LR Parser Construction
Hal Perkins
Autumn 2002

Agenda
- LR(0) state construction
- FIRST, FOLLOW, and nullable
- Variations SLR, LR(1), LALR

LR State Machine
- Idea: Build a DFA that recognizes handles
 - Language generated by a CFG is generally not regular, but
 - Language of handles for a CFG is regular
 - Parser reduces when DFA accepts
Prefixes, Handles, &c (review)

- If \(S \) is the start symbol of a grammar \(G \), then \(S \Rightarrow^* \alpha \) is a sentential form of \(G \).
- \(\gamma \) is a viable prefix of \(G \) if there is some derivation \(S \Rightarrow^* \alpha M \Rightarrow^* \alpha \beta w \) and \(\gamma \) is a prefix of \(\alpha \).
- The occurrence of \(\beta \) in \(\alpha \beta w \) is a handle of \(\alpha \beta w \).

An item is a marked production (a . at some position in the right hand side)

\[
[A ::= \ . X Y] \quad [A ::= X. Y] \quad [A ::= X Y.]\]

Building the LR(0) States

- Example grammar
 \[
 S' ::= S \$
 S ::= (L)
 S ::= x
 L ::= S
 L ::= L , S
 \]
- We add a production \(S' \) with the original start symbol followed by end of file (\$)
- Question: What language does this grammar generate?

Start of LR Parse

- Initially
 - Stack is empty
 - Input is the right hand side of \(S' \), i.e., \(S \$
 - Initial configuration is \([S' ::= \ . S] \)
 - But, since position is just before \(S \), we are also just before anything that can be derived from \(S \).
A state is just a set of items
- Start: an initial set of items
- Completion (or closure): additional productions whose left hand side appears to the right of the dot in some item already in the state

Initial state

```
S' ::= S$
S ::= ( L )
S ::= x
L ::= S
L ::= L , S
```

Shift Actions (1)

```
S' ::= S$
S ::= ( L )
S ::= x
L ::= S
L ::= L , S
```

To shift past the x, add a new state with the appropriate item(s)
- In this case, a single item; the closure adds nothing
- This state will lead to a reduction since no further shift is possible

```
S ::= . S$
S ::= . ( L )
S ::= . x
S ::= x .
```

Shift Actions (2)

```
S ::= S$
S ::= ( L )
S ::= x
L ::= S
L ::= L , S
```

If we shift past the (, we are at the beginning of L
- the closure adds all productions that start with L,
 which requires adding all productions starting with S

```
S' ::= . S$
S ::= . ( L )
L ::= . L , S
L ::= . S
L ::= . ( L )
S ::= . x
```
Once we reduce S_i we'll pop the rhs from the stack exposing the first state. Add a goto transition on S for this.

Goto Actions

- $S' ::= .S$
- $S ::= (L)$
- $S ::= x$
- $I ::= S$
- $I ::= I,S$

Basic Operations

- **Closure** (S)
 - Adds all items implied by items already in S
- **Goto** (I, X)
 - I is a set of items
 - X is a grammar symbol (terminal or non-terminal)
 - **Goto** moves the dot past the symbol X in all appropriate items in set I

Closure Algorithm

- **Closure** (S) =
 - repeat
 - for any item $[A ::= \alpha \cdot X\beta]$ in S
 - for all productions $X ::= \gamma$
 - add $[X ::= .\gamma]$ to S
 - until S does not change
 - return S
Goto Algorithm

- \(\text{Goto}(I, X) = \)
 - set new to the empty set
 - for each item \([A ::= \alpha \cdot X \beta] \) in \(I \)
 - add \([A ::= \alpha \cdot X \cdot \beta]\) to new
 - return \(\text{Closure}(\text{new}) \)

This may create a new state, or may return an existing one.

LR(0) Construction

- First, augment the grammar with an extra start production \(S' ::= S \$
- Let \(T \) be the set of states
- Let \(E \) be the set of edges
- Initialize \(T \) to \(\text{Closure}([S' ::= . S \$]) \)
- Initialize \(E \) to empty

LR(0) Algorithm

repeat
 - for each state \(I \) in \(T \)
 - for each item \([A ::= \alpha \cdot X \beta]\) in \(I \)
 - Let new be \(\text{Goto}(I, X) \)
 - Add new to \(T \) if not present
 - Add \(I \) \(X \) new to \(E \) if not present
 - until \(E \) and \(T \) do not change in this iteration

Footnote: For symbol $, we don't compute goto \((I, \$) \); instead, we make this an accept action.
LR(0) Reduce Actions

Algorithm:
- Initialize R to empty
- for each state I in T
 - for each item $[A ::= \alpha.]$ in I
 - add $(I, A ::= \alpha)$ to R

Building the Parse Tables (1)

- For each edge $I \xrightarrow{X} J$
 - if X is a terminal, put s_j in column X, row I of the action table (shift to state j)
 - If X is a non-terminal, put g_j in column X, row I of the goto table

Building the Parse Tables (2)

- For each state I containing an item $[S' ::= S \cdot \$], put accept in column $\$$ of row I
- Finally, for any state containing $[A ::= \gamma.]$ put action rn in every column of row n in the table, where n is the production number
Example: States for

S' ::= S$
S ::= (L)
S ::= x
L ::= S
L ::= L , S

Example: Tables for

S' ::= S$
S ::= (L)
S ::= x
L ::= S
L ::= L , S

Where Do We Stand?

- We have built the LR(0) state machine and parser tables
- No lookahead yet
- Different variations of LR parsers add lookahead information, but basic idea of states, closures, and edges remains the same
A Grammar that is not LR(0)

- Build the state machine and parse tables for a simple expression grammar

\[
S ::= E$
\]

\[
E ::= T + E$
\]

\[
E ::= T$
\]

\[
T ::= x$
\]

LR(0) Parser for

1. \(S ::= E \$
2. \(E ::= T + E \$
3. \(E ::= T \$

\[
S ::= E \$
\]

\[
E ::= T + E \$
\]

\[
E ::= T \$
\]

\[
T ::= x$
\]

\[
T ::= x$
\]

\[
State 3 has two possible actions on +
- shift 4, or reduce 3
\]

∴ Grammar is not LR(0)

SLR Parsers

- Idea: Use information about what can follow a non-terminal to decide if we should perform a reduction
- Easiest form is SLR – Simple LR
- So we need to be able to compute FOLLOW(A) – the set of symbols that can follow A in any possible derivation
- But to do this, we need to compute FIRST(γ) for strings γ that can follow A
Calculating FIRST(γ)

- Sounds easy... If γ = X Y Z, then FIRST(γ) is FIRST(X), right?

- But what if we have the rule X ::= ε?
- In that case, FIRST(γ) includes anything that can follow an X – FOLLOW(X)

FIRST, FOLLOW, and nullable

- nullable(X) is true if X can derive the empty string
- Given a string γ of terminals and non-terminals, FIRST(γ) is the set of terminals that can begin strings derived from γ.
- FOLLOW(X) is the set of terminals that can immediately follow X in some derivation
- All three of these are computed together

Computing FIRST, FOLLOW, and nullable (1)

- Initialization
 - set FIRST and FOLLOW to be empty sets
 - set nullable to false for all non-terminals
 - set FIRST[a] to a for all terminal symbols a
Computing FIRST, FOLLOW, and nullable (2)

repeat
 for each production \(X := Y_1 Y_2 \ldots Y_k \)
 if \(Y_1 \ldots Y_k \) are all nullable (or if \(k = 0 \))
 set nullable\([X]\) = true
 for each \(i \) from 1 to \(k \) and each \(j \) from \(i + 1 \) to \(k \)
 if \(Y_1 \ldots Y_i \) are all nullable (or if \(i = 1 \))
 add FIRST\([Y_i]\) to FIRST\([X]\)
 if \(Y_{i+1} \ldots Y_k \) are all nullable (or if \(i = k \))
 add FOLLOW\([X]\) to FOLLOW\([Y_i]\)
 if \(Y_{i+1} \ldots Y_j \) are all nullable (or if \(i+1 = j \))
 add FIRST\([Y_j]\) to FOLLOW\([Y_i]\)
 Until FIRST, FOLLOW, and nullable do not change

Example

<table>
<thead>
<tr>
<th>Grammar</th>
<th>nullable</th>
<th>FIRST</th>
<th>FOLLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z ::= d)</td>
<td></td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>(Z ::= X Y Z)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Y ::= \varepsilon)</td>
<td></td>
<td>(Y)</td>
<td></td>
</tr>
<tr>
<td>(Y ::= c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(X ::= Y)</td>
<td></td>
<td>(Z)</td>
<td></td>
</tr>
<tr>
<td>(X ::= a)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SLR Construction

- This is identical to LR(0) – states, etc., except for the calculation of reduce actions
- Algorithm:
 - Initialize \(R \) to empty
 - for each state \(I \) in \(T \)
 - for each item \([A ::= \alpha.]\) in \(I \)
 - for each terminal \(a \) in FOLLOW\((A)\)
 - add \((I, a, A ::= \alpha)\) to \(R\)
 - i.e., reduce \(\alpha \) to \(A \) in state \(I \) only on lookahead \(a \)
On To LR(1)

- Many practical grammars are SLR
- LR(1) is more powerful yet
- Similar construction, but notion of an item is more complex, incorporating lookahead information

LR(1) Items

- An LR(1) item \([A ::= \alpha \cdot \beta, a]\) is
 - A grammar production \((A ::= \alpha\beta)\)
 - A right hand side position (the dot)
 - A lookahead symbol \((a)\)
- Idea: This item indicates that \(\alpha\) is the top of the stack and the next input is derivable from \(\beta a\).
- Full construction: see the book
LR(1) Tradeoffs

- **LR(1)**
 - **Pro:** extremely precise; largest class of grammars
 - **Con:** potentially very large parse tables with many states

LALR(1)

- Variation of LR(1), but merge any two states that differ only in lookahead
- Example: these two would be merged

 - \[A ::= x . , a \]
 - \[A ::= x . , b \]

LALR(1) vs LR(1)

- LALR(1) tables can have many fewer states than LR(1)
- LALR(1) may have reduce conflicts where LR(1) would not (but in practice this doesn't happen often)
Language Heirarchies

unambiguous grammars

ambiguous grammars

LL(k) LR(k)
LL(1) LR(1)
LL(0) LR(0)

LL(k) Parsing – Top-Down
Recursive Descent Parsers
What to do if you need a parser in a hurry