
ABSTRACT
As the discipline of computer science grew, undergradu-

ate computer science education continued to change and, has
for the most part, kept pace with the new topics in the field.
However, thepedagogy had not changed significantly.
Although the curriculum at the University of Virginia was
comparable to that of most other universities, it had neither the
rigor nor the practical experience needed to prepare under-
graduates for the workplace or meaningful graduate study.

Thus, we believed a major shift of emphasis away from
the traditional computer science curriculum was needed. We
believe that

- a more engineering orientation must be incor-
porated into all of our core courses,

- students need a more extensive grounding in
software engineering,

- all courses must increase the degree of mathe-
matical rigor,

- students need hands-on experiences with
appropriate, current artifacts, as well as

- intense laboratory experiences which will help
students develop inter-personal and engineer-
ing skills in additional to course content, and

- providing real-world “practice” is important
and needs to be a fundamental element of the
complete curriculum.

We have incorporated these concepts into our new CS
curriculum. We have offered the new CS1 course for 10
semesters with good results; we have also developed and
offered three follow-on courses. The student and faculty
responses have been very favorable. They are excited by the
new courses and the closed laboratory component. All of these
courses have lecture slides, laboratory activities, homework
assignments, etc. available on the web for public viewing. A
textbook for CS1 authored by the two UVA faculty most
directly responsible for our CS1 course has recently become
available.

INTRODUCTION
Computer science has changed rapidly in its brief history.

What once were acceptable as skill and knowledge levels are
now inadequate. Today’s computer professional must have an
extensive set of skills and detailed knowledge of many techni-

cal areas. Similarly, the individual entering the research
community needs a thorough grounding in many diverse
areas. The intent of our new curriculum is to prepare these
professionals and researchers for their careers following
graduation.

The Department of Computer Science at the University
of Virginia is part of the School of Engineering and Applied
Science. As such the Department has a strong commitment
to achieving a true sense of rigorous engineering in our edu-
cational culture. We seek to educate computer scientists
with a clear understanding of, an appreciation for, and skills
that support the engineering and comprehension of large
software systems, reengineering of existing systems, use of
modern tools and environments, and application of innova-
tive techniques such as software reuse.

To help realize these goals, we received a 3-year NSF
curriculum development grant (CS-NSF-5239-92) starting
July 1, 1992. This grant helps to support the development
efforts for four of our core courses.

We have completed the major development work on
the core courses of the new curriculum. The 1CS - Introduc-
tion to Computer Science was offered beginning the Fall,
1992 semester. The second course of the core (2SW - Soft-
ware Development Methods) was offered beginning this
Fall, 1993 semester. The third course (2PDR - Program and
Data Representation) began in the Spring, 1994. The fourth
course included in the grant (3SW - Advanced Software
Development) was first offered in Spring, 1995.

As with any curriculum development, we do not believe
we are really ‘done.’ We continue to modify current activi-
ties and develop new ones for the core courses while evalu-
ating the application of the closed laboratory model for
other required and elective courses. Presently we are dis-
cussing the development of closed laboratory type courses
for our upper division courses, including networks, transla-
tion systems and CAD.

To gain a better understanding of what we are trying to
do with our new curriculum, we developed this curriculum
philosophy and a curriculum overview. We are pleased to be
able to share this information with the attendees of the FIE
‘97 NSF Project Showcase.

A LOOK BACK:
UNDERGRADUATE COMPUTER SCIENCE EDUCATION:

A NEW CURRICULUM PHILOSOPHY & OVERVIEW

John C. Knight, Jane C. Prey, & Wm. A. Wulf
Department of Computer Science

University of Virginia

CURRICULUM PHILOSOPHY
Where Are We?

As computer science grew as a discipline, undergradu-
ate computer science education continued to change and,
has for the most part, kept pace with the new topics in the
field. However, thepedagogy has not changed significantly.
At the University of Virginia, we have a curriculum that
effects what is a common approach to teaching students.
Curricula like ours emphasize:

• The construction of relatively small programs, at
most a few hundred lines.

• The use of a programming language that is used
rarely outside of undergraduate courses.

• The development of programs ‘‘afresh’’ for each
assignment or course.

• A development environment lacking modern tools.
• Programming in isolation or in small groups at

best.
• The belief that if a program ‘‘works’’ it is accept-

able.
• An informal development approach rather than one

that is rigorous and exercises analytic skills.

Why Change?
Comparing the content of the curriculum with the situa-

tion in the real world, we see a considerable contrast. Prac-
ticing computer scientists have to deal with the antithesis of
what we teach:

• Software systems that are often thousands or even
millions of source lines long.

• Tasks that involve modifying such systems rather
than developing them.

• Existing systems that might be very old but remain
important and have to be maintained.

• Tool-rich working environments.
• Development efforts that are undertaken by large

teams.
• The realism of cost/performance trade-offs in busi-

ness contexts.
• System development according to mandated pro-

cesses and standards.
• Expenditure of considerable effort on tasks other

than source-code development.
This list illustrates the general range of skills needed by

a contemporary computing professional. This set of skills is
the antithesis of what we are teaching. Clearly, there is a
serious mismatch between what is taught, how it is taught,
and the emphasis it receives on one hand, and what the con-
sumers of the education actually need on the other.

Our new curriculum is driven by the desire to make the
necessary changes to accommodate the educational needs of
the future computing professional. These changes necessi-
tate a complete revision of the content, approach, and
resources used in the undergraduate teaching program.

What Is The Approach?
The Computer Science Department at the University of

Virginia has undertaken a shift of emphasis in the computer
science curriculum to meet the needs outlined above:

• A philosophy of engineering is incorporated into
all of the core courses.

• An emphasis on software engineering begins in the
very first course and continues.

• A high degree of mathematical rigor especially in
discrete mathematics is included in the form of (a)
new mathematics courses and (b) increased use of
mathematics in other courses.

• A strong prerequisite structure emphasizes the
interdependence of the material.

• Hands-on experience is facilitated by the develop-
ment of a closed laboratory.

• Real-world artifacts are included to the extent pos-
sible in assignments and projects.

• Inter-personal and engineering skills are developed
through laboratory and other projects.

• Emphasis is on use of knowledge and skills as they
are acquired.

As well as having these characteristics, the approach
includes systematic definitions of the contents of courses.
These definitions take the form of detailed lists of topics
that will be addressed by the course. The lists are separated
into sublists of knowledge areas and skill areas, and the
treatment of each topic is summarized as either resulting in
‘‘mastery of’’, ‘‘familiarity with’’, or ‘‘exposure to’’ the
specific topic.

What Is The Impact Of These Changes?
The incorporation of these ideas into our teaching pro-

gram has lead to the development of an entirely new under-
graduate curriculum. The core courses of the new
curriculum are designed to be more mathematically rigor-
ous, more practice-oriented, more closely related to the real-
world environment. This has lead to a number of substantial
effects on our program, specifically:

• Extensive revision of many existing courses. All of
the core courses containing elements of program-
ming, data structures, machine representation, etc.
have had to be revised extensively.

• Development of several new courses, especially in
discrete mathematics and computation theory.

• The replacement of the programming language
used for teaching purposes. C++ was selected as
the new programming languages and, although not
ideal, it has the benefits of supporting object-ori-
ented programming and increasing industrial
acceptance.

• A belief in the importance of reuse of courseware.
We intend to make our artifacts available to other
universities that choose to adopt elements of our
curriculum.

• The development of the “closed laboratory” facil-
ity to support closed-laboratory exercises. The
facility is being expanded to include devices such
as motorized vehicles and other elements that sim-
ulate realistic applications.

CURRICULUM OVERVIEW
The philosophy of our new undergraduate computer

science curriculum is a product of our entire faculty. We
spent a significant amount of time discussing, disagreeing
and deciding the best course for our students and faculty.
Once our philosophy was established, a curriculum struc-
ture was necessary.

Among the more important decisions made relevant to
our curriculum structure are:

• more rigor must be introduced at all levels of the
curriculum,

• the early introduction of relevant mathematics and
its continued use in subsequent courses,

• earlier introduction of software engineering con-
cepts and their application in subsequent courses,

• a conscious effort to provide more out of class-
room opportunities for undergraduates to interact
with faculty and graduate students, and

• a focus on the practice of computing (by providing
a closed laboratory course in the program of study
every semester of the first three years.)

These decisions arose from a variety of considerations,
but principal among them was our desire to teach modern
computing methods using practical tools and applications
from the first day of this new curriculum.

Curriculum Structure
The resulting structure of courses is shown in Figure 1.

Figure 1 illustrates the relationship between the four courses
for which new content and laboratory experiences are being
developed under the NSF grant (noted with an asterisk) and
the other required computer science courses in the curricu-
lum. (Students are also required to take four additional CS
courses from a set of elective upper division courses.) One
of the more unique features of our program of study is the
engineering school requirement of a senior thesis. The
combining of the thesis with the senior seminar and the stu-
dent’s opportunity to focus for the three previous years on
the art of computing will result in what we believe to be a
complete computer science experience.

Course Content Definition
After an extensive analysis of what we considered pre-

requisite knowledge and skills for our students to have
before they graduated, we identified and prepared a detailed
analysis of the required knowledge and skills which are to
be learned in each particular course. Included in the analy-
sis is the recognition that everything presented cannot be
expected to be mastered, that it is appropriate to simply

introduce concepts and skills which will be studied more in
depth in later courses.

Our course content analysis resulted in a three-tier
“learning frame.” We divided the knowledge and skills
appropriate for the course into 1) mastery, 2) familiarity,
and 3) exposure. Mastery implies a thorough understanding
of the concept or skill and the ability to identify and select
this alternative as the best choice in a particular situation
without prompting from the instructor. Familiarity requires
a good understanding of the concept or skill and the ability
to apply it to a similar situation or when guided to do so by
the instructor. Exposure is an introduction to the concept or
skill, at least to the extent of recognizing its existence and
utility but not necessarily its application.

Figure 2 is the course specification statement for core
course 1CS. The remaining course specification statements
(for 2SW, 2PDR, and 3SW as well as the other courses in
our curriculum) can be obtained from the UVA CS depart-
ment homepage (http://www.cs.virginia.edu). The course
specification statements for 1CS, 2SW, 2PDR and 3SW are
more detailed that the other courses in the curriculum since
they have been under active development.

The curriculum committee is overseeing the process,
but the entire faculty is engaged in the discussion and deci-
sion-making with our students offering significant insight.
Many faculty members are devoting significant amounts of
time to ensure that well-thought out, engaging and rigorous
courses are available to our students.

STUDENT COMMENTS
While developing our core courses, we have asked and

received many student comments. Students provided both
formative and summative evaluation information for each
course concerning every type of activity -- every laboratory
exercise, lecture slides and content, etc.

The graduating class of May, 1996 was the first to com-
plete all of the new core curriculum. One year after gradua-
tion, we asked them to reflect on their undergraduate
experience. The following are a sample of the comments we
received.

From those students who went into industry after grad-
uation:

Q1. What parts of your UVA experience have been the
most useful during your first year at work?

A1. Team work experience, having a good knowledge
base on many CS topics (most other CS majors only had
good OS or PL experience whereas our curriculum covered
most everything), and a good grasp on the entire software
development cycle using OO design and C++ application.

A2. I think that the group projects have been the most
valuable to me in my work experience thus far. On my
project, everything is a collaborative effort between design-

ers, developers, and testers. All of the classes (especially
340 [3SW]) really helped to prepare me for this type of
group environment and how everyone must work together
to achieve the goal.

A3. ... The most essential stuff has been having a thor-
ough background in OO programming, data structures, and
algorithms. But I'm in a much more programming intensive
and research oriented position than a typical CS job. In fact,
I'm surprised to say I actually found myself breaking out my
old probability and discrete math books (ie they were actu-
ally useful -- don't tell anyone I said this!) when I had to
read a stack of graduate research papers in preparation for a
project. ...

Q2. How would you compare your preparation for your
job with others with CS degrees?

A1. Our program was definitely one of the best. In
terms of classes offered and the amount of material we cov-
ered, there was no school that provided as much experience
as the UVA program using C++ and Object Oriented
Design.

A2. My first week on the job, I took a class with a
recent XXX [major research university] CS grad who had
graduated at the top of her class. During the class, I was
much more involved in what was going on and how things
worked than this other employee and was able to make an
immedaite great impression on my new boss. ...

Q3. Other comments?

A1. Strongly encourage undergrads to take part in
TAing. I personaly feel that the experience of working with
and explaining concepts to other people has lead to gaining
a reputation as being a problem solver that others can come
to to help find a solution

Comments from students who enter graduate school in
computer science.

Q1. What parts of your UVA experience have been the
most useful to you in grad school?

A1. As always, knowing how to communicate (e.g.,
being able to a report about some technical concept or
mechanism so someone can actually understand you). Being
comfortable in front of a group when giving a presentation.
Having been exposed to a good variety of CS research
domains so that I know a little about everything (if nothing
more than how to pronounce it).

Q2. How would you compare your preparation for grad
school with others in your program with CS degrees?

A1. I think my preparation for grad school has been
excellent. In general I feel a lot more confident in what I'm
doing than I think most of my classmates are. ...

CONCLUSIONS
It is difficult to recognize when and where a curriculum

is not meeting the needs of the student; it is even more diffi-
cult to recognize it and commit to change. The Computer
Science faculty at the University of Virginia has recognized
the weaknesses in its curriculum and has pledged to imple-
ment the changes needed. Our goal is to provide our stu-
dents with a superior undergraduate education which will
prepare them equally well for industry or graduate educa-
tion.

In the quickly changing computing environment, teach-
ing computer science in the traditional manner does not pre-
pare the student as effectively as we would like. We believe
that a change in pedagogy provides the highest leverage for
improving Computer Science education. With the revisions
to our curriculum, students are learning modern computing
methods using practical tools and applications from the
beginning. Continuing this philosophy throughout the new
curriculum, we will produce computer professionals who
are knowledgeable not only in content, but who have practi-
cal experience in the workings of the real-world environ-
ment.

We are in various stages of development with our
courses. Our first runs of the core courses in our new curric-
ulum indicate we are on the right track. We intend to con-
tinue this dedication and commitment through the entire
curriculum development and implementation process. We
are presently continuing to revise these core courses as well
as develop laboratory components for various upper divi-
sion elective courses.

The current status of the curriculum can be found from
our home page - http://www.cs.virginia.edu. A link to the
undergraduate curriculum can be found there. The current
versions of all of the courses will be on-line, including lec-
ture slides, laboratory activities, FAQs, sample exam ques-
tions, etc.

We welcome your comments on these materials. Please
send email to Jane Prey at prey@virginia.edu.

Figure 1: Required Computer Science Courses

1CS* - Introduction to Computer Science

2SW* - Software Development Methods 2DM - Discrete Math I

2PDR* - Program and Data Representation

3CA - Computer Architecture

3DM - Discrete Math II

3SW* - Advanced Software Development Techniques 3ALG - Analysis of Algorithms

Senior Seminar

* Courses Supported by NSF Grant CS-NSF-5239-92

Figure 2: 1CS Course Specification

Knowledge Skills

Software Engineering

Familiarity Timing
Debugging
Software Reuse
Standard Libraries
Testing

Exposure Software Life Cycle
Documentation
Walk-Through
Ethics

Software Engineering

Familiarity Develop test sets for simple programs
Recognize importance of unambiguous

problem and design specification
Appreciate standard libraries

OS and Environment

Familiarity DOS Commands
DOS File System

Exposure Windows
TCP/IP

OS and Environment

Mastery Log onto computer system
Copy files
Traverse directory system

Familiarity Edit files
Manipulate windows
Send electronic mail.

Exposure Retrieve files from other sites

Imperative Programming

Mastery Basic Data Types
Variables
Assignment

Familiarity Operator Precedence
Iteration
Conditional Statements
Streams
Reference and Value Parameters
Structures
Classes

Exposure Pointers

Imperative Programming

Mastery Pass arguments using the appropriate
parameter style.

Use appropriate control structures
within a program.

Familiarity Implement a two-hundred or so line
program given a problem specifi-
cation and a detailed design

Use a debugger to trace a program
Read a 500 line C++ program

Exposure Time individual segments of a pro-
gram.

Object-Oriented Programming

Familiarity Abstract Data Types
Overloading

Exposure Polymorphism
Templates
Inheritance

Object-Oriented Programming

Familiarity Recognize importance of paradigm
Use existing classes
Design an abstract data type with

appropriate information hiding
Add function to an existing class.

Problem Solving and Analysis

Exposure Top-Down Design
Computational complexity

Data Representation

Mastery Arrays
Strings

Familiarity Structures
Objects
File Processing

