Two weeks: logic and constraint logic programming paradigms

- Use logic and theorem proving as the underlying computational model
- From a set of axioms and rules, a program executes by trying to prove a given hypothesis
- In constraint logic programming, more information is provided about the domain, which can increase the efficiency of the programs significantly

Note

- Many of the following slides were taken (and in some cases adapted), with permission, from Greg Badros

(Symbolic) Logic

- Logic goes back to the Greeks, providing a basis for rational reasoning
- Aristotle’s logic was based in natural language, which led to ambiguity
- Philosophers over the years have cast logic symbolically

Logic basics

- There are a set of terms intended to represent facts or properties of the real world
 - \(r \equiv \text{it rained in Seattle yesterday} \)
 - \(w \equiv \text{Schell is a wuss} \)
 - \(p \equiv \text{CSE583 in Winter 2000 is taught on Tuesday evenings} \)
 - \(x \equiv \text{P = NP} \)
- For most logics, these terms are either true or false

Connectives

- These logical terms can be combined in well-defined ways
- These define rules for combining logical formulae
- Truth tables define the connectives

<table>
<thead>
<tr>
<th>(p)</th>
<th>(T)</th>
<th>(F)</th>
<th>(T)</th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\neg p)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
</tr>
<tr>
<td>(p \land q) (and)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(p \lor q) (inclusive or)</td>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(\neg p) (negation)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
</tr>
<tr>
<td>(p \rightarrow q) (implication)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
</tr>
</tbody>
</table>
Quantifiers
- Some logics have various quantifiers as well:
 - $\exists x \cdot x > 0$
 - $\forall x \cdot x > 0$
- Temporal logics include:
 - AG (always globally), EF (there exists a path), AX (always in the next step), ...

Formulae
- Formulae written in terms of the connectives can be checked using truth tables:
 - $p \land p \equiv p$
 - $\neg(p \land q) \equiv \neg p \lor \neg q$
 - ...

Predicate logic and English
- If A then B
- A only if B
- A if and only if B
- A if B

"She lives in Seattle only if she lives in Washington State."

Theorems
- Anything you can prove from your terms and rules is a theorem in the logic:
 - Remember (and I'll say it again) the interpretation of the terms is not part of the logic per se.
 - The logic and theorem proving is strictly symbolic manipulation.

Tautologies and contradictions
- Tautologies are logical statements that are always true:
 - $p \lor \neg p \equiv T$
 - $T \lor p \equiv T$
- Contradictions are logical statements that are always false:
 - $p \land \neg p \equiv F$
 - $F \land p \equiv F$
But...

- ...what if it’s not a tautology?
- How do we prove it?
- The most common way is to use a deduction rule called *modus ponens*
 - Prove \(p \rightarrow q \)
 - Then prove \(p \)
 - This in turns proves \(q \)
- More soon

Prolog

- To make all this a bit more concrete and to connect it to programming, we’ll look at Prolog
 - By far the best known and most influential logic programming language

Prolog deals with relations

- \(?- \text{isSquareOf}(9,3). \text{yes} \)
- \(?- \text{isSquareOf}(9,2). \text{no} \)
- \(?- \text{isSquareOf}(25,X). X=5 \)
 - \(X=-5 \)
- \(?- \text{isSquareOf}(X,-3). X=9 \)

- The program (called a query) can run in many directions
- It’s trying to prove the formula given underlying facts
- The query can produce many answers

History of Prolog

- Developed in 1970s by Alan Colmeraur, Robert Kowalski, Phillip Roussel (University of Marseilles, France)
- David H. D. Warren provided foundations of modern implementation in the Warren Abstract Machine for DEC PDP-10 (University of Edinburgh)
- Prolog is basis for numerous other languages such as CLP(R), Prolog III, etc.

Not for general purpose programming

- More restricted computation model of proving assertions from collections of facts and rules
- Think of queries working on a database of facts with rules that permit inferring new facts
- Query is just a theorem to be proven

Why restrict applicability of a language?

- Prolog provides better built-in support for the algorithms and tasks especially useful in search problems
 - Theorem proving is “just” a search problem
- Search problems are incredibly important
 - Exponential complexity
 - But efficient techniques and heuristics help solve practical programs in a timely fashion
Example applications

- Medical patient diagnosis
- Theorem proving
- Solving Rubik’s cube
- Type checking
 - Type inference in ML and Haskell is done in this way
- Database querying
- ...

A Prolog Program

- Facts and rules
 - a database of information, and rules to infer more facts
- Queries
 - the searches to perform

Example facts and simple queries

- female(karen).
- male(joseph).
- male(mark).
- male(eric).
- person(karen).
- a_silly_fact.
- ?- male(eric). yes.
- ?- female(F). F = karen.
- ?- person(mark). no.

Syntax for facts

- predicate.
- predicate(arg1,arg2,...).

- Begin with lowercase letter
- End with a period (.)
- Numbers and underscores (_) are okay inside identifiers (also called atoms)

Variables

- Begin with an uppercase letter
- Either “instantiated” or “uninstantiated”
- X is instantiated means X stands for a particular value (similar to binding)
- Variables instantiations can be undone
 - Used to produce multiple answers during search
- Multiple uses of the same variable in same scope must refer to same value

Variables are scoped within a query

- These two uses of X must represent same value
- ?- person(X), female(X). X=karen
- Read the comma as "and"
More facts
/* parent(P,C) means P is a
parent of C */
parent(karen,greg).
parent(joseph,greg).
parent(karen,mark).
parent(joseph,mark).

- Interpretation of facts is imposed by the
 programmer
 - Biological parent? Genetic parent? Adoptive
 parent? Etc.
- Make assumptions clear!

A simple rule

mother(M,C) :- parent(M,C), female(M).

∀ M,C ((parent(M,C) ∧ female(M)) → mother(M,C))

Example

parent(karen,greg).
parent(joseph,greg).
parent(karen,mark).
parent(joseph,mark).
female(karen).
mother(M,C) :- parent(M,C), female(M).

?-mother(karen,greg).
YES

?-mother(karen,X).
X = greg ;
X = mark

?-mother(karen,joseph).
NO

?-mother(joseph,karen).
NO

Proving

- To answer these kinds of queries, Prolog
 must search through the facts and the
 rules in all possible combinations
- If Prolog can’t find a proof, then it says
 that the theorem is false
 - Closed world assumption
 - How valid is this assumption?
 - ?-parent(hillary,chelsea)

Two interpretations of rule

- Declarative (logic)
 For a given M and C, M is the mother of C
 if M is the parent of C and M is female

- Procedural (computational)
 Prove M is mother of C by proving
 subgoals that M is a parent of C and that
 M is female

Eight Queens:
A typical search problem

- Place eight (or n) queens on an n × n
 chessboard such that none of them are
 attacking any of the others
- Recursive solutions are naturally
 expressed using backtracking
- Solutions in C++, Pascal, Java, etc., are
 generally around 140–220 lines of
 uncommented code.
A Solution to Eight Queens

```

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Eight Queens in Prolog

```
/* From Bratko’s Prolog Progr. for AI, p. 111 */
solution([]).
solution([X/Y | Others] ) :-
solution(Others),
member(Y, [1,2,3,4,5,6,7,8] ),
noattack( X/Y, Others).

noattack(_, []).
noattack(X/Y, [X1/Y1 | Others] ) :-
Y =\= Y1,
Y1-Y =\= X1-X,
Y1-Y =\= X-X1,
noattack( X/Y, Others).

template([1/Y1,2/Y2,3/Y3,4/Y4,5/Y5,6/Y6,7/Y7,8/Y8]).
```

Query for solution

```
?- template(S), solution(S).
  S = [1/4, 2/2, 3/7, 4/3, 5/6, 6/8, 7/5, 8/1]
  ;
  S = [1/5, 2/2, 3/4, 4/7, 5/3, 6/8, 7/6, 8/1]
  ;
  ...
  ● 92 solutions in all!
```

Our friend the list

```
?- append([1,2,3],[4,5],L). L=[1,2,3,4,5]
?- append([1,2],M,[1,2,3]). M=[3]
?- append(A,B,[1,2]). A=[], B=[1,2]
  A=[1], B=[2]
  A=[1,2], B=[]
```

Append works in multiple directions!

Declaration of append rule

```
append([], Ys, Ys).
append([X | Xs], Ys, [X | Zs]) :-
append(Xs, Ys, Zs).

● Think declaratively!
● Think recursively!
```

“Return value” is an argument of the rule

```
/* append(X,Y,Z) succeeds iff Z is the list that is the list Y appended to the list X */

● Enables it to use any/all of the arguments to compute what’s left
● Use uninstantiated variables (i.e., those starting with capital letters) to ask for a return value
```
Terminology
- simple term — number, variable, or atom e.g., -92 X greg
- compound term — atom + parenthesized subterms e.g., parent(joe,greg)
 functor sub-term arguments
- Facts, rules, and queries are made from terms... the functor is the predicate
 Not related to ML functors

Lists
- [] is the empty list
- predicate is like Scheme’s cons:
 ?- A = (1, (2, (3, []))). A=[1, 2, 3]
- [...] shorthand syntax:
 ?- A = [1,2,3]. A=[1, 2, 3]
- [E1...|Tail] notation
 ?- A = [1,2|3]. A=[1, 2|3]
 ?- A = [1,2|3]. A=[1, 2, 3]

Lists need not be homogeneous
?- A = "Hi". A=[72,105]
?- A = [1,g], B=[A,A]. A=[1,g]
 B=[[1,g],[1,g]]
?- A = [1,g], B=[A|A]. A=[1,g]
 B=[[1,g],[1,g]]

Unification of terms
- Similar to ML/Haskell pattern matching

Terms S and T unify if and only if:
- S and T are both constants, and they are the same object; or
- S is uninstantiated. Substitute T for S; or
- T is uninstantiated. Substitute S for T; or
- S and T are structures, have same principal functor, and the corresponding components unify.

Recursive definition!

More unification examples
?- A=parent(joe,greg),A=parent(X,Y).
 X=joe, Y=greg
?- A=parent(joe,greg),A=parent(X). No
?- A=people([joe,greg]),A=people(X).
 X=[joe,greg]
?- A=[1,2,3,4],A=[X,Y|Z]. X=1,Y=2,Z=[3,4]
Unification is implicit in rule application

/* simple rule: X is the same as X. */
identity(X,X).
?- identity(p(X,foo), p(bar,Y)).
X=bar, Y=foo

/* could have written the rule as: */
identity(X,Y) :- X = Y.

Unification in append rule

append([],Ys,Ys).
append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).
append([1,2,3],A,[1,2,3,4]). results in
[X|Xs] = [1,2,3], A=Ys,
[X|Zs] = [1,2,3,4]
and thus:
X=1, Xs=[2,3], Zs=[2,3,4]
so must prove: append([2,3],A,[2,3,4])

Trace of app([1,2,3],A,[1,2,3,4])

Trace of app([1,2,3],[4],Z)

Horn clauses

- Prolog cannot handle arbitrary logic over relations
- It supports Horn clauses only
 - \(P_1 \land P_2 \land \ldots \land P_n \rightarrow Q \)
 - \(P \)
- Implication is written “backwards”
 - mother(M,C) :- parent(M,C), female(C).
 - female(karen).
- Cannot say
 - \(P_1 \land P_2 \rightarrow Q_1 \land Q_2 \)
 - And other stuff

Why this limitation?

- It allows for a simple underlying theorem prover
 - Without it, theorem provers produce tons of interim and often unnecessary results
- This search process for proving queries is called resolution (Robinson)
 - Horn clauses allow a goal-oriented, backtracking search
Example

parent(karen, greg).
parent(joseph, greg).
parent(karen, mark).
parent(joseph, mark).
female(karen).
mother(M, C) :-
parent(M, C),
female(M).

?- mother(karen, X).
X = greg ;
X = mark

Resolution

ancestor(X, Y) :-
parent(X, Y).
ancestor(X, Y) :-
parent(X, Z),
ancestor(Z, Y).

Ordering is especially important for recursive rule sets
The two sets of rules on the right are logically equivalent
- Conjunction is commutative
But they are computationally very different

?- ancestor(X, Y).
X = greg ;
X = mark

Arithmetic in Prolog

?- X = 2 + 3, X = 5.
No

\[2 + 3 \text{ does not unify with } 5 \]
- \(2 + 3\) is an unevaluated expression that is not the same as the literal \(5\)
- like \(x/y\) was in the 8 queens
?- X is 2 + 3, X = 5.
Yes

Change for a dollar: J.R. Fisher

change([N, Q, D, N, P]) :-
member(N, [0, 1, 2]), /* Half-dollars */
member(Q, [0, 1, 2, 3, 4]), /* etc. */
member(D, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
member(N, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]),
S is 50*N + 25*Q + 10*D + 5*N,
S =< 100,
P is 100 - S.

Arithmetic only works forward in Prolog

sum(X, Y, Z) :- Z is X + Y.

?- sum(4, 5, Z).
Z = 9

We'll come back to this in CLP(R), which can do it both ways!

member rule

/* member(X, Y) succeeds iff X is a member of the list Y. */

Example uses:
?- member(1, [1, 2, 3]).
Yes
?- member(7, [1, 2, 3]).
No
?- member(3, foo).
No
?- member(foo, []).
No
Definition of member

\[
\text{member}(X, [X | _]). \\
\text{member}(X, [_ | T]) :- \\
\text{member}(X, T).
\]

- \(X\) is a member of a list starting with \(X\); and \(X\) is a member of a list starting with anything as long as it is a member of the rest of the list.

The declarative interpretation falls short...

Two queries with identical logical semantics:

\[
X = [1,2,3], \text{member}(7, X). \\
\text{member}(7, X), X = [1,2,3].
\]

\[- X = [1,2,3], \text{member}(7, X). \text{No} \]
\[- \text{member}(7, X), X=[1,2,3]. \ldots \\
\text{Infinite computation}
\]

More uses of member

? - \text{member}(X, []). No \\
? - \text{member}(X, [1,2,3]). 1; 2; 3; No \\
? - \text{member}(7, X). X = [7 | G219]; X = [_ G218, 7 | G222]; X = [_ G218, _ G221, 7 | G225]; ... \\

Reminder: How Prolog tries to prove

- Rule order
 - Select the first applicable rule from top to bottom
- Goal order
 - Prove subgoals from left to right

Evidence of top to bottom rule order

?- male(X). X=joseph; X=mark; X=greg; X=eric; No

- Order of results mirrors the order that the facts appeared in the database

Order of rules matters!

\[
\text{mem1}(X, [X | _]). \\
\text{mem1}(X, [_ | T]) :- \text{mem1}(X, T). \\
\text{versus} \\
\text{mem2}(X, [_ | T]) :- \text{mem2}(X, T). \\
\text{mem2}(X, [X | _]). \\
\therefore \text{Which is more efficient?}
\]
Trace of mem1(2,[1,2,3])

T Call: (8) mem1(2, [1, 2, 3])
T Call: (9) mem1(2, [2, 3])
T Exit: (9) mem1(2, [2, 3])
T Exit: (8) mem1(2, [1, 2, 3])

mem1 was faster

- mem1 had the base case listed first
 - base case had no sub-goals

Trace of mem2(2,[1,2,3])

T Call: (8) mem2(2, [1, 2, 3])
T Call: (9) mem2(2, [2, 3])
T Call: (10) mem2(2, [3])
T Call: (11) mem2(2, [])
T Exit: (9) mem2(2, [2, 3])
T Exit: (8) mem2(2, [1, 2, 3])

mem1 - Search Structure

```
mem1(2,[2,3])
  A
  B
  mem1(2,[3])

mem2 - Search Structure

```

mem1(2,1,2,3) ::
- mem1(X,[X|T]) :- mem1(X,T).
- mem1(X,[|T]) :- mem1(X,T).

mem2(2,1,2,3) ::
- mem2(X,[|T]) :- mem2(X,T).
Prolog is not an oracle!

- Resolution gives strict rules
 - First applicable rule
 - Prove subgoals in order

How Prolog Proceeds - 1

/"A/" mem2(X,[]|T]) :- mem2(X,T).
/"B/" mem2(X,[X|_]).

Matches A, Unify []|T] with [1,2,3]
So T = [2,3], and must prove mem2(X,T).

How Prolog Proceeds - 2

/"A/" mem2(X,[]|T]) :- mem2(X,T).
/"B/" mem2(X,[X|_]).

mem2(2,[2,3])

How Prolog Proceeds - 3

/"A/" mem2(X,[]|T]) :- mem2(X,T).
/"B/" mem2(X,[X|_]).

mem2(2,[2,3])

Matches A, Unify []|T] with [2,3]
So T = [3], and must prove mem2(X,T).

How Prolog Proceeds - 4

/"A/" mem2(X,[]|T]) :- mem2(X,T).
/"B/" mem2(X,[X|_]).

mem2(2,[2,3])
How Prolog Proceeds - 5

mem2(2,[1,2,3])

/A/ mem2(X,[],T) :- mem2(X,T).
/B/ mem2(X,[X|_]).

mem2(2,[2,3])

Matches A,
Unify [],T
with [3]
So T = [],
and must prove
mem2(X,T).

How Prolog Proceeds - 6

mem2(2,[1,2,3])

/A/ mem2(X,[],T) :- mem2(X,T).
/B/ mem2(X,[X|_]).

mem2(2,[2,3])

mem2(2,[3])

mem2(2,[])

Does not match A

How Prolog Proceeds - 7

mem2(2,[1,2,3])

/A/ mem2(X,[],T) :- mem2(X,T).
/B/ mem2(X,[X|_]).

mem2(2,[2,3])

mem2(2,[3])

mem2(2,[])

A Does not match A

How Prolog Proceeds - 8

mem2(2,[1,2,3])

/A/ mem2(X,[],T) :- mem2(X,T).
/B/ mem2(X,[X|_]).

mem2(2,[2,3])

mem2(2,[3])

mem2(2,[])

A Does not match B

How Prolog Proceeds - 9

mem2(2,[1,2,3])

/A/ mem2(X,[],T) :- mem2(X,T).
/B/ mem2(X,[X|_]).

mem2(2,[2,3])

mem2(2,[3])

mem2(2,[])

No other rules can let
us find a solution to this

A B

How Prolog Proceeds - 10

mem2(2,[1,2,3])

/A/ mem2(X,[],T) :- mem2(X,T).
/B/ mem2(X,[X|_]).

mem2(2,[2,3])

mem2(2,[3])

So we must undo
binding of T=[],
and backtrack up the
tree to where T=[3]

A
/*A*/ mem2(X,[_|T]) :- mem2(X,T).

/*B*/ mem2(X,[X|_]).

How Prolog Proceeds - 11

mem2(2,[1,2,3])

A

mem2(2,[2,3])

A

mem2(2,[3])

How else can we try to prove this relation?
Check rule B!

How Prolog Proceeds - 12

mem2(2,[1,2,3])

A

mem2(2,[2,3])

A

mem2(2,[3])

Does not match B

How Prolog Proceeds - 13

mem2(2,[1,2,3])

A

mem2(2,[2,3])

A

mem2(2,[3])

No other rules, so backtrack

How Prolog Proceeds - 14

mem2(2,[1,2,3])

A

mem2(2,[2,3])

Backtrack, undo T=[3], restore T=[2,3]

How Prolog Proceeds - 15

mem2(2,[1,2,3])

A

mem2(2,[2,3])

B

Matches B!

How Prolog Proceeds - 16

mem2(2,[1,2,3])

A

mem2(2,[2,3])

B

Yes

No subgoals, so we are done!
Search algorithm

- Depth first visitation of the nodes in the search tree
- What about rules with multiple goals?

Multiple sub-goals

\[p : a, b, c. \]
\[p : m, f. \]
\[q : m, n. \]
\[r : q, p. \]
\[r : a, n. \]
\[n. \]
\[a. \]

Must prove q, and then prove p

?- r.
mem1 search trace - 2

```
/*A*/ mem1(X,[X|_]).
/*B*/ mem1(X,[_|T]) :- mem1(X,T).
```

mem1 search trace - 3

```
/*A*/ mem1(X,[X|_]).
/*B*/ mem1(X,[_|T]) :- mem1(X,T).
```

Multiple solutions trace 1

```
/*A*/ mem(Q,[X|_]).
/*B*/ mem(Q,[_|T]) :- mem(Q,T).
```

Multiple solutions trace 2

```
/*A*/ mem(Q,[X|_]).
/*B*/ mem(Q,[_|T]) :- mem(Q,T).
```

Multiple solutions trace 3

```
/*A*/ mem(Q,[X|_]).
/*B*/ mem(Q,[_|T]) :- mem(Q,T).
```

Multiple solutions trace 4

```
/*A*/ mem(Q,[X|_]).
/*B*/ mem(Q,[_|T]) :- mem(Q,T).
```

To reject a solution and force a backtrack to try to prove alternatively:

```
multiple(Q, [1, 2, 3])
```
Backtracking is not always what we want

- Patterns may match where we do not intend
- Backtracking is expensive—we may know more about our problem and can help the algorithm be "smarter"
- We may want to specify a situation that we know definitively results in failure

delete_all example

```prolog
/* delete_all(List,E,Result) means that Result is a list just like List except all elements E are missing. */
delete_all([], E, []).
delete_all([E|Tail], E, Res) :-
    delete_all(Tail, E, Res).
delete_all([Head|Tail], E, [Head|Res]) :-
    delete_all(Tail, E, Res).
```

A query for delete_all

```prolog
?- delete_all([1,2,3],2,R).
```

Why this solution?

R=[1,3]; R=[1,2,3]; No

delete_all has multiple matching rules

```prolog
delete_all([E|Tail], E, Res) :-
delete_all(Tail, E, Res).
```

- Can be proven using either of the above! R=[3], or R=[2,3]

Third rule contained implicit assumption

```prolog
delete_all([Head|Tail], E, [Head|Res]) :-
delete_all(Tail, E, Res).
```

- Want above rule to apply only when Head is not E
- That is exactly the complement of rule 2
- So we can make the algorithm only try rule 3 if rule 2 did not succeed
Use a “cut” — !

- We can make rule 2 prevent backtracking with the “cut” operator, written !.

  ```prolog
  delete_all([E|Tail], E, Res) :-
  delete_all(Tail, E, Res), !.
  ```

- Now the search algorithm will not try any other rules for `delete_all` after the above rule succeeds.
- ! succeeds and stops further backtracking for more results.

The query again

```prolog
?- delete_all([1,2,3],2,R).
R=[1,3]; No
```  

- Now we get only the single correct solution!

Cut divides problem into backtracking regions

```prolog
foo := a, b, c, !, d, e, f.
```

- Search may try various ways to prove a, b, and c, backtracking freely while solving those sub-goals.
- Once a, b, and c are proved, that sub-answer is frozen, and d, e, f must be proved without changing a, b, or c.

Controversy over cut

- Prolog is meant to be declarative.
- cut operator alters the behavior of the built-in searching algorithm.
- No declarative interpretation for cut— you must think about resolution to understand its effects.

cut and not

- We can write the not predicate using a cut operator:

  ```prolog
  not(P) :- P, !, fail.
  not(P).
  ```

- Uses built-in fail predicate that always fails.
- Cut operator prevents the search algorithm from backtracking to use the second rule to satisfy P when the first rule already failed.
- 2nd rule applies only if P cannot be proven.

!, fail combination

- Another common use of the cut is with fail
- Use to force failure in special cases that are easy to rule out immediately

  ```prolog
  average_taxpayer(X) :-
  lives_in_bermuda(X), !, fail.
  average_taxpayer(X) :-
  /* complicated rules here... */
  ```
Icon

- Icon is a programming language developed by Ralph Griswold
 - Based in part on SNOBOL
- A very cool language that (roughly) takes the best of C and of Prolog
 - It's very much an imperative language, but with a kick from backtracking
- Much of these notes are from an Icon overview
 - http://www.cs.arizona.edu/icon/docs/ipd266.htm

Expression evaluation

- Expressions in Icon don't (only) return a value
- Rather, they succeed (and return a value) or fail
 - Ex: find(s1,s2) looks for string s1 in string s2
 - If it finds it, it succeeds and returns the index where s2 was found

Generators

- What's cool is that many expressions can produce multiple results
 - find("i", "mississippi")
 - {2,5,8,11}
- You can iterate over these results easily
 - every j := find("i", "mississippi")
 do write(j)
 - every write(find("i", "mississippi"))
 - This "generator" expression stores state and can resume to produce new (additional) results

Examples

- every k := i to j do f(k)
- every f(i to j)
- every write(find("i", s1) | find("i", s2))
- every write(find("i",s1|s2))
- (i | j | k) = (0 | 1)
Writing generators

procedure findodd(s1, s2)
 every i := find(s1, s2) do
 if i % 2 = 1 then
 suspend i
 end
 every write(findodd(s1, s2))

In some sense, that’s it

- In other dimensions, Icon is very much like any imperative language.
- But adding this rich notion of expression evaluation is very expressive.
 - It’s very much like Prolog --- in essence, using unification and resolution --- but in a limited scope rather than for the entire computational model.

Other cool things

- **String scanning**
 - line ? while tab(upto(&letters)) do
 write(tab(many(&letters)))

- **Sets**
 - words := set()
 - while line := read() do
 line ? while tab(upto(&letters)) do
 insert(words, tab(many(&letters)))
 - every write(!words)

More

- **Tables**
 - words := table(0)
 - while line := read() do
 line ? while tab(upto(&letters)) do
 words[tab(many(&letters))] += 1

Next week: CLP(R)

- **Arithmetic only works forward in Prolog**
 - But we know arithmetic works both directions.
- By adding knowledge of a domain to Prolog-like languages, we can solve lots of richer problems, and solve them faster.