Physically Grounded AI: Interacting with the Physical World

Dieter Fox
University of Washington
Department of Computer Science & Engineering

What do I mean by that?

- AI-system that acts in the real world or at least interprets sensor data collected in the physical world
- We’re going to see many of these ...
 - Robots (home, street, air, battlefield)
 - Smart devices
 - Smart houses

"Since its birth in 1956, the AI dream has been to build systems that exhibit broad-spectrum competence and intelligence. STAIR revisits this dream, and seeks to integrate onto a single robot platform tools drawn from all areas of AI including learning, vision, navigation, manipulation, planning, and speech/NLP."

-Andrew Ng talk abstract
Vehicles competing in the Urban Challenge will have to think like human drivers and continually make split-second decisions to avoid moving vehicles, including robotic vehicles without drivers, and operate safely on the course.

-Dr. Norman Whitaker, Urban Challenge Program Manager

Wearable sensors and sensors in environment provide information about person’s state

State includes
- Physical location
- Physical activity (walking, running, driving, …)
- Physical goals
- Higher level activities (conversation, stand in line, shopping, watching a movie, …)
Activity Recognition

- Goal: Estimate a person’s state
- Basis for huge number of applications:
 - Healthcare
 - Long-term health monitoring
 - Guidance
 - Diaries
 - …

Predict Goal and Path

[Liao-Fox-Kautz: AAAI-04]

[Diagram: Predicted goal and path]

Application: Opportunity Knocks

[Patterson-Liao: Ubicomp-04]

Detect User Errors

[Diagram: Detecting user errors]
Application: Opportunity Knocks

RFID Tags for In-Home Activity Recognition

[Patterson-Fox-Kautz-Philipose: ISWC-05]
[Philipose-Fishkin-etAl: Pervasive-04]

Tracking Breakfast Activities

Sample Output

Relational model performs smoothing over object hierarchy
Wearable Multi-Sensor Unit

- **Records 4 hours of audio, images (1/sec), GPS, and sensor data (accelerometer, barometric pressure, light intensity, gyroscope, magnetometer)**

Soldier Activity Recognition

- **Automatic generation of mission summaries**
 - Motion type (linger, walk, run, drive, ...)
 - Environment (inside, outside building)
 - Location and building
 - Events (marked via keyword)

Some Observations

- **AI systems connected to the physical world**
 - Comprised many AI problems
 - Great tools to drive AI research
 - Will have huge impact

- **Bottom up approach to AI**

- **Robotics and UbiComp communities build many gadgets, AI is needed to make them smart**

- **(So far?) key problems seem to be in state estimation, not control / decision making**

Data

- **Collecting data will be easy / cheap**
- **Making sense of it is the hard part**

- **Wearable sensors**
 - **Indexing** the data is key problem
 - Vision and speech are crucial but can't do all of it
 - Need to combine all sources of information

- **Use the Web!**
Inference and Learning

- **Machine learning** is crucial for these systems
- **Graphical models** as core components
- Large collection of models that are loosely coupled
- Issues:
 - Where do states come from?
 - Labeled data is hard to get
 - Use the Web?

Decision Making

- **POMDPs:** overkill for most applications
 - Good state estimation can make decision making easier
 - System needs to be aware of its uncertainty and know when it's lost (also wrt to user state)
 - Interesting connection to user interfaces
 - Maybe we need complex AI planning once systems are capable enough