Two weeks: logic and constraint logic programming paradigms

- Use logic and theorem proving as the underlying computational model
- From a set of axioms and rules, a program executes by trying to prove a given hypothesis
- In constraint logic programming, more information is provided about the domain, which can increase the efficiency of the programs significantly

重要意义

Constraints Logic Programming

- CLP(R) --- built on top of Prolog’s foundations
- Developed by Jaffar and Lassez at Monash University in Melbourne, Australia
- Includes domain-specific constraint solvers to augment the logical deduction algorithm
- Different domains are targeted with different specialized solvers
 - CLP(FD), for finite domains
 - CLP(R), for real number

今晚

- Overview of CLP(R)
 - With examples
- Stepping back to look more carefully at CLP in general
 - Based on slides from Marriott and Stuckey

Prolog example

```prolog
solution(X, Y, Z) :- p(X), p(Y), p(Z), test(X, Y, Z).
p(11).
p(3).
p(7).
p(14).
p(15).
test(X, Y, Z) :- Y is X+1, Z is Y+1.
```

```
solution(X, Y, Z) ?
X=14; Y=15; Z=16 ?
no
```
How many search steps?

- In small groups, determine how many search steps are needed to find the one (and only) solution to the previous Prolog program.
- In the form of: “This takes X steps to find the solution and a total of Y steps to exhaust the search space.”

The problem is...

- ...that Prolog has an extremely limited knowledge of mathematics.
 - It leads to a big search space over only six possible integer values!
- It checks to see if the formulae hold, but it doesn’t think about them as mathematical formulae nor does it manipulate them as math.

Speeding up the earlier example: reordering conjuncts

```prolog
solution(X, Y, Z) :- test(X, Y, Z), p(X), p(Y), p(Z).
    p(11).
    p(3).
    p(7).
    p(16).
    p(15).
    p(14).
test(X, Y, Z) :- Y is X+1, Z is Y+1.
solution(X, Y, Z)?
```

This fails, since X is uninstantiated in test.

CLP

- CLP essentially merges logic programming with constraint solving.
- Constraint solving is much in the spirit of logic programming, allowing a two-way flow of computation.
 - But the domains are not limited to relations.
 - Borning’s Thinglab is a classic example of a system based on constraint solving.
 - “There’s a polygon in which I always want the opposite sides to be parallel to each other.”
 - “Keep point M as the midpoint of the line defined by points A and B.”

Solvers

- Underneath any constraint-based system is a constraint solver that takes equations and solves them (preferably quickly).
- The constraint satisfaction algorithms used depend on the domain over which the constraints are defined.
 - For reals, common algorithms include gauss and simplex methods.
 - A little more later.
- To become truly facile at CLP for a given domain one has to become knowledgeable about the solvers.

CLP does “more”

- The reason CLP can do “more” than logic programming is that the elements have semantic meaning.
 - In CLP(R), they are real numbers.
 - In logic programming they were just strings to which you associated some meaning.
- That is, CLP can, in general, manipulate symbolic expressions, too.
- To do this, CLPR has to understand numbers, equations, arithmetic, etc.
A CLP(R) example

\[p(X, Y, Z) :- Z = X + Y. \]
\[p(3, 4, Z)? \]
\[Z=7 \]
\[p(X, 4, 7)? \]
\[X=3 \]
\[p(X, Y, 7), X = -Y + 7 \] // instead of returning //multiple answers

The example in CLP(R):

replace is with =

\[solution(X, Y, Z) :- test(X, Y, Z), p(X), p(Y), p(Z). \]
\[p(11). \]
\[p(3). \]
\[p(7). \]
\[p(16). \]
\[p(14). \]
\[test(X, Y, Z) :- X = X+1, Z = Y+1. \]
\[solution(X, Y, Z)? \]
\[X=14;Y=15;Z=16; \]
\[NO \]

How many steps to find the solution?

Furthermore

\[solution(X, Y, Z) :- \]
\[test(X, Y, Z), p(X), p(Y), p(Z). \]
\[test(X, Y, Z) :- Y = X+1, Z = Y+1. \]

\[solution(A, B, C)? \]
\[B = C - 1 \]
\[A = C - 2 \]

Fibonacci: Prolog vs. CLP(R)

\[fib(0,0). \]
\[fib(1,1). \]
\[fib(N, F) :- N > 1, N1 is N-1, N2 is N-2, fib(N1,F1), fib(N2,F2), F is F1 + F2. \]
\[fib(10,L)? \]
\[fib(55)? \]
\[fib(X,X)? // instantiation error \]

\[fib(0,0). \]
\[fib(1,1). \]
\[fib(N,F1 + F2) :- N > 1, fib(N-1,F1), fib(N-2,F2). \]
\[fib(10,L)? \]
\[fib(55)? \]
\[fib(X,X)? //0,1,5 \]

Slides

- Most of tonight’s slides are taken (with implicit permission) from slides produced by Marriott and Stuckey as support material for their text book Programming with Constraints: An Introduction
- This is a great place to look for more material, if you’re interested

Constraints

- What are constraints?
- Modeling problems
- Constraint solving
- Tree constraints
- Other constraint domains
- Properties of constraint solving
Constraints

Variable: a placeholder for values
\(X, Y, Z, L_3, U_{23}, List\)

Function Symbol: mapping of values to values
\(+, -, \times, +, \sin, \cos, \|\)

Relation Symbol: relation between values
\(=, \leq, \neq\)

Satisfiability

Valuation: an assignment of values to variables
\(\theta = \{ X \mapsto 3, Y \mapsto 4, Z \mapsto 2\}\)
\(\theta(X + 2Y) = (3 + 2 \times 4) = 11\)

Solution: valuation which satisfies constraint
\(\theta(X \geq 3 \land Y = X + 1)\)
\((3 \geq 3 \land 4 = 3 + 1) = \text{true}\)

Equivalent Constraints

Two different constraints can represent the same information

\(X > 0 \iff 0 < X\)
\(X = 1 \land Y = 2 \iff Y = 2 \land X = 1\)
\(X = Y + 1 \land Y \geq 2 \iff X = Y + 1 \land X \geq 3\)

Two constraints are equivalent if they have the same set of solutions

Satisfiability

Satisfiable: constraint has a solution

Unsatisfiable: constraint does not have a solution

Constraints: syntactic issues

- Constraints are strings of symbols
- Parentheses don’t matter
\((X = 0 \land Y = 1) \land Z = 2 \iff X = 0 \land (Y = 1 \land Z = 2)\)
- Order does matter
\(X = 0 \land Y = 1 \land Z = 2 \neq Y = 1 \land Z = 2 \land X = 0\)
- Some algorithms will depend on order

Constraints

Primitive Constraint: constraint relation with arguments
\(X \geq 4\)
\(X + 2Y = 9\)

Constraint: conjunction of primitive constraints
\(X \leq 3 \land X = Y \land Y \geq 4\)
Modeling with constraints

- Constraints describe idealized behavior of objects in the real world

\[V1 = I1 \times R1 \]
\[V2 = I2 \times R2 \]
\[V - V1 = 0 \]
\[V - V2 = 0 \]
\[I1 - I2 = 0 \]
\[I - I1 - I2 = 0 \]

Modeling with constraints

- Start
 - Foundations: \(T_f \geq 0 \)
 - Walls: \(T_b \geq T_f + 7 \)
 - Chimney: \(T_c \geq T_f + 4 \)
 - Chimney: \(T_c \geq T_b + 3 \)
 - Roof: \(T_r \geq T_f + 2 \)
 - Doors: \(T_d \geq T_f + 2 \)
 - Windows: \(T_w \geq T_f + 3 \)

Constraint Satisfaction

- Given a constraint \(C \), two questions
 - Satisfaction: does it have a solution?
 - Solution: give me a solution, if it has one?
- The first is more basic
- A constraint solver answers the satisfaction problem

Constraint Satisfaction

- Simple approach: try all valuations.

\[
\begin{align*}
X > Y & \quad \text{false} \\
(X \mapsto 1, Y \mapsto 1) & \quad \text{false} \\
(X \mapsto 1, Y \mapsto 2) & \quad \text{false} \\
(X \mapsto 1, Y \mapsto 3) & \quad \text{false} \\
* & \quad * \\
* & \quad * \\
X > Y & \quad \text{true} \\
(X \mapsto 1, Y \mapsto 2) & \quad \text{true} \\
* & \quad * \\
\end{align*}
\]

Gauss-Jordan elimination

- Choose an equation \(c \) from \(C \)
- Rewrite \(c \) into the form \(x = e \)
- Replace \(x \) everywhere else in \(C \) by \(e \)
- Continue until
 - all equations are in the form \(x = e \)
 - or an equation is equivalent to \(d = 0 \) \(\land \) \(d \neq 0 \)
- Return true in the first case else false
Gauss-Jordan Example 1

1 + X = 2Y + Z ∧ 1 + X = 2Y + Z
Z = Y = 1 ∧
X + Y = 5 ∧

Replace X by 2Y + Z - 1

X = 2Y + Z - 1 ∧
Z = 2Y - Z + 1 = 3 ∧
2Y + Z - 1 + Y = 5 + Z

Replace Y by -1

X = -2 + Z - 1 ∧
Y = -1 ∧
Z = 4 ∧
X = -2 + Z - 1 + Y = 5 + Z

Return false

Gauss-Jordan Example 2

1 + X = 2Y + Z ∧ 1 + X = 2Y + Z
Z = X = 3

Replace X by 2Y + Z - 1

X = 2Y + Z - 1 ∧
Z = 2Y + Z - 1 + 3 ∧
2Y + Z - 1 + Y = 5 + Z

Replace Y by -1

X = Z = 3 ∧
Y = -1

Solved form: constraints in this form are satisfiable

Solved Form

• Non-parametric variable: appears on the left of one equation.
• Parametric variable: appears on the right of any number of equations.
• Solution: choose parameter values and determine non-parameters

X = Z = 3 ∧
Y = -1
Z = 4
X = 4 - 3 = 1

Tree Constraints

• Tree constraints represent structured data
• Tree constructor: character string
 – cons, node, null, widget, f
• Constant: constructor or number
• Tree:
 – A constant has height 1
 – A constructor with a list of > 0 trees is a tree
 – Drawn with constructor above children

Tree Constraints

• Height of a tree:
 – a constant has height 1
 – a tree with children t1, ..., tn has height one more than the maximum of trees t1,...,tn

Tree Examples

```plaintext
order(part(77665, widget(red, moose)), quantity(17), date(3, feb, 1994))
```

```plaintext
cons(red, cons(blue, cons(red, cons(...))))
```
Terms

- A term is a tree with variables replacing subtrees
- Term:
 - A constant is a term
 - A variable is a term
 - A constructor with a list of > 0 terms is a term
 - Drawn with constructor above children
- Term equation: s = t (s,t terms)

Term Examples

- \(\text{order}(\text{part}(77665, \text{widget}(C, \text{moose})), \text{Q}, \text{date}(3, \text{feb}, Y))\)
- \(\text{cons}(\text{red}, \text{cons}(\text{B}, \text{cons}(\text{red}, L)))\)

Tree Constraint Solving

- Assign trees to variables so that the terms are identical
 - \(\text{cons}(R, \text{cons}(B, \text{nil})) = \text{cons}(\text{red}, L)\)
 \(\{ R \mapsto \text{red}, L \mapsto \text{cons(blue, nil)}, B \mapsto \text{blue} \}\)
- Similar to Gauss-Jordan
- Starts with a set of term equations \(C\) and an empty set of term equations \(S\)
- Continues until \(C\) is empty or it returns false

Tree Constraint Solving

- unify(C)
 - Remove equation \(c\) from \(C\)
 - case \(x = x\): do nothing
 - case \(f(s_1, \ldots, s_n) = g(t_1, \ldots, t_n)\): return false
 - case \(f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n)\):
 - add \(s_1 = t_1, \ldots, s_n = t_n\) to \(C\)
 - case \(t = x\) (\(x\) variable): add \(x = t\) to \(C\)
 - case \(x = t\) (\(x\) variable): add \(x = t\) to \(S\)
 - substitute \(t\) for \(x\) everywhere else in \(C\) and \(S\)

Tree Solving Example

- \(C\)
 - \(\text{cons}(Y, \text{nil}) = \text{cons}(X, Z) \land Y = \text{cons}(a, T)\)
 - \(Y = X \land \text{nil} = Z \land Y = \text{cons}(a, T)\)
 - \(\text{nil} = Z \land X = \text{cons}(a, T)\)
 - \(Z = \text{cons}(a, T)\)
 - \(X = \text{cons}(a, T)\)

- \(S\)
 - \(Y = X \land Z = \text{nil} \implies Y = \text{cons}(a, T)\)

Like Gauss-Jordan, variables are parameters or non-parameters. A solution results from setting parameters (i.e., \(T\)) to any value.

One extra case

- Is there a solution to \(X = f(X)\) ?
- NO!
 - if the height of \(X\) in the solution is \(n\)
 - then \(f(X)\) has height \(n+1\)
- Occurs check:
 - before substituting \(t\) for \(x\)
 - check that \(x\) does not occur in \(t\)
Other Constraint Domains

- There are many
 - Boolean constraints
 - Sequence constraints
 - Blocks world
- Many more, usually related to some well understood mathematical structure

Boolean Constraints

Used to model circuits, register allocation problems, etc.

\[
\begin{align*}
X &\rightarrow (O \leftrightarrow (X \lor Y)) \\
A &\rightarrow (A \leftrightarrow (X \land Y)) \\
N &\rightarrow (N \leftrightarrow \neg A) \\
Z &\rightarrow (N \leftrightarrow (N \land O))
\end{align*}
\]

An exclusive or gate

The Boolean solver can return unknown
It is incomplete (doesn’t answer all questions)
It is polynomial time, where a complete solver is exponential (unless P \(=\) NP)
Still such solvers can be useful!
Blocks World Constraints

A solution to a Blocks World constraint is a picture with an annotation of which variable is which block:

\[
yellow(Y) \land red(X) \land on(X,Y) \land floor(Z) \land red(Z)
\]

Solver Definition

- A constraint solver is a function \(solv \) that takes a constraint \(C \) and returns \(true, false \) or \(unknown \) depending on whether the constraint is satisfiable:
 - if \(solv(C) = true \) then \(C \) is satisfiable
 - if \(solv(C) = false \) then \(C \) is unsatisfiable

Properties of Solvers

- We desire solvers to have certain properties:
 - well-behaved:
 - set based: answer depends only on set of primitive constraints
 - monotonic: if solver fails for \(C_1 \) it also fails for \(C_1 \land C_2 \)
 - variable name independent: the solver gives the same answer regardless of names of vars

Constraints Summary

- Constraints are pieces of syntax used to model real world behavior
- A constraint solver determines if a constraint has a solution
- Real arithmetic and tree constraints
- Properties of solver we expect (well-behavedness)

Simplification, Optimization and Implication

- Constraint Simplification
- Projection
- Constraint Simplifiers
- Optimization
- Implication and Equivalence
Constraint Simplification

- Two equivalent constraints represent the same information
- But one may be simpler than the other

\[X \geq 1 \land X \geq 3 \land 2 = Y + X \]
Removing redundant constraints, rewriting a primitive constraint, changing order, substituting using an equation all preserve equivalence

\[X = 2 - Y \land 3 \leq X \]

\[X = 2 - Y \land Y \leq -1 \]

Redundant Constraints

- One constraint \(C_1 \) implies another \(C_2 \) if the solutions of \(C_1 \) are a subset of those of \(C_2 \)
- \(C_2 \) is said to be redundant with respect to \(C_1 \)

\[X \geq 3 \rightarrow X \geq 1 \]

\[Y \leq X \land 2 \land Y \geq 4 \rightarrow X \geq 1 \]

\[\text{cost}(X, X) = \text{cost}(Z, \text{nil}) \rightarrow Z = \text{nil} \]

Definitely produces a simpler constraint

Solved Form Solvers

- Since a solved form solver creates equivalent constraints, it can be a simplifier

For example, using the term constraint solver

\[\text{cost}(X, X) = \text{cost}(Z, \text{nil}) \land Y = \text{succ}(X) \land \text{succ}(Z) = Y \land Z = \text{nil} \]

\[\leftrightarrow X = \text{nil} \land Z = \text{nil} \land Y = \text{succ}(\text{nil}) \]

Or using the Gauss-Jordan solver

\[X = 2 + Y \land 2 \land X - T = Z \land X + Y = 4 \land Z + T = 5 \]

\[\leftrightarrow X = 3 \land Y = 1 \land Z = 5 - T \]

Constraint Simplifiers

- \(C_1 \) and \(C_2 \) are equivalent wrt variables \(V \) if
 - taking any solution of one and restricting it to the variables \(V \), this restricted solution can be extended to be a solution of the other
- Example \(X = \text{succ}(Y) \) and \(X = \text{succ}(Z) \) wrt \(\{X\} \)

\[X = \text{succ}(Y) \]
\[(X \rightarrow \text{succ}(a), Y \rightarrow a) \]
\[\{X\} \]
\[X = \text{succ}(Z) \]
\[(X \rightarrow \text{succ}(a), Z \rightarrow a) \]
Optimization

- Often given some problem that is modeled by constraints we don’t want just any solution, but a “best” solution
- This is an optimization problem
- We need an objective function so that we can rank solutions
 – That is, a mapping from solutions to a real value

Optimization Problem

- An optimization problem \((C, f)\) consists of a constraint \(C\) and objective function \(f\)
- A valuation \(v1\) is preferred to valuation \(v2\) if \(f(v1) < f(v2)\)
- An optimal solution is a solution of \(C\) such that no other solution of \(C\) is preferred to it

Optimization Example

An optimization problem \((C = X + Y \geq 4, \ f = X^2 + Y^2)\)
Find the closest point to the origin satisfying the \(C\).
Some solutions and \(f\) value

\((X \mapsto 0, Y \mapsto 4)\)	16
\((X \mapsto 3, Y \mapsto 3)\)	18
\((X \mapsto 2, Y \mapsto 2)\)	8

Optimal solution \((X \mapsto 2, Y \mapsto 2)\)

Optimization

- Some optimization problems have no solution
 – Constraint has no solution
 \((X \geq 2 \land X \leq 0, \ X^2)\)
 – Problem has no optimum — for any solution there is more preferable one
 \((X \leq 0, \ X)\)

Simplex Algorithm

- The most widely used optimization algorithm
- Optimizes a linear function wrt to linear constraints
- Related to Gauss-Jordan elimination

Simplex Algorithm

- A optimization problem \((C, f)\) is in simplex form:
 – \(C\) is the conjunction of \(CE\) and \(CI\)
 – \(CE\) is a conjunction of linear equations
 – \(CI\) constrains all variables in \(C\) to be non-negative
 – \(f\) is a linear expression over variables in \(C\)
Simplex Example

An optimization problem in simplex form

\[
\begin{align*}
\text{minimize} & \quad 3X + 2Y - Z + 1 \\
\text{subject to} & \quad X + Y = 3 \\
& \quad -X - 3Y + 2Z + T = 1 \\
& \quad X \geq 0, Y \geq 0, Z \geq 0, T \geq 0
\end{align*}
\]

- An arbitrary problem can be put in simplex form by
 - replacing unconstrained var \(X \) by new vars
 - replacing ineq \(\leq \) by new vars

Simplex Solved Form

- A simplex optimization problem is in basic feasible solved (bfs) form if:
 - The equations are in solved form
 - Each constant on the right hand side is non-negative
 - Only parameters occur in the objective

- A basic feasible solution is obtained by
 - setting each parameter to 0 and each non-parameter to the constant in its equation

Simplex Algorithm

starting from a problem in bfs form

repeat

- Choose a variable \(y \) with negative coefficient in the obj. func.
- Find the equation \(x = b + cy + ... \) where \(c < 0 \) and \(-b/c \) is minimal
- Rewrite this equation with \(y \) the subject \(y = -b/c + 1/c \times x + ... \)
- Substitute \(-b/c + 1/c \times x + ... \) for \(y \) in all other eqns and obj. func.
- until no such variable \(y \) exists or no such equation exists

if no such \(y \) exists optimum is found
else there is no optimum solution

Simplex Example

An equivalent problem to that before in bfs form

\[
\begin{align*}
\text{minimize} & \quad 10 - Y - Z \\
\text{subject to} & \quad X = 3 - Y \\
& \quad T = 4 + 2Y - 2Z \\
& \quad X \geq 0, Y \geq 0, Z \geq 0, T \geq 0
\end{align*}
\]

We can read off a solution and its objective value:

\((X \mapsto 3, T \mapsto 4, Y \mapsto 0, Z \mapsto 0) \)

\(f = 10 \)

Simplex Example

Choose variable \(Y \), the first eqn is only one with neg. coeff

Choose variable \(Z \), the 2nd eqn is only one with neg. coeff

Choose variable \(Z \) the 2nd eqn is only one with neg. coeff

\[
\begin{align*}
\text{minimize} & \quad 2 + 2X + 0.5T \\
\text{subject to} & \quad Y = 3 - X \\
& \quad Z = 5 - X - 0.5T
\end{align*}
\]

No variable can be chosen, optimal value 2 is found

Another example

\[
\begin{align*}
\text{minimize} & \quad X - Y \\
\text{subject to} & \quad Y \geq 0 \\
& \quad X \geq 1 \\
& \quad X \leq 3
\end{align*}
\]

An equivalent simplex form is:

\[
\begin{align*}
X - S0 &= 1 \\
X + S1 &= 3 \\
- X + 2F + S1 &= 3
\end{align*}
\]

An optimization problem showing contours of the objective function
Implication and Equivalence

- Other important operations involving constraints are:
 - implication: test if \(C_1 \) implies \(C_2 \)
 - \(\text{impl}(C_1, C_2) \) answers true, false or unknown
 - equivalence: test if \(C_1 \) and \(C_2 \) are equivalent
 - \(\text{equiv}(C_1, C_2) \) answers true, false or unknown

Implication Example

For the house constraints \(CH \), will stage B have to be reached after stage C?

\[CH \rightarrow T_B \geq T_C \]

For this question the answer if false, but if we require the house to be finished in 15 days the answer is true

\[CH \land T_B = 15 \rightarrow T_B \geq T_C \]

Simplication, Optimization and Implication Summary

- Equivalent constraints can be written in many forms, hence we desire simplification
- Particularly if we are only interested in the interaction of some of the variables
- Many problems desire a optimal solution, there are algorithms (simplex) to find them

Some more CLP(R) examples

- To try to tie this all together

Rules

A user defined constraint to define the model of the simple circuit:

\[\text{parallel_resistors}(V, I, R_1, R_2) \]

And the rule defining it

\[\text{parallel_resistors}(V, I, R_1, R_2) :- \]

\[V = I_1 \cdot R_1, \quad V = I_2 \cdot R_2, \quad I_1 + I_2 = I. \]

Using Rules

\[\text{parallel_resistors}(V, I, R_1, R_2) :- \]

\[V = I_1 \cdot R_1, \quad V = I_2 \cdot R_2, \quad I_1 + I_2 = I. \]

Behavior with resistors of 10 and 5 Ohms

\[\text{parallel_resistors}(V, I, R_1, R_2) \land R_1 = 10 \land R_2 = 5 \]

Behavior with 10V battery where resistors are the same

\[\text{parallel_resistors}(V, I, R_1, R_2) \land V = 10 \land R_1 = R_2 \]

It represents the constraint (macro replacement)
Modeling

- Choose the variables that will be used to represent the parameters of the problem (this may be straightforward or difficult)
- Model the idealized relationships between these variables using the primitive constraints available in the domain

Modelling Example

A traveler wishes to cross a shark infested river as quickly as possible. Reasoning the fastest route is to row straight across and drift downstream, where should she set off

- width of river: W
- speed of river: S
- set of position: P
- rowing speed: R

Reasoning: in the time the rower rows the width of the river, she floats downstream distance given by river speed by time. Hence model

\[\text{river}(W, S, R, P) : - T = W/R, P = S*T. \]

Suppose she rows at 1.5m/s, river speed is 1m/s and width is 24m.

\[\text{river}(24, 1, 1.5, P). \]

Has unique answer $P = 16$

Modelling Example Cont.

If her rowing speed is between 1 and 1.3 m/s and she cannot set out more than 20 m upstream can she make it?

\[1 \leq R, R \leq 1.3, P \leq 20, \]

\[\text{river}(24,1,R,P). \]

Flexibility of constraint based modeling!

More Complicated Model

- A call option gives the holder the right to buy 100 shares at a fixed price E
- A put option gives the holder the right to sell 100 shares at a fixed price E
- Pay off of an option is determined by cost C and current share price S
- e.g. call cost 200 exercise 300
 - stock price 2, don’t exercise payoff = -200
 - stock price 7, exercise payoff = 200

Options Trading

- Call C=200, E = 300
- Put C=100, E = 300

Butterfly strike:
- Buy call at 500
- 100 sell 2 puts at 300
Modeling Functions

Model a function with \(n \) arguments as a predicate with \(n+1 \) arguments. Tests are constraints, and result is an equation.

\[
\begin{align*}
\text{call_payoff}(S,C,E,P) &= \begin{cases}
-C & \text{if } 0 \leq S \leq E/100 \\
100S - E - C & \text{if } S \geq E/100
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\text{buy_call_payoff}(S,C,E,P) &:\quad 0 \leq S, S \leq E/100, P = -C. \\
\text{buy_call_payoff}(S,C,E,P) &:\quad S \geq E/100, P = 100S - E - C.
\end{align*}
\]

Modeling Options

Add an extra argument \(B=1 \) (buy), \(B = -1 \) (sell):

\[
\begin{align*}
\text{call_option}(B,S,C,E,P) &:\quad 0 \leq S, S \leq E/100, P = -C \times B. \\
\text{call_option}(B,S,C,E,P) &:\quad S \geq E/100, P = (100S - E - C)B.
\end{align*}
\]

The goal (the original call option question):

\[
\begin{align*}
\text{call_option}(1, 7, 200, 300, P)
\end{align*}
\]

has answer \(P = 200 \)

Using the Model

\[
\begin{align*}
\text{butterfly}(S, P1 + 2*P2 + P3) &:\quad \\
&\text{Buy} = 1, \text{Sell} = -1, \\
&\text{call_option}(\text{Buy}, S, 100, 500, P1), \\
&\text{call_option}(\text{Sell}, S, 200, 300, P2), \\
&\text{call_option}(\text{Buy}, S, 400, 100, P3). \\
P &\geq 0, \text{butterfly}(S,P).
\end{align*}
\]

has two answers:

\[
\begin{align*}
P &= 100S - 200 \land 2 \leq S \land S \leq 3 \\
P &= -100S + 400 \land 3 \leq S \land S \leq 4
\end{align*}
\]

Wrap up

- LP and CLP are not general purpose computing paradigms
 - Even though they are Turing equivalent, there is no way you’d do most general purpose programs in them
- However, there are a number of important problems for which this is a good match

Domains

- But the expense of building a solver, simplifier, etc. for a given domain is not small
 - So the narrow domain must provide enough benefit to justify this effort

Next week

- Visual programming and program visualization
- Final week: domain specific languages