Instruction Scheduling

Hal Perkins
Autumn 2002

Agenda

- Instruction scheduling issues – latencies
- List scheduling

Credits: Adapted from slides by Keith Cooper, Rice University

Issues

- Many operations have non-zero latencies
- Modern machines can issue several operations per cycle
- Loads & Stores may or may not block
- Branches may block other work
- Branch costs vary
- Branches on modern processors typically have delay slots
- GOAL: Scheduler should reorder instructions to hide latencies and take advantage of delay slots

Some Idealized Latencies

<table>
<thead>
<tr>
<th>Operation</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOAD</td>
<td>3</td>
</tr>
<tr>
<td>STORE</td>
<td>3</td>
</tr>
<tr>
<td>ADD</td>
<td>1</td>
</tr>
<tr>
<td>MULT</td>
<td>2</td>
</tr>
<tr>
<td>SHIFT</td>
<td>1</td>
</tr>
<tr>
<td>BRANCH</td>
<td>0 TO 8</td>
</tr>
</tbody>
</table>

Example: \(w = w * 2 * x * y * z; \)

- Simple schedule
- Loads early
 1. LOAD r1 <- w
 2. ADD r1 <- r1, r1
 3. LOAD r2 <- x
 4. ADD r1 <- r1, r1
 5. MULT r1 <- r1, r2
 6. ADD r1 <- r1, r2
 7. MULT r1 <- r1, r3
 8. MULT r1 <- r1, r2
 9. MULT w <- r1
 10. STORE w <- r1
 11. r1 is free
 12. 2 registers, 20 cycles

- Loads early
 1. LOAD r1 <- r1, r1
 2. LOAD r2 <- x
 3. LOAD r3 <- y
 4. ADD r1 <- r1, r1
 5. MULT r1 <- r1, r2
 6. LOAD r2 <- z
 7. MULT r1 <- r1, r3
 8. MULT r1 <- r1, r2
 9. MULT w <- r1
 10. STORE w <- r1
 11. r1 is free
 12. 3 registers, 13 cycles

Instruction Scheduling

- Problem
 - Given a code fragment for some machine and latencies for each operation, reorder to minimize execution time
 - Constraints
 - Produce correct code
 - Minimize wasted cycles
 - Avoid spilling registers
 - Do this efficiently
Precedence Graph
- Nodes n are operations
- Attributes of each node
 - type – kind of operation
 - delay – latency
- If node n_2 uses the result of node n_1, there is an edge $e = (n_1, n_2)$ in the graph

Example Graph
- Code
 - a LOAD $r_1 <- w$
 - b ADD $r_1 <- r_1, r_1$
 - c LOAD $r_2 <- x$
 - d MULT $r_1 <- r_1, r_2$
 - e LOAD $r_2 <- y$
 - f MULT $r_1 <- r_1, r_2$
 - g LOAD $r_2 <- z$
 - h MULT $r_1 <- r_1, r_2$
 - i STORE $w <- r_1$

Schedules (1)
- A correct schedule S maps each node n into a non-negative integer representing its cycle number, and
 - $S(n) >= 0$ for all nodes n (obvious)
 - If (n_1, n_2) is an edge, then $S(n_1) + \text{delay}(n_1) <= S(n_2)$
 - For each type t there are no more operations of type t in any cycle than the target machine can issue

Schedules (2)
- The length of a schedule S, denoted $L(S)$ is
 - $L(S) = \max_n (S(n) + \text{delay}(n))$
- The goal is to find the shortest possible correct schedule
- Other possible goals: minimize use of registers, power, space, ...

Constraints
- Main points
 - All operands must be available
 - Multiple operations can be ready at any given point
 - Moving operations can lengthen register lifetimes
 - Moving uses near definitions can shorten register lifetimes
 - Operations can have multiple predecessors
- Collectively this makes scheduling NP-complete
- Local scheduling is the simpler case
 - Straight-line code
 - Consistent, predictable latencies

Algorithm Overview
- Build a precedence graph P
- Compute a priority function over the nodes in P (typical: longest latency-weighted path)
- Use list scheduling to construct a schedule, one cycle at a time
 - Use queue of operations that are ready
 - Chose a ready operation and schedule it
 - Update ready queue
- Rename registers to avoid false dependencies and conflicts
List Scheduling Algorithm

\[\text{Cycle} = 1; \ \text{Ready} = \text{leaves of } P; \ \text{Active} = \text{empty}; \]
\[\text{while (Ready and/or Active are not empty)} \]
\[\quad \text{if (Ready is not empty)} \]
\[\quad \quad \text{remove an op from Ready;} \]
\[\quad \quad S(\text{op}) = \text{Cycle}; \]
\[\quad \quad \text{Active} = \text{Active} + \text{op}; \]
\[\quad \quad \text{Cycle}++; \]
\[\quad \quad \text{for each op in Active} \]
\[\quad \quad \quad \text{if} \ (S(\text{op}) + \text{delay}(\text{op}) \leq \text{Cycle}) \]
\[\quad \quad \quad \quad \text{remove op from Active}; \]
\[\quad \quad \quad \quad \text{for each successor s of op in } P \]
\[\quad \quad \quad \quad \quad \text{if} \ (s \text{ is ready} – \text{i.e., all operands available}) \]
\[\quad \quad \quad \quad \quad \quad \text{add s to Ready} \]

Example

<table>
<thead>
<tr>
<th>Code</th>
<th>r1 <- w</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>LOAD</td>
</tr>
<tr>
<td>b</td>
<td>ADD</td>
</tr>
<tr>
<td>c</td>
<td>LOAD</td>
</tr>
<tr>
<td>d</td>
<td>MULT</td>
</tr>
<tr>
<td>e</td>
<td>LOAD</td>
</tr>
<tr>
<td>f</td>
<td>MULT</td>
</tr>
<tr>
<td>g</td>
<td>LOAD</td>
</tr>
<tr>
<td>h</td>
<td>MULT</td>
</tr>
<tr>
<td>i</td>
<td>STORE</td>
</tr>
</tbody>
</table>

Variations

- Backward list scheduling
 - Work from the root to the leaves
 - Schedules instructions from end to beginning of the block
 - In practice, try both and pick the result that minimizes costs
 - Little extra expense since the precedence graph and other information can be reused
- Global scheduling and loop scheduling
 - Extend basic idea in more aggressive compilers