point applications sustain about 50% of
the peak floating point performance. Though more floating-
point functional units could improve performance in some
cases, they are not as advantageous, in general, as the two
additional integer pipelines included in the 21264. (An
exception to this rule may be the Linpack benchmark,
shown in Table 1, which could benefit from additional
floating-point pipelines.)

3.5 INSTRUCTION RETIRE AND KILL

As explained earlier, the 21264 fetches and speculatively
issues a sequence of instructions – often down the path
predicted by the branch predictor. An instruction result is
committed to the architectural state at retire time. If the
wrong path is taken, the instructions are not retired (kill ed).
This speculative execution exposes instruction parallelism
and improves performance when the speculation is correct.
On the other hand, the penalty for speculative execution is
in the overhead for kill ed instructions.

Figure 9 shows the percentage of all i ssued instructions that
don’ t retire (kill ed). The percentages for the integer and
transaction processing workloads closely mirror the branch
mispredicts. This data shows that the floating-point
workloads have fewer kill ed instructions than the other
workloads. This is expected since there are so few branch
mispredicts in the floating-point workloads (Figure 6).
However the percent of non-retired instructions remains
significant for the floating-point applications. That is
because memory traps (described in the next section and
more prevalent in the memory-intensive floating-point
workloads) are another key contributor to non-retired
instructions.

Instruction kill s reduce performance because they limit the
number of in-flight instructions and the exposed instruction
parallelism. The issue slots wasted by kill ed instructions
are not a large performance problem, even though more
than 40% of the issued instructions are kill ed in some of the
applications. The queues issue older instructions before
younger ones so an issue slot used by a kill ed instruction
would be idle in a non-speculative processor anyway.
Speculation provides the opportunity to expose more
instruction parallelism with littl e down-side performance
risk. A high fraction of kill s indicates that this opportunity
was not fully realized in some workloads.

Figure 9 also splits the kill s into early and late. Early_kill
indicates that the instruction was kill ed before it entered an
issue queue (stage 2 or sooner). Late_kill i ndicates that the
instruction was kill ed later. The data indicates that late_kill
is more frequent than early_kill – early kill i s typically 25%
or less of the total kill s. There are simply fewer early pipe
stages than there are later ones. For example, the branch
and jump/jsr mispredict latencies are seven or more cycles
– only three of which are early. Instruction kill s can occur
long after an instruction enters the issue queue, particularly
if the instruction causing the kill stalls.

4. MEMORY SYSTEM IMPROVEMENTS

The memory systems of the 21264 and 21164 are entirely
different. Table 2 summarizes the differences. Like the
earlier stages in the instruction pipeline, the 21264’s
memory system is highly parallel and out-of-order. It can
manage up to 32 in-flight loads and 32 in-flight stores as
well as 8 outstanding off-chip cache misses and 8
outstanding cache victims. This parallelism is exposed
(automatically) throughout the memory system of the ES40.
The ES40 crossbar memory system (surrounding the
21264) can manage more than 24 outstanding cache miss
requests and cache victims. It also schedules memory
operations out-of-order within this 24-entry in-flight
window for the highest eff iciency.

    Figure 9 – Non-retired Instructions

Early and Late Kills in 21264
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In addition to the automatic hardware techniques, the
memory system parallelism can also be explicitly exposed
with software cache block prefetches of different flavors:
normal (read-only), modify-intent (writeable), and the new
Alpha WH64 (write-only). The modify-intent prefetch
loads a block into the cache in a state that can be
immediately written. The WH64 prefetch is a hint to
hardware that the block is write-only; this makes the read
of the previous value of the cache block unnecessary on a
cache miss.

The 21264 has only a single on-chip cache level while the
21164 has two. Although the total amount of on-chip cache
is comparable for the 21264 and 21164, the 21264 benefits
from more eff icient on-chip caches. The data cache has
longer latency than the first-level cache in the 21164, but
the 21264’s first-level cache is larger and more associative.
The latency-tolerant instruction execution capabiliti es of
the 21264 make the first-level load latency less critical.

The off-chip caches are the same size and associativity in
the ES40 and 4100 systems - 8MB, direct-mapped.

Consequently, the cache misses per instruction are similar
in the two systems. However, the ES40 memory system
outperforms the 4100 memory system in other aspects.
Some of the benchmarks hit frequently in the off-chip
cache. They benefit from the lower latency (about half) and
higher bandwidth (about five times) of the ES40 off-chip
cache. Some of the workloads we study, like the
transaction-processing workload and some of the floating-
point benchmarks, have high cache miss rates even with the
8MB caches. These applications benefit from the improved
DRAM memory system in the ES40.

4.1 MEMORY BANDWIDTH AND LATENCY
IMPROVEMENTS

Table 2 shows the large improvement in memory
bandwidth in ES40 vs. 4100. This is largely responsible for
the floating-point performance improvement from the
21164 to the 21264. The STREAM benchmark measures
sustainable memory bandwidth in megabytes per second
(MB/s) across four vector kernels: Copy, Scale, Sum, and
SAXPY[12]. We show only the results for the Copy loop
(the other loops have similar results). The raw bandwidth
improvements of the off-chip caches and the crossbar
memory system of the ES40 enabled this capabilit y, as did
the memory system parallelism. The 21264 also benefits
from the new WH64 prefetch.

Not only does the ES40 have higher memory bandwidth
performance for a single processor, it also scales better
with multiple processors. With 4 processors the ES40 is
more than five times faster than the 4100. The crossbar
interconnect of the ES40 has more bandwidth and is more
adept at exposing memory system parallelism than the bus-
based 4100. This capabilit y is a contributor to the high
throughput of the ES40, as evidenced by the
SPECfp_rate95 results in Figure 2 and Table 1.

Figure 10 compares memory bandwidth of the STREAM
Copy loop across Alpha servers as well as other leading-
vendor systems [12]. Note that the ES40/667MHz data is
based on preliminary engineering measurements and not
yet submitted for publication. This data shows that the
memory bandwidth on ES40 is a factor of 1.6 to 3 times
higher than all other systems shown.

The comparison between the ES40's of different speed in
Figure 10 is interesting. The four-CPU memory bandwidth
improves by more than 40% though the processor speed
improved by only 33% (500 to 667), and the DRAM
bandwidth did not improve. The 667 MHz ES40 off-chip
cache has more than twice as much bandwidth as the 500
MHz ES40. This is crucial for the ES40 system memory
bandwidth since, at maximum copy bandwidth, the off-chip
cache of the 500 MHz system is more than 50% utili zed

ES40 4100
CPU 21264 21164
Outstanding References

Loads 32 21
Stores 32 21
Cache Misses 8 2

Prefetches yes yes
Modify Intent yes no
WH64 yes no

Translation Buffer (TB)
ITB 128-entry 48-entry
DTB 128-entry 64-entry

On-chip Caches
1st-level Dcache 64 KB, 2-way 8 KB

Latency 4.4 ns (3 cy) 3.3 ns (2 cy)
Peak Bandwidth 10.6 GB/sec 9.6 GB/s

1st-level Icache 64 KB, 2-way 8 KB
2nd-level unified cache N/A 96K, 3-way

Latency (min) 12ns (7 cy)
Peak Bandwidth 9.6 GB/s

Off-chip Cache 8 MB 8 MB
Latency 24 ns (16 cy) 42ns (25 cy)
Peak Bandwidth 7.1 GB/sec 1.33 GB/sec
Bus Dedicated Shared

Memory Latency (min) 183 ns 210 ns
Peak Bandwidth 5.3 GB/sec 1.1 GB/sec

Copy Bandwidth
1-CPU MB/sec 1197 263
4-CPU MB/sec 2547 470

Table 2 - Key Memory System Features of the ES40 and 4100
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servicing probe requests from remote processors. The
faster off-chip cache gives the 667 MHz ES40 much more
performance. The original 500Mhz ES40 design is not as
well optimized for memory performance.

Note that the memory bandwidth improvement from three
to four CPUs is still modest in the 667 MHz ES40. This
platform may need additional independent paths to memory
(to reduce memory conflicts) and additional probe
bandwidth to support more than four CPUs at full
bandwidth.

Figure 11 compares ES40 and 4100 using both “dependent-
load” and “ independent-load” latency. The “dependent-
load latency” [11] measures load-to-use latency where each
load depends on the result from the previous load. It is
largely a measure of memory latency. The “ independent-
load latency” is a measure of bandwidth, since there is no
dependency between consecutive loads. It is lower in
platforms that allow more simultaneous outstanding
requests (which can overlap), like the ES40. The lower axis
in Figure 11 varies the referenced data size to fit in
different levels of the memory system hierarchy.

The results in Figure 11 show that ES40 is 40% faster in
“dependent-load” memory latency (16M size) vs. the 4100.
The advantage is much higher (a factor of 4 times) in the
“ independent-load” memory latency (bandwidth). Note that
the 21264 allows eight outstanding read requests while
21164 allows only two, therefore the improvement in the
“ independent-load latency” on ES40 is so substantial. The
memory system of ES40 is designed to expose such
memory parallelism. The applications that show the highest
improvement on ES40 vs. 4100 are likely to allow multiple
outstanding independent memory references.

4.2 FEWER MEMORY TRAPS

A replay trap is a mechanism that kill s and restarts all
instructions in the 21264. This is needed in situations
where a load or store instruction cannot be executed due to
a (relatively infrequent) condition that is detected after that
instruction is issued, and often only after the memory
address is calculated and compared to other in-flight
memory references.

The 21264 and the 21164 use memory traps in similar
circumstances. Some common 21264 traps are: (same
address) store-load order traps, load queue or store queue
overflow conditions, and some cache index match
conditions. Some common 21164 traps are: write or miss
buffer overflows, potential ordering violations, and load-
miss-and-use traps. One notable difference is the 21264’s
store-load order traps. These occur because a later load
issued before a prior store to the same address. This can't
happen on the in-order 21164. Another difference is the
21164’s load-miss-and-use trap. This occurs when the
consumer of load data speculatively issues assuming the
load would hit, though the load really misses. The 21264
issues a mini-restart in this case rather than a trap.

Figure 12 compares the number of replay traps in the
21264 and the 21164. The data indicates that there are
many fewer replay traps in the 21264 compared to the
21164. However, the number of traps in several floating-
point workloads and the transaction processing workload
remains substantial (around 10 per 1000 instructions).
Perhaps the biggest reason for the reduction in replay traps
in the 21264 is the more highly-parallel memory system.
Write and miss buffer overflow conditions cause many of
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the 21164 replay traps. The 32 outstanding loads and stores
in the 21264, as well as the compiler use of prefetch
instructions, provide ample parallelism for the 21264 to
avoid many of the overflows.

The ProfileMe and DCPI tools allow a program to be tuned
by identifying areas in the program with a high number of
traps and then reducing traps by a variety of techniques,
including: memory padding to prevent cache index matches
and changing the order of loads/stores. Such simple
code/compiler modifications gave 10-15% improvement in
several SPEC95 workloads.

Figure 13 shows the breakdown of all traps on the 21264,
including memory replay traps, branch mispredict traps,
and memory translation buffer miss traps. The number of
translation buffer misses (dtb miss, dtb2 miss) is small on
all of the workloads we examined. The transaction
processing workload shows the highest number of all traps
combined. Mispredict traps are prevalent in both integer
and transaction processing workloads, but not in floating-
point workloads. Replay traps are present in all workload
classes, but are more prevalent in the transaction
processing and some of the floating-point workloads.
Replay traps occur in these floating-point workloads
primarily since they stress the memory system. This can
cause overflow traps despite 21264’s large number of in-
flight memory references.

5. CONCLUSIONS

We examined the architecture and performance
characteristics of the Compaq Alpha ES40 shared memory
multiprocessor – a four processor system that is 3% to three
times faster than other similar systems on some important
industry standard benchmarks. We described the
architecture of the 21264 microprocessor and the
surrounding memory system logic included in the ES40 and
compared it to the previous-generation four-processor
Alpha system. The benchmark results show the ES40 is
often 2-3 times the performance of the previous-generation
system at nearly the same processor clock rate. We
analyzed the architectural techniques that enabled this
performance improvement.

The fetch and execution improvements include: a larger
instruction cache, a more sophisticated branch predictor,
out-of-order and speculative execution, and more
functional units. We showed that these improvements
contributed to the reduction in cycles per instruction. We
also showed that these mechanisms successfully kept many
instructions in flight – a key requirement to extract
instruction parallelism.

The fetch and execution improvements are complemented
by memory system improvements. The (DRAM) memory
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system in the ES40 is lower latency than the previous-
generation system on off-chip cache misses by a small
amount – giving a modest performance benefit. But the
primary improvement in the ES40 is its higher bandwidth
and abilit y to expose and manage many parallel memory
system requests simultaneously. Both the off-chip cache
and the crossbar memory system deliver about five times
more bandwidth than the previous generation Alpha
system. This and the parallel capabiliti es of all l evels in the
memory hierarchy makes the ES40 substantially faster than
the previous generation on memory-bandwidth intensive
workloads.

We use only a sample of commercial and technical
workload in our analysis. The SPEC benchmarks do not
generate a lot of operating system activity and fit in
megabyte-sized caches. Many other real applications have
different characteristics. Further study is needed on a
broader range of workloads and applications to expand the
characterization of  the ES40 presented in this paper.
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