Chapter IV

Symplectic Integration

Hamiltonian systems form the most important class of ordinary differential equations in
the context of ‘Numerical Geometric Integration’ (see the examples of Chapter I). In this
chapter we start by discussing the origin of such systems and by studying their geometric
properties such as symplecticity. We then turn our attention to numerical integrators
which preserve the symplectic structure.

IV.1 Hamiltonian Systems

Consider a mechanical system with ¢ = (q1,...,qq)T as
generalized coordinates, and denote by T = T'(q,q) =
$G"M(q)q its kinetic energy (M(q) is assumed to be
symmetric and positive definite) and by U = U(q) its
potential energy. The movement of such a system is de-
scribed by the solution of the variational problem

/ L(q(t), 4(t)) dt — min, (1.1)

where L = T'— U is the Lagrangian of the system. From
the fundamental work of Euler (1744) and Lagrange
(1755) at the age of 19 (see [HNW93, p. 8] for some his-
torical remarks) we know that the solutions of (1.1) are
Sir William Rowan Hamilton! determined by the second order differential equation

oL d <8L>
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which constitute the so-called Fuler-Lagrange equations.

=0, (1.2)

Example 1.1 (Pendulum) We consider the mathematical pendulum (see Sect.I.1) and
we take the angle a as generalized coordinate. The kinetic and potential energies are given
by T = m(2% + 5?)/2 = ml?a?/2 and U = mgy = —mgl cos o, respectively, so that the
Euler-Lagrange equations become —mg/¢ sin o — mf%¢ = 0 or equivalently ¢ + Isina = 0.

'William Rowan Hamilton, born: 4 August 1805 in Dublin (Ireland), died: 2 September 1865. Picture,
copied from http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Hamilton.html,
where one can also find a short biography.



With the aim of simplifying the structure of the Euler-Lagrange equations and of
making them more symmetric, Hamilton [Ha1834] had the idea

e of introducing the new variables

oL

=22 for k=1,....d, 1.3
90 (1.3)
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the so-called conjugated generalized momenta. Observe that for a fixed ¢ we have
p = M(q)q, so that there is a bijection between p = (py,...,pq)T and ¢, if M(q) is
invertible;

e of considering the Hamiltonian
H =54~ L{g,d) (1.4)
as a function of p and ¢, i.e., H(p, q).

Theorem 1.2 Let M(q) and U(q) be continuously differentiable functions. Then, the
FEuler-Lagrange equations (1.2) are equivalent to the Hamiltonian system

OH OH
. = —— 5 s ¥ = — 5 5 kzl,...,d. ].-5
Dk 90 (p, q) =g (p, q) (1.5)

Proof. The definitions (1.3) and (1.4) for the generalized momenta p and for the Hamil-
tonian function H imply that

oH ., ;04 O0LOG .
op ~ "o agay 1
oH _ 04 0L 0LoG _ oL
a¢ " 0¢ 9q 9i0q ~ "~ 0q
The Euler-Lagrange equations (1.2) are therefore equivalent to (1.5). O

If we replace the variable ¢ by M(q)~!p in the definition (1.4) of H(p, q), we obtain

H(p,q) = p"M(q)"'p—L(¢, M(q)~'p) = p"M(q)"'p— %pTM(Q)‘lp +U(q)
= %pTM(Q)‘lp +U(q)

and the Hamiltonian is H = T + U, which is the total energy of the mechanical system.
In the following we consider Hamiltonian systems (1.5), where the Hamiltonian func-
tion H(p, q) is arbitrary (not necessarily related to a mechanical problem).

IV.2 Symplectic Transformations

We have already seen in Example 1.2 of Sect.III.1 that the Hamiltonian function H (p, q)
is a first integral of the system (1.5). In this section we shall study another important
property of Hamiltonian systems — the symplecticity of its flow.



For two vectors
() 1= ()
in the (p, ¢) space (&7, £€9, P, n? are in IR"), we consider the parallelogram
L=A{tc+sn]|0<t<1, 0<s<1}.

We then consider its projection L; = {(t& + snf &1 + sn)T | 0 <t <1, 0 < s < 1} onto
the (p;, ¢;) coordinate plane, and we let

PP
(dpi A dap)(€,m) = oraea (L) = det (g Ty ) = &l — €l (2.1)
(3 (3
be the oriented area of this projection. Here, dp; and dg; select the coordinates of the
vectors £ and 7. In an analogous way, we can also define dp; A dg;, dp; A\ dp; or dg; A dg;.
This ezterior product is a bilinear map acting on vectors of IR*. Tt satisfies Grassmann’s
rules for exterior multiplication

dpi VAN dpj = —dpj VAN dpi, dpl VAN dpz =0. (22)

We further consider the differential 2-form

d
w® =" dp; A dg;, (2.3)
i=1
which will play a central role for Hamiltonian systems. This is again a bilinear mapping.
In matrix notation it is given by

Aem=¢m win T=(" (). (2.4)

where [ is the identity matrix of dimension d.

Definition 2.1 A linear mapping A : IR** — IR*® is called symplectic (a name suggested
by H. Weyl, 1939), if

WH(AE, An) = (&) forall &1 e RY,
or, equivalently, if ATJA = J.

In the case d = 1, the expression w?(&,n) = (dpy Adgqy)(€,n) represents the area of the
parallelogram spanned by the 2-dimensional vectors £ and 7. Symplecticity of a linear
mapping A is therefore equivalent to area preservation. In the general case (d > 1),
symplecticity means that the sum over the oriented areas of the projections L; is the
same as that for the transformed parallelograms A(L);.

We now turn our attention to nonlinear mappings. Differentiable functions can locally
be approximated by linear mappings. This justifies the following definition.

Definition 2.2 A differentiable function g : IR?** — IR*® is called symplectic at (p,q) €
IR* | if the Jacobian matrix ¢'(p, q) is symplectic, i.e., if

W (g (0, & g (. a)n) =w?(En)  or )" Tg (0 =



We next give a geometric interpretation of symplecticity for nonlinear mappings. Con-
sider a 2-dimensional manifold M in the 2d-dimensional phase space, and suppose that it
is given as the image M = ¢(K) of a compact set K C IR?, where (s, 1) is a continuously
differentiable function. The manifold M can then be considered as the limit of a union of
small parallelograms spanned by the vectors

¢ Iy
Js ot
For one such parallelogram we consider (as above) the sum over the oriented areas of its

projections onto the (p;, ¢;) plane. We then sum over all parallelograms of the manifold.
In the limit this gives the expression

= | w2(g—f(s,t), %—f(s,t)) ds dt. (2.5)

Lemma 2.3 If the mapping g : IR** — IR* is symplectic for all (p,q) € IR*, then it
preserves the expression Q(M), i.e.,

Q(g(M)) = QM)

holds for all 2-dimensional manifolds M that can be represented as the image of a contin-
uwously differentiable function .

—(s,t)ds and (s,t)dt.

Proof.  The manifold g(M) is parametrized by g o ¢. The transformation formula for
double integrals therefore implies

// ( 9o?) Sat)aW(s,t» dsdt = Q(M),

because (go ) (s,t) = ¢'(o(s,t))¢’ (s, t) and g is a symplectic transformation. i

For d = 1, M is already a subset of IR? and we can take the identity map for ¢, so that
M = K. In this case, Q(M) = [[,,; dsdt represents the area of M. Hence, Lemma 2.3
states that (for d = 1) symplectic mappings are area preserving.

We are now able to prove the main result of this section. We use the notation y = (p, q),
and we write the Hamiltonian system (1.5) in the form

y' = J'VH(y), (2.6)

where J is the matrix of (2.4) and VH (y) = grad H(y)”.
Recall that the flow ¢, : IR*® — IR?? of a Hamiltonian system is the mapping that
advances the solution by time ¢, i.e., ©;(po, ¢0) = (p(t, po, @), q(t, Po, @0)), where p(t, po, o),
q(t, po, o) is the solution of the system corresponding to initial values p(0) = po, ¢(0) = qo.

Theorem 2.4 (Poincaré [Po1899]) Let H(p,q) be a twice continuously differentiable
function. Then, the flow ¢, is everywhere a symplectic transformation.

Proof. The derivative 0y /0yy (with yo = (po, o)) is a solution of the variational equation
which, for the Hamiltonian system (2.6), is given by W' = J~'H" (¢4(y0))¥, where H" (p, q)
is the Hessian matrix of H(p,q) (H"(p, q) is symmetric). We therefore obtain

d (0oNT . 100\ (Op\1T . 1Op OpN\T . 10pi\!
(07 (2e0)) = Doy (2 (22 (20

= (5o H' )17 (52 + (520) 1 el (51) =0




F1G. 2.1: Area preservation of the flow of Hamiltonian systems

because JT = —J and J-T.J = —I. Since the relation
OPN\T . 10y
) J(=)=J 2.7
(ayo) (8y0) 27)
is satisfied for ¢t = 0 (g is the identity map), it is satisfied for all ¢ and all (py, qo), as long
as the solution remains in the domain of definition of H. O

Example 2.5 Consider the pendulum problem (Example 1.1) with the normalization
m =/{=g=1. We then have ¢ = a, p = &, and the Hamiltonian is given by

H(p,q) = p*/2 — cosq.
Fig. 2.1 shows level curves of this function, and it also illustrates the area preservation of

the flow ¢;. Indeed, by Theorem 2.4 and Lemma 2.3 the area of A and ¢,(A) as well as
those of B and ¢;(B) are the same, although their appearance is completely different.

We next show that symplecticity of a flow is a characteristic property for Hamiltonian
systems.

Theorem 2.6 Let f : IR* — IR* be continuously differentiable. Then, v = f(y) is a
Hamiltonian system, if and only if its flow @, (y) is symplectic for all y € IR*® and for all
sufficiently small t.

Proof.  The necessity follows from Theorem 2.4. We therefore assume that the flow
¢ 1s symplectic, and we have to prove the existence of a function H(y) such that
f(y) = J'VH(y). Differentiating (2.7) and using the fact that d¢;/dy, is solution
of the variational equation W' = f'(¢(yo))¥, we obtain

d (0T _ 10py 0PN [ T , Doy
SGIGE) = Gt + 35 o) (52) = o

Putting ¢ = 0, it follows from J = —J7 that Jf'(yy) is a symmetric matrix for all y,.
Lemma 2.7 below shows that .Jf(y) can be written as the gradient of a function H(y). O



Lemma 2.7 Let f : R?** — IR?® be continuously differentiable, and assume that the
Jacobian f'(y) is symmetric for all y. Then, there exists a function H : IR** — IR such
that f(y) = VH(y), i.e., the vector field f(y) possesses a potential H(y).

Proof. Since f is defined on the whole space, we can define

1
H(y) = /0 y* f(ty) dt + Const.

Differentiation with respect to yi, and using the symmetry assumption df; /dy, = 0fx/0y;

yields
0.0 = [, (5t + g ew) = [ (et i = i)

which proves the statement. |

Lemma 2.7 and Theorem 2.6 remain valid for functions f : U — IR** with U C IR*?,
if U is star-shaped or, more generally, if U is a simply connected domain. A counter-
example, which shows that the statement of Theorem 2.6 is not true for general U, is
given in Exercise 8.

IV.3 Symplectic Runge-Kutta Methods

Since the property of symplecticity is characteristic of Hamiltonian systems (Theorem 2.6),
it is natural to search for numerical methods that share this property. After some pio-
neering work of de Vogelaere [Vo56], Ruth [Ru83] and Feng Kang [FeK85], the system-
atic study of symplectic methods started around 1988. A characterization of symplectic
Runge-Kutta methods (Theorem 3.4 below) has been found independently by Lasagni
[La88], Sanz-Serna [SS88] and Suris [Su89)].

Definition 3.1 A numerical one-step method y; = ®p(yg) is called symplectic if, when
applied to a smooth Hamiltonian system, the mapping ®; is everywhere a symplectic
transformation.

Example 3.2 We consider the harmonic oscillator

H(p,q) = (0> +°)/2,

so that the Hamiltonian system becomes p = —q, ¢ = p. We apply six different numerical
methods to this problem: the explicit Euler method (I.1.4), the symplectic Euler method
(I.1.8), and the implicit Euler method (I.1.5), as well as the second order method of Runge

kl =f(y0), ]’6‘2 =f(y0—|-hk1/2), U1 =y0—|—hk2, (31)

the Verlet scheme (1.3.6), and the implicit midpoint rule (I.1.6). For a set of initial values
(po, qo) (the dark set in Fig.3.1) we compute 16 steps with step size h = 7 /8 for the first
order methods, and 8 steps with h = 7/4 for the second order methods. Since the exact
solution is periodic with period 27, the numerical result of the last step approximates the
set of initial values. One clearly observes that the explicit Euler, the implicit Euler and
the second order explicit method of Runge are not symplectic (not area preserving).
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Fi1G. 3.1: Area preservation of numerical methods for the harmonic oscillator

Verlet t midpoint rule

The other methods are symplectic (see Theorem 3.4 and Theorem 3.5), although the
approximation at the end of the integration may be quite different from the initial set.
Only the implicit midpoint rule preserves exactly the quadratic invariant (p? + ¢%)/2.

For the study of symplecticity of numerical integrators we follow the approach of
[BoS94], which is based on the following lemma.

Lemma 3.3 For Runge-Kutta methods and for partitioned Runge-Kutta methods the fol-
lowing diagram commutes:

yl _ f(y), y(O) = N Z/I = f(y)a y(O) =%Yo

V' = f'(y)¥, ¥0)=1I
Jmethod Jmethod

{yn} — (Y, U}

(horizontal fleches mean ‘differentiation’). Therefore, the numerical result y,, V,,, obtained
from applying the method to the problem augmented by its variational equation, is equal
to the numerical solution for y' = f(y) augmented by its derivative ¥,, = 0y, /Y.

Proof. 'This result is very important when the derivative of the numerical solution with
respect to the initial value is needed. It is proved by implicit differentiation. Let us
illustrate this for Euler’s method

Yn+1 = Yn + hf(yn)



We consider y, and y,,1 as functions of yy, and we differentiate the equation, defining
the numerical method, with respect to y,. For Euler’s method this gives

0 0 0
il = S g () S,
Yo Yo Yo
which is exactly the same relation that we get, when we apply the method to the varia-
tional equation. Since dyy/dyo = I, we have dy, /0y = ¥,, for all n. O

The main observation is now that the symplecticity condition (2.7) is a quadratic first
integral of the variational equation. The following characterization of symplectic methods
is therefore not surprising.

Theorem 3.4 If the coefficients of a Runge-Kutta method satisfy
bja;; +bjaj; =bb;  forall i,j=1,...,s, (3.2)
then it is symplectic.?
Proof. We write the Hamiltonian system together with its variational equation as
y = J 'VH(y), U = JH"(y)V. (3.3)

It follows from

(JLH" () U)T JU + 9T J(J T H (y)¥) = 0

(see also the proof of Theorem 2.4) that U7 .JW is a first integral of the augmented system
(3.3). Since this first integral is quadratic, it is exactly preserved by Runge-Kutta methods
satisfying (3.2) (see Theorem I11.3.2). Hence, ¥T J¥; = WZ'J¥, holds. The symplecticity
of the Runge-Kutta method ®;, then follows from Lemma 3.3, because for ¥, = I we have
Uy = @} (yo). o

Theorem 3.5 If the coefficients of a partitioned Runge-Kutta method (I11.4.2) satisfy
bidij + bja; = bib;  for i,j=1,...,s, (3.4)
b = b; for i1=1,...,s, (3.5)

then it is symplectic.
If the Hamiltonian is of the form H(p,q) =T (p) + U(q), i.e., it is separable, then the
condition (3.4) alone implies the symplecticity of the numerical flow.

Proof. We write the solution ¥ of the variational equation as

(%)

Then, the Hamiltonian system together with its variational equation (3.3) is a partitioned
system with variables (p, ¥?) and (¢, ¥?). Every component of

T JU = (WP)Twe — (p7)TgP
is of the form (I11.3.5), so that Theorem 3.3 can be applied. m|

2For irreducible Runge-Kutta methods the condition (3.2) is also necessary for symplecticity.



IV.4 Symplecticity for Linear Problems

For quadratic Hamiltonians H(y) = 1yTCy (where C is a symmetric real matrix) the

2
corresponding system (2.6) is linear,
y =J'Cy. (4.1)

Lemma 4.1 A Runge-Kutta method, applied with step size h to a linear system y' = Ly,
1$ equivalent to

y1 = R(hL)y, (4.2)
where the rational function R(z) is given by
R(z) =1+ 20" (I — zA)7'1, (4.3)

A= (ay), b = (b1, ...,bs), and 1" = (1,...,1). The function R(z) is called the stability
function of the method.

Proof. The Runge-Kutta method (Definition I1.1.1), applied to 3’ = Ly, reads
hki = hL(yo + 3 ayihk;)
j=1

or, using the the supervector K = (kT,... kT)T,
(I — A® hL)hK = 1® hLy,
(here, A® B = (a;; B) denotes the tensor product of two matrices or vectors). Computing

hK from this relation, and inserting it into y; = yo + S5, bihk; = yo + (b ® I)(hK)
proves the statement. O

For the explicit Euler method, the implicit Euler method and the implicit midpoint
rule, the stability function R(z) is given by
1 1+2/2
1—2 1—2/2

Theorem 4.2 For Runge-Kutta methods the following statements are equivalent:

1+ 2z,

e the method is symmetric for linear problems y' = Ly;
e the method is symplectic for problems (4.1) with symmetric C;
o the stability function satisfies R(—z)R(z) =1 for all complez z.
Proof. The method y; = R(hL)yo is symmetric, if and only if yo = R(—hL)y; holds for
all initial values yo. But this is equivalent to R(—hL)R(hL) = I.
Since ®},(yo) = R(hL), symplecticity of the method for the problem (4.1) is defined
by R(hJ*CYTJR(hJ1C) = J. For R(z) = P(2)/Q(%) this is equivalent to
P(hJ*C)YJP(hJIC) = Q(hJO)T JQ(hJIC). (4.4)
By the symmetry of C, the matrix L := J~'C satisfies LT J = —JL and hence also
(LFYT'J = J(=L)k for k =0,1,2,... . Consequently, (4.4) is equivalent to
P(=hJ'CYP(hJ'C) = Q(—hJ'C)Q(hJ (),
which is nothing else than R(—hJ'C)R(hJ'C) = I. m



We remark that symmetry and symplecticity are equivalent properties of Runge-Kutta
methods only for linear problems. For general nonlinear problems, there exist symmet-
ric methods that are not symplectic, and there exist symplectic methods that are not
symmetric. For example, the trapezoidal rule

=0+ 5 (Fl) + 1) (45)

is symmetric, but it does not satisfy the condition (3.2) for symplecticity. In fact, this is
true for all Lobatto IIIA methods (see Example 11.4.6). On the other hand, the method
of Table 4.1 satisfies the symplecticity condition (3.2), but it is clearly not symmetric (the
weights do not satisfy bs1_; = ;).

TABLE 4.1: A symplectic Radau method of order 5 [Su93]

4—-+/6 16 — 6 328 —167v/6 —2+3V6
10 72 1800 450
446 | 328+1676 16 + /6 -2-3V6
10 1800 72 450
) 85-10v6 85+ 10V6 1
180 180 18
16 — V6 16 +6 1
36 36 9

IV.5 Campbell-Baker-Hausdorff Formula

This section is devoted to the derivation of the Campbell-Baker-Hausdorff (short CBH or
BCH) formula. It was claimed in 1898 by J.E. Campbell and proved independently by
Baker [Ba05] and Hausdorff [Hau06]. This formula will be the essential ingredient for the
discussion of splitting methods (Sect.IV.6).

Let A and B be two non-commuting matrices (or operators, for which the compositions
AF BY make sense). The problem is to find a matrix C(t), such that

exp(tA) exp(tB) = exp C(1). (5.1)

As long as we do not need the explicit form of C(t), this is a simple task: the expression
exp(tA) exp(tB) is a series of the form I +¢(A+ B) + O(t?) and, assuming that C'(0) = 0,
exp C'(t) is also close to the identity for small ¢. Therefore, we can apply the logarithm
to (5.1) and we get C(t). Using the series expansion log(l + z) = z — 2%/2 + ..., this
vields C(t) as a series in powers of t. It starts with C(t) = t(A + B) + O(¢?) and it
has a positive radius of convergence, because it is obtained by elementary operations of
convergent series. Consequently, the obtained series for C'(t) will converge for bounded A
and B, if t is sufficiently small.

The main problem of the derivation of the BCH formula is to get explicit formulas for
the coefficients of the series of C'(¢). With the help of the following lemma, recurrence
relations for these coefficients will be obtained, which allow for an easy computation of
the first terms.



John Edward Campbell 3 Henry Frederick Baker* Felix Hausdorff5

Lemma 5.1 Let A and B be (non-commuting) matrices. Then, (5.1) holds, where C(t)
15 the solution of the differential equation

C’=A+B+ [A BC]+Z—ad (A+ B) (5.2)

k>2

with initial value C(0) = 0. Recall that ad cA = [C, A] = CA— AC, and that By denote
the Bernoulli numbers as in Lemma I11.6.2.

Proof.  'We follow [Var74, Sect. 2.15] and we consider a matrix function Z(s,t) such that
exp(sA) exp(tB) = exp Z(s,t). (5.3)

Using Lemma II1.6.1, the derivative of (5.3) with respect to s is

Z
A exp(sA) exp(tB) = dexpz(s’t)(a—

P (s, t)) exp Z(s,t),

so that

%Z =dexp, (A) =A— = [Z Al + Z —ad Y(A). (5.4)
§ k>2

We next take the inverse of (5.3)
exp(~LB) exp(—sA) = exp(~Z(s,1)),

and differentiate this relation with respect to t. As above we get

— =dexp_,(B) = [Z B]+ Z — ad (5.5)
ot k>2

3John Edward Campbell, born: 27 May 1862 in Lisburn, Co Antrim (Ireland), died: 1 October 1924.

‘Henry Frederick Baker, born: 3 July 1866 in Cambridge (England), died: 17 March 1956.

SFelix Hausdorff, born: 8 November 1869 in Breslau (Germany), died: 26 January 1942. All three
pictures are copied from http://www-history.mcs.st-and.ac.uk/~history/Mathematicians, where
one can also find short biographies.



because ad® ,(B) = (—1)¥ad%(B) and the Bernoulli numbers satisfy By = 0 for odd
k > 2. A comparison of (5.1) with (5.3) gives C(t) = Z(t,t). The stated differential
equation for C(t) therefore follows from C'(t) = %(t,t) + %2(t,t), and from adding the
relations (5.4) and (5.5). O

Using Lemma 5.1 we can compute the first coefficients of the series
C(t) =tC, + ?Cy + PCs + t'Cy+ ... . (5.6)
Inserting this ansatz into (5.2) and comparing like powers of ¢ gives
¢, = A+B
20, = J[A—B,A+B]=[4B
3C; = S[A-B.LAB] = {[A[4B]+1[B[B.4)
10, = ... = S[A[B,[B, 4.

For the simplification of the expression for C; we have made use of the Jacobi identity
(IT1.2.2). The next coefficient C5 contains already 6 independent terms, and for higher
order the expressions become soon very complicated.

For later use (construction of splitting methods) we also need a formula for the sym-

metric composition
exp(tA) exp(tB) exp(tA) = exp D(t). (5.8)

Taking the inverse of (5.8), we see that exp(—D(t)) = exp(D(—t)), so that D(—t) =
—D(t), and the expansion of D(t) is in odd powers of ¢:

D(t) =tD; +t*D3 +t°D5 + ... . (5.9)

By repeated application of the BCH formula (5.1) with coefficients given by (5.7) we find

that

5.10
3D; = o [B.[B,A] - [A[A B]]. (5:10)

Remark 5.2 If A and B are bounded operators, the series (5.6) and (5.9) converge for
sufficiently small . We are, however, also interested in the situation, where A and B
are unbounded differential operators. In this case, we still have a formal identity. This
means that if we expand both sides of the identities (5.1) or (5.8) into powers of ¢, then
the corresponding coefficients are equal. Truncation of these series therefore introduces a
defect of size O(t"), where N can be made arbitrarily large.

IV.6 Splitting Methods

For a motivation of splitting methods, let us consider a Hamiltonian system with separable
Hamiltonian H(p,q) = T(p) + V(q). It is the sum of two Hamiltonians, which depend
either only on p or only on ¢. The corresponding Hamiltonian systems

p=0 and p = —Vy(q)

i =T,p) i=0 (6.1)



can be solved exactly and yield

p(t) = po i p(t) = po—tVy(q)

q(t) = qo +tT,(po) at) = q, (6.2)

respectively. Denoting the flows of these two systems by ¢! and ¢}, one can check that
the symplectic Euler method (I.1.8) is nothing other than the composition ¢} o} . Since
oI and ¢} are both symplectic transformations, and since the composition of symplectic
maps is again symplectic, this gives an elegant proof of the symplecticity of the symplectic
Euler method. Furthermore, the adjoint of the symplectic Euler method can be written
as ) ol and by (1.3.7) the Verlet scheme becomes (phV/2 oplo cphV/Q.

The idea of splitting can be applied to very general situations. We consider an arbitrary
(not necessarily Hamiltonian) system ¢’ = f(y) in IR", which can be split as

Y = fily) + f2(y). (6.3)

We further assume that the flows go,[fl] and go,[f] of the systems y' = fi(y) and v = fo(y)
can be calculated explicitly (later in Chapter V we shall study splitting methods, where

go,[fl] and go,[f] are replaced with some numerical approximations). An extension of the
symplectic Euler method to the new situation is

ol o (6.4)

which is often called the Lie-Trotter formula [Tr59]. By Taylor expansion we find that

(el o oY (1) = (o) + O(h?), so that (6.4) gives an approximation of order 1 to the

solution of (6.3). The analogue of the Verlet scheme is

1 2 1
Pia © PR O Ph ), (6.5)

which is the so-called Strang splitting® [Str68]. Due to its symmetry it is a method of

order 2. The order can be still further increased by suitably composing the flows go,[tl] and

g0£2]. According to [McL95] we distinguish the following cases:

e Non-symmetric. Such methods are of the form

2 1 2 1 2 1
‘Pg,}zh © (pt[h]nh © 901[>,l_1h ©...0 (pz[n]h © 901[)1]11 © (pz[zl]h (6.6)

(ay or by, or both of them are allowed to be zero).

e Symmetric. Symmetric methods are obtained by a composition of the form

2 1 2 2 1
90([11,Lh © SOI[J,,]zh ©...0 SOELl]h © 901[)1]h © Spt[zll]h ©...0 SOI[J,,]zh © SOELT]nh (6.7)

(here, by or a,, or both are allowed to be zero).

e Symmetric, composed of symmetric steps. We let ¢, = 90%1}2 o gof] o 90%1}2 or
®), = 90512}2 o @E] o gogf}Q, and we consider the composition
(Dbmh o (Dbm_ﬂl ©...0 (I)blh o (I)boh o (I)blh ©...0 (Dbm_1h o (I)bmh- (68)

6The article [Str68] deals with spatial discretizations of partial differential equations such as u; =
Au, + Buy. There, the functions f; typically contain differences in only one spatial direction.



An early contribution to this subject is the article of Ruth [Ru83], where, for the special
case (6.1), a non-symmetric method (6.6) of order 3 with m = 3 is constructed. A
systematic study of such methods has started with the articles of Suzuki [Su90, Su92] and
Yoshida [Yo90].

In all three situations the problem is the same: what are the conditions on the param-
eters a;, b;, such that the compositions (6.6), (6.7) or (6.8) approximate the flow ¢y of
(6.3) to a given order p?

In order to compare the expressions (6.6), (6.7) and (6.8) with the flow ¢, of (6.3), it
is convenient to introduce the differential operators D; (Lie derivative) which, for differ-
entiable functions F' : IR" — IR", are defined by

DiF(y) = F'(y) fi(y), (6.9)

where f;(y) is the function of (6.3). This means that, if y(¢) is a solution of y' = f;(y),

then

d

5 Fw®) = (DiF)(y(2)). (6.10)

Applying iteratively this operator to the identity map F'(y) = y, we obtain for the solution
y(t) of v = fi(y) that y/(t) = Dyy(t), v"(t) = D?y(t), etc. Consequently, for analytic
functions, the solution cpy](yg) is given by

i tF
o (yo) = > nyZIO = exp(tDs)yo. (6.11)

k>0

Lemma 6.1 Let go,El] and go,[?] be the flows of the differential equations y' = fi(y) and
y' = fa(y), respectively. For their composition we then have

(el 0 07} (o) = exp(tDy) exp(sDy) yo

(observe the reversed order of the operators).

Proof.  For an arbitrary smooth function F'(y), it follows from an iterated application of
(6.10) that

— F((p?](yo)) = D§F(w£2](yo)),

so that by Taylor series expansion F(¢£2](y0)) = Yis0 %D%F(yo), Putting F(y) =
¢ (y) and using (6.11) gives

S

(o o) (90) = (X % D) (3 5 D )wo (6.12)

k>0 " >0

which proves the statement. O



In general, the two operators D; and D, do not commute, so that the composition
exp(tDy) exp(tDy)y, is different from exp(t(D; + Ds))yo, which represents the solution

©i(yo) of y' = f(y) = fi(y) + f2(y).

Order Conditions The derivation of the order conditions for splitting methods can be
done as follows: with the use of Lemma 6.1 we write the method as a product of exponen-
tials, then we apply the Campbell-Baker-Hausdorff formula to get one exponential of a
series in powers of h. Finally, we compare this series with h(D; + D), which corresponds
to the exact solution of (6.3).

Let us illustrate this procedure with the methods of type (6.8) (see [Y090]). Using
Lemma 6.1 and formulas (5.8), (5.10), the second order integrator ®, = @5}2 o cpf] o 90511}2
can be written as

¢, = exp(hD;/2)exp(hD,)exp(hD;/2)

= exp(ha; + hPas + hPas +...),
where oy = Dy + D», a3 = 11—2[D2, [Dy, D1]] — ﬁ[Dl, [Dy, Ds]]. The Lie-bracket for differ-

ential operators is defined in the usual way, i.e., [Dy, Dy] = DDy — Dy D;. We next define
UU) recursively by

(6.13)

VO =@y, VD =3y, 0 W0y, (6.14)
so that W™ is equal to the method (6.8).
Lemma 6.2 The operators W), defined by (6.14) and (6.13), satisfy
T (y9) = exp (Amhozl + Az jhPas + As jh°as + Bs jh®ay, (o, as]] + O(h7))y0 (6.15)

where
A1 = by, Az = b, Aso = b}, Bso=0

and

Ay = Ay +2b
Ag’j - A37j_1 + 2b§)
A5’j - A57j_1 + 2b§)

1 4
Bsj = Bsyoat g (ADjob) = Avgoads by — Agyoab + Ay b))

Proof. We use the formulas (5.8), (5.9), (5.10) with ¢ A replaced with bjha;+(bjh)3as+. . .,
and tB replaced with A ; 1ha; + Az 1h3az + ... . This gives WU (yy) = exp(D(h))yo
with

D(h) = (2[)] -+ ALj_l)hal + (2[)? -+ A37j_1)h3a3 -+ (2()? -+ A57j_1)h5a5 + B5,j_1h5[oz1, [al, ag]]
1
+ 6 [Al,j—lhala [Al,j_lhozl + A37j_1h3043 y bjhOél + b§h30z3]]
— é[bjhoq, [bjhOél + b?hg(l/g, s Al,j_lhOél + A3’j_1h3043]] + O(h7)

A comparison of D(h) with the argument in (6.15) proves the statement. O



Theorem 6.3 The order conditions for the splitting method (6.8) are:

e order 2: A =1,
e order 4: A =1, Az, =0,
e order 6: Aim =1, A3m =0, A5, =0, Bspm =0,

The coefficients A; , and Bs,, are those defined in Lemma 6.2.

Proof.  This is an immediate consequence of Lemma 6.2, because the conditions of
order p imply that the Taylor series expansion of W(™ (y,) coincides with that of the
solution ¢p(yo) = exp(h(D1 + D3))yo up to terms of size O(h?). i

It is interesting to note that the order conditions of Theorem 6.3 do not depend on
the special form of a3 and a5 in (6.13). We also remark that the composition methods of
Sect. I1.6 are a special case of the splitting method (6.8). Theorem 6.3 therefore explains
the order conditions (II.6.3) and (II.6.4), which were mysterious with the techniques of
Chapter II.

[Yo90] solves the order conditions for order 6 with m = 3 (four equations for the
four parameters by, by, by, b3). He finds three solutions, one of which is given in the end
of Sect.I1.6. [Y090] also presents some methods of order 8. A careful investigation of
symmetric splitting methods of orders 2 to 8 can be found in [McL95]. There, several new
methods with small error constants are presented.

Remark 6.4 We emphasize that splitting methods are an important tool for the con-
struction of symplectic integrators. If we split a Hamiltonian as H(y) = Hi(y) + Ha(y),

and if we consider the vector fields f;(y) = J 'V H;(y), then the flows go,[f] are symplectic,
and therefore all splitting methods are automatically symplectic.

IV.7 Volume Preservation
IV.8 Generating Functions

IV.9 Variational Approach

Marsden, etc

IV.10 Symplectic Integrators on Manifolds

IV.11 Exercises

1. Prove that a linear transformation A : IR? — IR? is symplectic, if and only if det A = 1.

2. Prove that the flow of a Hamiltonian system satisfies det ¢}(y) = 1 for all y and all ¢.
Deduce from this result that the flow is volume preserving, i.e., for B C IR*® it holds that
vol (¢(B)) = vol (B) for all ¢.



10.

11.

12.

13.

14.

Consider the Hamiltonian system 3’ = J~!V H(y) and a variable transformation y = ¢(z).
Prove that, for a symplectic transformation ¢(z), the system in the z-coordinates is again
Hamiltonian with H(z) = H(¢(2)).

Consider a Hamiltonian system with H(p,q) = 3p”p + V(q). Let ¢ = x(Q) be a change
of position coordinates. How has one to define the variable P (as a function of p and q)

so that the system in the new variables (P, Q) is again Hamiltonian?
Result. P =x'(Q)"p.

Let a and 8 be the generalized coordinates of the double pendu- 7
lum, whose kinetic and potential energies are

my . . mg . . o l1
T = 7(«”3% +97) + 7(553 +93)
m
U = migys +magys. " !
Determine the generalized momenta of the corresponding Hamil- B
tonian system. Mo

Consider the transformation (r, ) — (p, q), defined by
p=1p(r)cosp,  g=1¢(r)sine.
For which function (r) is it a symplectic transformation?

Write Kepler’s problem with Hamiltonian

1
H(p,q) = §(p%+p§)—

1

ad+a

in polar coordinates ¢ = rcos¢p, g2 = rsinp. What are the conjugated generalized
momenta p;, p,? What is the Hamiltonian in the new coordinates.

On the set U = {(p, q); p*> + ¢*> > 0} consider the differential equation

<§) ~ P2 ti (2)- (11.1)

a) Prove that its flow is symplectic everywhere on U.

b) On every simply-connected subset of U the vector field (11.1) is Hamiltonian (with
H(p,q) = Im log(p + iq) + Const).

c) It is not possible to find a differentiable function H : U — IR such that (11.1) is equal
to JT'VH(p,q) for all (p,q) € U.

Remark. The vector field (11.1) is called locally Hamiltonian.

. Prove that the definition (2.5) of (M) does not depend on the parametrization ¢, i.e.,

the parametrization 1) = ¢ o a, where « is a diffeomorphism between suitable domains of
IR?, leads to the same result.

Prove that the coefficient Cy in the series (5.6) of the Campbell-Baker-Hausdorff formula
is given by [A,[B, [B, A]]]/6.
Deduce the BCH formula from the Magnus expansion (I11.6.9).

Hint. For constant matrices A and B consider the matrix function A(¢), defined by
A(t)=Bfor0<t<1land A(t) =Afor 1 <t <2.

Prove that the series (5.6) of the BCH formula converges for |t| < In2/(||A| + || B]]).
What are the conditions on the parameters a; and b;, such that the splitting method (6.6)
is of order 2, of order 37

How many order conditions have to be satisfied by a symmetric splitting method (6.7) to
get order 47 The result is 4.



