Agenda

- Optimization
 - Goals
 - Scope: local, superlocal, regional, global, interprocedural
- Control flow graphs
- Value numbering
- Dominators

Code Improvement – How?

- Pick a better algorithm(!)
- Use machine resources effectively
 - Instruction selection & scheduling
 - Register allocation
Code Improvement (2)
- Local optimizations – basic blocks
 - Algebraic simplifications
 - Constant folding
 - Common subexpression elimination (i.e., redundancy elimination)
 - Dead code elimination
 - Specialize computation based on context

Code Improvement (3)
- Global optimizations
 - Code motion
 - Moving invariant computations out of loops
 - Strength reduction (replace multiplication by repeated additions, for example)
 - Global common subexpression elimination
 - Global register allocation

“Optimization”
- None of these improvements are truly “optimal”
 - Hard problems
 - Proofs of optimality assume artificial restrictions
 - Best we can do is to improve things
Example: $A[i,j]$

- Without any surrounding context, need to generate code to calculate

 $\text{address}(A) + (i-\text{low}_i(A)) \times (\text{high}_i(A)-\text{low}_i(A)+1) \times \text{size}(A)$

 $+ (j-\text{low}_j(A)) \times \text{size}(A)$

- low$_i$ and high$_i$ are subscript bounds in dimension i
- address(A) is the runtime address of first element of A

Some Optimizations for $A[i,j]$

- With more context, we can do better

 Examples

 - If A is local, with known bounds, much of the computation can be done at compile time

 - If $A[i,j]$ is in a loop where i and j change systematically, probably can replace multiplications with additions each time around the loop to reference successive rows/columns

Optimization Phase

- Goal

 Discover, at compile time, information about the runtime behavior of the program, and use that information to improve the generated code
Running Example: Redundancy Elimination

- An expression \(x+y\) is **redundant** at a program point iff, along every path from the procedure's entry, it has been evaluated and its constituent subexpressions (\(x\) & \(y\)) have not been redefined.
- If the compiler can prove the expression is redundant:
 - Can store the result of the earlier evaluation.
 - Can replace the redundant computation with a reference to the earlier (stored) result.

Common Problems in Code Improvement

- This strategy is typical of most compiler optimizations:
 - First, need to discover opportunities through program analysis.
 - Then, need to modify the IR to take advantage of the opportunities:
 - Historically, goal usually was to decrease execution time.
 - Other possibilities: reduce space, power, ...

Issues (1)

- Safety – transformation must not change program meaning:
 - Must generate correct results.
 - Can't generate spurious errors.
 - Optimizations must be conservative.
 - Large part of analysis goes towards proving safety.
Issues (2)
- Profitability
 - If a transformation is possible, is it profitable?
 - Example: loop unrolling
 - Can increase amount of work done on each iteration, i.e., reduce loop overhead
 - Can eliminate duplicate operations done on separate iterations
 - Cost is larger code size

Issues (3)
- Downside risks
 - Even if a transformation is generally worthwhile, need to factor in potential problems
 - Sample issues
 - Transformation might need more temporaries, putting additional pressure on registers
 - Increased code size could cause cache misses

Value Numbering
- Key idea for eliminating redundant expressions: assign an identifying number VN(n) to each expression
 - VN(x+y)=VN(j) if x+y and j have the same value
 - Use hashing over value numbers for efficiency
- Old idea (Balke 1968, Ershov 1954)
 - Invented for low-level, linear IRs
 - Equivalent methods exist for tree IRs, e.g., build a DAG
Uses of Value Numbers

- Improve the code
- Replace redundant expressions
- Simplify algebraic identities
- Discover, fold, and propagate constant valued expressions

Local Value Numbering

- Algorithm
 - For each operation \(o = \langle \text{op}, o1, o2 \rangle \) in the block
 1. Get value numbers for operands from hash lookup
 2. Hash \(\langle \text{op}, VN(o1), VN(o2) \rangle \) to get a value number for \(o \)
 (if \(\text{op} \) is commutative, sort \(VN(o1), VN(o2) \) first)
 3. If \(o \) already has a value number, replace \(o \) with a reference
 4. If \(o1 \) and \(o2 \) are constant, evaluate \(o \) at compile time
 and replace with an immediate load
- If hashing behaves, this runs in linear time

Example

<table>
<thead>
<tr>
<th>Code</th>
<th>Rewritten</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a = x + y)</td>
<td>(a = 17)</td>
</tr>
<tr>
<td>(b = x + y)</td>
<td></td>
</tr>
<tr>
<td>(c = x + y)</td>
<td></td>
</tr>
</tbody>
</table>
Bug in Simple Example

- If we use the original names, we get in trouble when a name is reused
- Solutions
 - Be clever about which copy of the value to use (e.g., use c = b in last statement)
 - Create an extra temporary
 - Rename around it (best!)

Renaming

- Idea: give each value a unique name
 - a/j means i^th definition of a with VN = j
- Somewhat complex notation, but meaning is clear
- This is the idea behind SSA (Static Single Assignment) IR
 - Popular modern IR – exposes many opportunities for optimizations

Example Revisited

<table>
<thead>
<tr>
<th>Code</th>
<th>Rewritten</th>
</tr>
</thead>
<tbody>
<tr>
<td>a = x + y</td>
<td></td>
</tr>
<tr>
<td>b = x + y</td>
<td></td>
</tr>
<tr>
<td>a = 17</td>
<td></td>
</tr>
<tr>
<td>c = x + y</td>
<td></td>
</tr>
</tbody>
</table>
Simple Extensions to Value Numbering

- Constant folding
 - Add a bit that records when a value is constant
 - Evaluate constant values at compile time
 - Replace op with load immediate
- Algebraic identities: \(x + 0, x \times 1, x - x, \ldots \)
 - Many special cases
 - Switch on op to narrow down checks needed
 - Replace result with input VN

Larger Scopes

- The given algorithm works on straight-line blocks of code (basic blocks)
 - Best possible results for single basic blocks
 - Loses all information when control flows to another block
- To go further we need to represent multiple blocks of code and the control flow between them

Basic Blocks

- Definition: A basic block is a maximal length sequence of straight-line code
- Properties
 - Statements are executed sequentially
 - If any statement executes, they all do (baring exceptions)
 - In a linear IR, the first statement of a basic block is often called the leader
Control Flow Graph (CFG)

- Nodes: basic blocks
 - Possible representations: linear 3-address code, expression-level AST, DAG
- Edges: include a directed edge from n1 to n2 if there is any possible way for control to transfer from block n1 to n2 during execution

Constructing Control Flow Graphs from Linear IRs

- Algorithm
 - Pass 1: Identify basic block leaders with a linear scan of the IR
 - Pass 2: Identify operations that end a block and add appropriate edges to the CFG to all possible successors
 - Details: Ch. 9 in the textbook
- For convenience, ensure that every block ends with conditional or unconditional jump
- Code generator can pick the most convenient “fall-through” case later

Scope of Optimizations

- Optimization algorithms can work on units as small as a basic block or as large as a whole program
- Local information is generally more precise and can lead to locally optimal results
- Global information is less precise (lose information at join points in the graph), but exposes opportunities for improvements across basic blocks
Optimization Categories (1)

- **Local methods**
 - Usually confined to basic blocks
 - Simplest to analyze and understand
 - Most precise information

Optimization Categories (2)

- **Superlocal methods**
 - Operate over *Extended Basic Blocks* (EBBs)
 - An EBB is a set of blocks \(b_1, b_2, \ldots, b_n \) where \(b_1 \) has multiple predecessors and each of the remaining blocks \(b_i (2 \leq i \leq n) \) have only \(b_{i-1} \) as its unique predecessor
 - The EBB is entered only at \(b_1 \) but may have multiple exits
 - A single block \(b_i \) can be the head of multiple EBBs (these EBBs form a tree rooted at \(b_i \))
 - Use information discovered in earlier blocks to improve code in successors

Optimization Categories (3)

- **Regional methods**
 - Operate over scopes larger than an EBB but smaller than an entire procedure/function/method
 - Typical example: loop body
 - Difference from superlocal methods is that there may be merge points in the graph (i.e., a block with two or more predecessors)
Optimization Categories (4)

- **Global methods**
 - Operate over entire procedures
 - Sometimes called *intraprocedural* methods
 - Motivation is that local optimizations sometimes have bad consequences in larger context
 - Procedure/method/function is a natural unit for analysis, separate compilation, etc.
 - Almost always need global data-flow analysis information for these

Optimization Categories (5)

- **Whole-program methods**
 - Operate over more than one procedure
 - Sometimes called *interprocedural* methods
 - Challenges: name scoping and parameter binding issues at procedure boundaries
 - Classic examples: inline method substitution, interprocedural constant propagation
 - Fairly common in aggressive JIT compilers and optimizing compilers for object-oriented languages

Value Numbering Revisited

- **Local Value Numbering**
 - 1 block at a time
 - Strong local results
 - No cross-block effects
 - Missed opportunities
Superlocal Value Numbering

- Idea: apply local method to EBBs
- \((A,B), (A,C,D), (A,C,E)\)
- Final info from A is initial info for B, C; final info from C is initial for D, E
- Gets reuse from ancestors
- Avoid reanalyzing A, C
- Doesn't help with F, G

\[
\begin{align*}
A &: m = a + b \\
B &: q = a + b
\end{align*}
\]

\[
\begin{align*}
C &: e = b + 18, s = a + b, u = e + f \\
D &: e = a + 17, t = c + d, u = e + f \\
E &: v = a + b, w = c + d, x = e + f
\end{align*}
\]

SSA Name Space (from before)

<table>
<thead>
<tr>
<th>Code</th>
<th>Rewritten</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_0^3 = x_0^1 + y_0^2)</td>
<td>(a_0^3 = x_0^1 + y_0^2)</td>
</tr>
<tr>
<td>(b_0^2 = x_0^1 + y_0^2)</td>
<td>(b_0^2 = a_0^3)</td>
</tr>
<tr>
<td>(a_1^4 = 17)</td>
<td>(a_1^4 = 17)</td>
</tr>
<tr>
<td>(c_0^3 = x_0^1 + y_0^2)</td>
<td>(c_0^3 = a_0^3)</td>
</tr>
</tbody>
</table>

- Unique name for each definition
- Name VN
- \(a_0^3\) is available to assign to \(c_0^3\)

SSA Name Space

- Two Principles
 - Each name is defined by exactly one operation
 - Each operand refers to exactly one definition
- Need to deal with merge points
 - Add \(\Phi\) functions at merge points to reconcile names
 - Use subscripts on variable names for uniqueness
Superlocal Value Numbering with All Bells & Whistles

- Finds more redundancies
- Little extra cost
- Still does nothing for F and G

\[m_0 = a_0 + b_0 \]
\[n_0 = a_0 + b_0 \]
\[p_0 = c_0 + d_0 \]
\[r_0 = c_0 + d_0 \]
\[q_0 = a_0 + b_0 \]
\[r_1 = c_0 + d_0 \]
\[e_0 = b_0 + 18 \]
\[s_0 = a_0 + b_0 \]
\[u_0 = e_0 + f_0 \]
\[e_1 = a_0 + 17 \]
\[t_0 = c_0 + d_0 \]
\[u_1 = e_1 + f_0 \]
\[e_2 = \Phi(e_0,e_1) \]
\[u_2 = \Phi(u_0,u_1) \]
\[v_0 = a_0 + b_0 \]
\[w_0 = c_0 + d_0 \]
\[x_0 = e_2 + f_0 \]
\[r_2 = \Phi(r_0,r_1) \]
\[y_0 = a_0 + b_0 \]
\[z_0 = c_0 + d_0 \]

Larger Scopes

- Still have not helped F and G
- Problem: multiple predecessors
- Must decide what facts hold in F and in G
 - For G, combine B & F?
 - Merging states is expensive
 - Fall back on what we know

Dominators

- Definition
 - \(x \) *dominates* \(y \) iff every path from the entry of the control-flow graph to \(y \) includes \(x \)
 - By definition, \(x \) dominates \(x \)
 - Associate a Dom set with each node
 - \(|\text{Dom}(X)| \geq 1 \)
 - Many uses in analysis and transformation
 - Finding loops, building SSA form, code motion
Immediate Dominators

- For any node \(x \), there is a \(y \) in \(\text{Dom}(x) \) closest to \(x \)
- This is the *immediate dominator* of \(x \)
- Notation: \(\text{IDom}(x) \)

Dominator Sets

<table>
<thead>
<tr>
<th>Block</th>
<th>Dom</th>
<th>IDom</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(m_0 = a_0 + b_0)</td>
<td>(n_0 = a_0 + b_0)</td>
</tr>
<tr>
<td>B</td>
<td>(p_0 = c_0 + d_0)</td>
<td>(r_0 = c_0 + d_0)</td>
</tr>
<tr>
<td>C</td>
<td>(q_0 = a_0 + b_0)</td>
<td>(r_1 = c_0 + d_0)</td>
</tr>
<tr>
<td>D</td>
<td>(e_0 = b_0 + 18)</td>
<td>(s_0 = a_0 + b_0)</td>
</tr>
<tr>
<td>E</td>
<td>(u_0 = e_0 + f_0)</td>
<td>(v_0 = a_0 + b_0)</td>
</tr>
<tr>
<td>F</td>
<td>(e_1 = a_0 + 17)</td>
<td>(t_0 = c_0 + d_0)</td>
</tr>
<tr>
<td>G</td>
<td>(e_2 = \Phi(e_0,e_1))</td>
<td>(u_2 = \Phi(u_0,u_1))</td>
</tr>
</tbody>
</table>

Dominator Value Numbering

- Still looking for a way to handle F and G
- Idea: Use info from \(\text{IDom}(x) \) to start analysis of \(x \)
- Use C for F and A for G
- Dominator VN Technique (DVNT)
DVNT algorithm

- Use superlocal algorithm on extended basic blocks
- Use scoped hash tables & SSA name space as before
- Start each node with table from its IDOM
- No values flow along back edges (i.e., loops)
- Constant folding, algebraic identities as before

Dominator Value Numbering

- **Advantages**
 - Finds more redundancy
 - Little extra cost
- **Shortcomings**
 - Misses some opportunities (common calculations in ancestors that are not IDOMs)
 - Doesn't handle loops or other back edges

The Story So Far...

- Local algorithm
- Superlocal extension
 - Some local methods extend cleanly to superlocal scopes
- Dominator VN Technique (DVNT)
 - All of these propagate along forward edges
 - None are global
Coming Attractions

- Data-flow analysis
 - Provides global solution to redundant expression analysis
 - Catches some things missed by DVNT, but misses some others
 - Generalizes to many other analysis problems, both forward and backward
- Transformations
 - A catalog of some of the things a compiler can do with the analysis information