Medical Imaging Instrumentation & Image Analysis – MRI subportion

Atam P. Dhawan, Ph.D.

Dept. of Electrical & Computer Engineering
Dept. of Biomedical Engineering
New Jersey Institute of Technology
Newark, NJ, 07102
Dhawan@adm.njit.edu
Basic Principle: The electromagnetic induction based rf signals are collected through nuclear magnetic resonance from the excited nuclei with magnetic moment and angular momentum present in the body. Most common is proton density imaging.
Protons with a spinning property behave like small magnets. Spinning around their own axes results in generation of a magnetic moment, μ. When placed in external magnetic field, spinning protons align themselves either along or against the external magnetic field. In addition, placing spinning proton in an external magnetic field causes the magnetic moment to precess around an axis parallel to the field direction.
Spinning Proton

Protons possessing properties of angular and magnetic moments provide signals for nuclear magnetic resonance

Precession

Spin
Protons With Random Effect

Net Longitudinal Vector: Zero

Net Transverse Vector: Zero
Protons Under External Magnetic Field

Lower Energy Level

$S \omega = \gamma H$

Transition to Equilibrium

Up/Down state transitions require quantized energy input

Energy

Zero Field

Field Applied
Net Vector Under Thermal Equilibrium

Larmor (Precession) Frequency $\omega = \gamma H$
Protons Under Thermal Equilibrium
An RF Pulse Converts Longitudinal Magnetization to Signal

Longitudinal Magnetization

90° RF Pulse

MR Signal
Protons With External RF Excitation:
180 Degree Pulse
Longitudinal Relaxation Parameter: T_1

\[M = M_0 \exp\left(-\frac{t}{T_1}\right) \]
T2 and TE

\[S(t) = M_{xy}(t) = S_0 \exp(-te/T2) \]
Relaxation Process Provides FID or MR Signal
Effects of TE at long TR

Spin Echo Imaging Sequence

RF Energy: 90 Deg Pulse
Zero Net Vector: Random Phase
In Phase
Relaxation
Dephasing
RF Energy: 180 Deg Pulse
Rephasing
Echo-Formation
Contrast, TR and TE

<table>
<thead>
<tr>
<th>TR</th>
<th>Density</th>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Long TR** results in high T1 and low T2, showing more contrast between different tissues.
- **Short TR** results in low T1 and high T2, making it useful for detecting subtle differences in tissue density.
The spin angular moment, J, and the magnetic moment, μ, is described by

$$\vec{\mu} = \gamma \vec{J}$$

where γ is a gyromagnetic ratio defined in MHz/T.

For hydrogen proton

$\gamma = 42.58$ MHz/T
Angular Momentum

The torque generated by the interaction of magnetic moment of a proton and the external magnetic field is equal to the rate of change of angular momentum and can be given by the equation of motion for isolated spin as

\[
\frac{d\vec{J}}{dt} = \mu \times \vec{H}_0 = \mu \times H_0 \vec{k}
\]

\[
\vec{\mu} = \gamma \vec{J}
\]

\[
\frac{d\vec{\mu}}{dt} = \gamma \mu \times H_0 \vec{k}
\]
Total Magnetic Moment

Assuming \(N \) to be the total number of spinning nuclei in the object being imaged, a stationary magnetization vector, \(\vec{M} \), can be defined from the available magnetic moments as

\[
\vec{M} = \sum_{n=1}^{N} \vec{\mu}_n
\]

\[
\vec{M} = M_x \hat{i} + M_y \hat{j} + M_z \hat{k}
\]

and

\[
\vec{M}_r = M_x \hat{i}' + M_y \hat{j}' + M_z \hat{k}'
\]
Rotating Field

\[
\vec{i}' = \cos(\omega t)\vec{i} - \sin(\omega t)\vec{j} \\
\vec{j}' = \sin(\omega t)\vec{i} + \cos(\omega t)\vec{j} \\
\vec{k}' = \vec{k}
\]

\[
\begin{bmatrix}
M_{x'} \\
M_{y'} \\
M_{z'}
\end{bmatrix} =
\begin{bmatrix}
\cos \omega t & -\sin \omega t & 0 \\
\sin \omega t & \cos \omega t & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
M_x \\
M_y \\
M_z
\end{bmatrix}
\]

The transverse magnetization vector in the rotating frame can be written as

\[
M_{x',y'} = M_{x,y} e^{i\omega t}
\]

where

\[
M_{x,y} = M_x + iM_y \quad \text{and} \quad M_{x',y'} = M_{x'} + iM_{y'}
\]
Oscillating RF Field

Let us assume that \(H_{1r} \) and \(H_1 \) are, respectively, the RF field in the rotating frame and the stationary coordinates systems.

An oscillating RF field causing nuclear excitation can be expressed as

\[
H_{1r}(t) = H_1(t)e^{i\omega t}
\]

where

\[
H_1 = H_{1,x} + iH_{1,y} \quad \text{and} \quad H_{1r} = H_{1,x'} + iH_{1,y'}
\]
The relationship between the rates of change of stationary magnetization vector \vec{M} and rotating magnetization vector \vec{M}_r can then be expressed as

$$\frac{d\vec{M}}{dt} = \frac{\partial\vec{M}_r}{\partial t} + \omega \times \vec{M}_r$$

During the RF pulse (nuclear excitation phase), the rate of change in the net stationary magnetization vector can be expressed as (the Bloch Equation):

$$\frac{d\vec{M}}{dt} = \gamma \vec{M} \times \vec{H}$$
Considering the total response of the spin system in the presence of an external magnetic field along with the RF pulse for nuclear excitation followed by the nuclear relaxation phase, the change of the net magnetization vector can be expressed as

$$\frac{d\vec{M}}{dt} = \gamma \vec{M} \times \vec{H} - \frac{M_x i - M_y j}{T_2} - \frac{(M_z - M_z^0) k}{T_1}$$

\vec{M}_z^0 is the net magnetization vector in thermal equilibrium in the presence of an external magnetic field H_0 only, and T_1 and T_2 are, respectively, the longitudinal (spin-lattice) and transverse (spin-spin) relaxation times in the nuclear relaxation phase when excited nuclei return to their thermal equilibrium state.
Relaxation Process

\[M_{x,y}(t) = M_{x,y}(0)e^{-t/T_2}e^{-i\omega_0 t} \]

\[M_z(t) = M_z^0 (1 - e^{-t/T_1}) + M_z(0)e^{-t/T_1} \]

where \(M_{x,y}(0) = M_{x',y'}(0)e^{-i\omega_0 \tau_p} \)

\(M_{x,y}(0) \) represents the initial transverse magnetization vector with the time set to zero at the end of the RF pulse of duration \(\tau_p \).
Signal Induction

\[\phi (t) = \int_{\text{object}} \vec{H}_r (\vec{r}) \cdot \vec{M} (\vec{r}, t) d\vec{r} \]

\[\vec{r} = x\hat{i} + y\hat{j} + z\hat{k} \]

\[V(t) = -\frac{\partial \phi (t)}{\partial t} = -\frac{\partial}{\partial t} \int_{\text{object}} \vec{H}_r (\vec{r}) \cdot \vec{M} (\vec{r}, t) d\vec{r} \]
Relaxation Vectors

$M_{x,y}(t)$

$M_z(t)$
Relaxation Times

<table>
<thead>
<tr>
<th>Tissue</th>
<th>T1 msec</th>
<th>T2 msec</th>
<th>SD %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat</td>
<td>150</td>
<td>150</td>
<td>10.9</td>
</tr>
<tr>
<td>Liver</td>
<td>250</td>
<td>44</td>
<td>10.0</td>
</tr>
<tr>
<td>White Matter</td>
<td>300</td>
<td>133</td>
<td>11.0</td>
</tr>
<tr>
<td>Gray Matter</td>
<td>475</td>
<td>118</td>
<td>10.5</td>
</tr>
<tr>
<td>Blood</td>
<td>525</td>
<td>261</td>
<td>10.0</td>
</tr>
<tr>
<td>CSF</td>
<td>2000</td>
<td>250</td>
<td>10.8</td>
</tr>
</tbody>
</table>
Signal Coding

\[\mathbf{G}(t) = G_x(t)\hat{i} + G_y(t)\hat{j} + G_z(t)\hat{k} \]

\[S(t) = \int \vec{M}(\mathbf{r}, t)d^3r \]

\[\vec{M}(\mathbf{r}, t) = \vec{M}_0 \rho(\mathbf{r})e^{-i\mathbf{r} \cdot \int_0^t \mathbf{G}(t')dt'} \]

\[S(\omega_x, \omega_y, \omega_z) = \vec{M}_0 \iiint \rho(x, y, z)e^{-i(\omega_xx + \omega_yy + \omega_zz)}dxdydz \]

\[\rho(x, y, z) = \vec{M}_0 \iiint S(\omega_x, \omega_y, \omega_z)e^{i(\omega_xx + \omega_yy + \omega_zz)}d\omega_x d\omega_y d\omega_z \]
MR Imaging

Diagram showing the components of an MRI system:
- Magnet
- Gradient Coils
- RF Coils
- Patient Platform
- Data-Acquisition System
- Monitor

Diagram includes a cylindrical magnet with gradient coils, RF coils, and a patient platform. The system is connected to a computer and a data-acquisition system.
Spin-Echo Imaging Sequence

Slice-Selection
Z-direction

- Central sulcus
- Frontal lobe
- Callosum
- Diencephalon
- Parietal lobe
- Occipital lobe
- Pons and cerebellum
- Spinal cord
Imaging Through MR: Spin Echo

RF pulse
Transmitter

G_z: Slice Selection
Frequency Encoding
Gradient

G_x: Phase Encoding
Gradient

G_y: Readout
Frequency Encoding
Gradient

NMR
RF FID
Signal

90 deg
RF pulse

180 deg
RF pulse

\(T_E /2 \)

\(T_E \)
Slice Selection
Frequency Encoding

Frequency Gradient Axis
Spatial Encoding

1. After Slice Selection
Spatial Encoding

2. Phase Encoding
Spatial Encoding

3. After Phase Encoding
Spatial Encoding
Equivalent Strategies in k-space

- Gradient
- Samples
- Time

Comparison of different gradient and sample patterns over time.
MR Imaging: Single Shot EPI

RF pulse
Transmitter

90 deg
RF pulse

90 deg
RF pulse

G\textsubscript{z}: Slice Selection
Frequency
Encoding
Gradient

G\textsubscript{x}: Oscillating
Gradient

\tau
2
\tau
2
\tau
2
\tau
2
\tau

G\textsubscript{y}: Readout
Gradient

NMR
RF FID
Signal
Echo-Planar k-space Trajectory
A Pulse Sequence Controls

- Slice Location
- Slice Orientation
- Slice Thickness
- Number of Slices
- Resolution (FOV and Matrix)
- Contrast
 - TR, TE, TI, Flip Angle, Diffusion, etc...
- Artifact Correction
 - Saturation Pulses, Flow Comp, Fat Suppression, etc...
T1 and T2 Contrast

<table>
<thead>
<tr>
<th>Tissue</th>
<th>T1 msec</th>
<th>T2 msec</th>
<th>SD %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat</td>
<td>150</td>
<td>150</td>
<td>10.9</td>
</tr>
<tr>
<td>Liver</td>
<td>250</td>
<td>44</td>
<td>10.0</td>
</tr>
<tr>
<td>White Matter</td>
<td>300</td>
<td>133</td>
<td>11.0</td>
</tr>
<tr>
<td>Gray Matter</td>
<td>475</td>
<td>118</td>
<td>10.5</td>
</tr>
<tr>
<td>Blood</td>
<td>525</td>
<td>261</td>
<td>10.0</td>
</tr>
<tr>
<td>CSF</td>
<td>2000</td>
<td>250</td>
<td>10.8</td>
</tr>
</tbody>
</table>

Typical NMR Tissue Values at 0.15 T
Contrast, TR and TE

TR

Long

Short

Proton Density

T2-Weighted

T1-Weighted

Short

Long

TE
3-D Imaging

- Sagittal
- Axial
- Coronal
3-D MR Imaging
There are several imaging modalities within MRI.
- T1 and T2 weighted images
- Spin Echo and multiple echo sequence images
- MR Spectroscopy
- Blood flow imaging
- Perfusion imaging
- Function imaging
MRI Advantage

- The most important advantage of the MRI is its ability to provide unprecedented contrasts between various organs and tissues and the three-dimensional nature of imaging methods.
- Selective 3-D imaging is provided by appropriate selection of gradient fields and phase encoding methods.
- A variety of contrast images can be created by different combinations of weighting of T1, T2 and echo images.
- MR spectroscopy provides a great potential for meaningful tissue characterization.
- Functional MRI holds great promise for the future.
Advanced MRI Methods

Atam P Dhawan
Functional MRI (fMRI)

- fMRI aims to measure the hemodynamic response related to neural activity.
 - Can measures changes in blood oxygenation levels in neural tissue (in brain or nervous systems).
 - Neural cells when active or create action potential consume oxygen which is taken from oxygenated hemoglobin.
 - Due to neural activity, oxygen consumption causes local changes in the relative concentration of oxyhemoglobin and deoxyhemoglobin and changes in local cerebral blood volume with an increase in blood flow.
 - Blood flow is also highly correlated with metabolic rate.
William James (1890)

“We must suppose a very delicate adjustment whereby the circulation follows the needs of the cerebral activity. Blood very likely may rush to each region of the cortex according as it is most active, but of this we know nothing.”
Brain “Activation” Leads to:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Effect</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBF</td>
<td>Increased</td>
<td>+ΔR1</td>
</tr>
<tr>
<td>CBV</td>
<td>Increased</td>
<td>+ΔR2 (C+)</td>
</tr>
<tr>
<td>O$_2$ Utilization</td>
<td>Increased slightly? 54</td>
<td></td>
</tr>
<tr>
<td>Venous [O$_2$]</td>
<td>Increased</td>
<td>-ΔR2*</td>
</tr>
<tr>
<td>Glucose Utilization</td>
<td>Increased</td>
<td>? Lactate</td>
</tr>
</tbody>
</table>

\[
R1 = \frac{1}{T1} \\
R2 = \frac{1}{T2}
\]
fMRI is an indirect measure of the neuronal activity elicited by an external stimulus ("visual stimulation") mediated through hemodynamic processes occurring in the dense network of veins ("V"), arteries ("A")
Blood Oxygen Level Dependent (BOLD) Imaging

- Deoxyhemoglobin as intravascular paramagnetic contrast agent:
 - Hemoglobin is diamagnetic when oxygenated but paramagnetic when deoxygenated providing different FID signals.
- Blood-Oxygen-Level Dependent (BOLD) contrast MR pulse sequence can detect level of oxygenation through deoxyhemoglobin.
- A reduction of the relative deoxyhemoglobin concentration due to an increase of blood flow (and hence increased supply of fresh oxyhemoglobin) during any neural or metabolic activity can be measured as an increase in T2 or T2 weighted MR signals.
Why Does Venous O2 Increase?

Under normal conditions oxygen diffuses down its concentration gradient from the arteries to the veins.
What BOLD Measures?

- BOLD contrast reflects a complex convolution of changes, following a neural activity, involving:
 - cerebral metabolic rate of oxygen (CMRO2)
 - cerebral blood flow (CBF), and
 - cerebral blood volume (CBV)
BOLD Contrast

- Visual Cortex Activity with BOLD signal
Time course of BOLD and single unit recordings from the same cortical location. Identical visual stimuli were used for fMRI and subsequent single unit recording sessions. Blue trace: peristimulus histogram of the spike activity. Red trace: BOLD percent changes during visual stimulation. Gray box: stimulus duration. The black trace above indicates the original low-frequency analog signals (100-300Hz) underlying the depicted spike counts.
Improvement of BOLD spatial specificity by using non-conventional functional MRI signals. Time course on the left side shows biphasic evolution of MR signals, resulting the early deoxygenation contrast. If used, such deoxygenation signals produce high-resolution images of exceedingly high functional specificity (termed BOLD-) that contrasts with conventional BOLD fMRI signals (termed BOLD+).
Functional MRI of the human visual cortex: BOLD 3T

Mapping of the receptive field properties for iso-eccentricity using the standard stimuli. Color-coded activation areas were responding to eccentricities represented by the colored rings in the upper right corner.
Bold Contrast Images with Stimulus
Diffusion tensor imaging (DTI) provides information about tissue organization at the microscopic level.

DTI probes the diffusion properties (magnitude, direction and anisotropy) of water molecules in tissues.

The diffusion magnitude and anisotropy reflect the state of the cellular membrane permeability, myelination and axonal integrity, compartmentalization, and intrinsic and geometric hindrance to the mobility of water molecules.

Diffusion anisotropy is related to axonal packing and axonal membranes.

DTI allows us to visualize the location, the orientation, and the anisotropy of the brain's white matter tracts.

Illnesses that disrupt the normal organization or integrity of cerebral white matter (such as multiple sclerosis, strokes) have a quantitative impact on DTI measures.
Anisotropic Diffusion

- The architecture of the axons in parallel bundles, and their myelin sheaths, facilitate the diffusion of the water molecules preferentially along their main direction. Such preferentially oriented diffusion is called anisotropic diffusion.

Diagram:
- Dendrite
- Node of Ranvier
- Axon Terminal
- Soma
- Schwann cell
- Myelin sheath
DWI

- **Diffusion-weighted imaging**

 Three gradient-directions to estimate the trace of the diffusion tensor or 'average diffusivity.

 Trace-weighted images have proven to be very useful to diagnose vascular strokes in the brain, by early detection (within a couple of minutes) of the hypoxic edema.
DWI Imaging Meningioma
Diffusion tensor imaging (DTI) scans comprise at least six gradient directions, sufficient to compute the diffusion tensor.

The diffusion model assumes homogeneity and linearity of the diffusion within each image-voxel.

From the diffusion tensor diffusion anisotropy measures, such as the Fractional Anisotropy (FA), can be computed.

The principal direction of the diffusion tensor can be used to infer the white-matter connectivity of the brain (tractography).
DTI Applications

- DTI is useful to study diseases of the white matter and connectivity of brain pathways.
 - Attention deficit hyperactivity disorder (ADHD)
 - Observed abnormalities of the fiber pathways in the frontal cortex, basal ganglia, brain stem and cerebellum.
 - Schizophrenia
 - Observed abnormalities in two functionally and anatomically different neural pathways – the uncinate fasciculus (UF) and the cingulate bundle (CB).
 - Vascular Strokes
 - DTI is useful to diagnose vascular strokes in the brain, study diseases of the white matter and to see connectivity of the brain.
Diffusion

- Water molecules that start at the same location spreads out over time. Each molecule experience a series of random displacements so that after a time T the spread of position along a spatial axis x has a variance of

$$\sigma_x^2 = 2DT$$

where D is the diffusion coefficient.
DTI Pulse Sequence: $g=(1,1,0)$

\[
\frac{S}{S_0} = e^{-\gamma^2 G^2 \delta^2 (\Delta - \delta/3) D}
\]

G and δ are gradient strength and duration, and Δ is the separation between a pair of gradient pulses.
DTI Measurement

\[
\frac{S}{S_0} = e^{-\gamma^2 G^2 \partial^2 (\Delta - \partial / 3) D}
\]

\[b = \gamma^2 G^2 \partial^2 (\Delta - \partial / 3) D\]

\[S = S_0 \exp(-bD)\]

\[D = \frac{1}{b} \ln \frac{S_0}{S}\]

D is scalar in DWI but is tensor in DTI described by direction
Directional Gradient: Example

If the diffusion-sensitizing gradient pulses are applied along the x-axis, \(\mathbf{u} = (1, 0, 0) \), or if the measurement axis is at an angle \(\theta \) to the x-axis and in the x-y plane, \(\mathbf{u} = (\cos \theta, \sin \theta, 0) \), then the measured value of \(D \) along any axis \(\mathbf{u} \) is given by:

\[
D = \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix} \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{bmatrix} \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix}
\]

\[
D = u_x^2 D_{xx} + u_y^2 D_{yy} + u_z^2 D_{zz} + 2u_x u_y D_{xy} + 2u_y u_z D_{yz} + 2u_z u_x D_{zx}
\]
Diffusion Signal

\[D = \frac{1}{b} \ln \frac{S_0}{S} \]

\[D = u_x^2 D_{xx} + u_y^2 D_{yy} + u_z^2 D_{zz} + 2u_x u_y D_{xy} + 2u_y u_z D_{yz} + 2u_z u_x D_{zx} \]

\[\therefore \frac{1}{b} \ln \frac{S_0}{S} = u_x^2 D_{xx} + u_y^2 D_{yy} + u_z^2 D_{zz} + 2u_x u_y D_{xy} + 2u_y u_z D_{yz} + 2u_z u_x D_{zx} \]
Example 12 Directions

\[
\begin{bmatrix}
\frac{1}{b} \ln \frac{S_0}{S_1} \\
\vdots \\
\frac{1}{b} \ln \frac{S_0}{S_{12}}
\end{bmatrix}
= U\tilde{D}
\]

\[
U = \begin{bmatrix}
u_{x1}^2 & u_{y1}^2 & u_{z1}^2 & u_{x1}u_{y1} & u_{y1}u_{z1} & u_{z1}u_{x1} \\
\vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\
u_{x12}^2 & u_{y12}^2 & u_{z12}^2 & u_{x12}u_{y12} & u_{y12}u_{z12} & u_{z12}u_{x12}
\end{bmatrix}
\]

\[
\tilde{D} = \begin{bmatrix}
D_{xx} \\
D_{yy} \\
D_{zz} \\
2D_{xy} \\
2D_{xz} \\
2D_{yz}
\end{bmatrix}
\]

Now, if we assume that the columns of U are linearly independent, then the matrix UTU is invertible and the least squares solution is

\[
\tilde{D}_0 = (U^TU)^{-1}U^T
\begin{bmatrix}
\frac{1}{b} \ln \frac{S_0}{S_1} \\
\vdots \\
\frac{1}{b} \ln \frac{S_0}{S_{12}}
\end{bmatrix}
\]
The 3x3 tensor matrix

\[\mathbf{D} = \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{bmatrix} \]

is symmetric along the diagonal. The eigenvalues and eigenvectors can be obtained by diagonalizing the matrix using the Jacobi transformation. The resulting eigenvalues and corresponding eigenvectors can then be used to describe the diffusivity and directionality (or anisotropy) of water diffusion within a given voxel.

An important measure associated with the diffusion tensor is its trace:

\[\text{tr}\{\mathbf{D}\} = D_{xx} + D_{yy} + D_{zz} = 3 \cdot \langle \lambda \rangle = \lambda_1 + \lambda_2 + \lambda_3 \]
The fractional anisotropy (FA) (Basser and Pierpaoli 1996):

\[FA = \frac{1}{\sqrt{2}} \sqrt{\frac{(\lambda_1 - \lambda_2)^2 + (\lambda_2 - \lambda_3)^2 + (\lambda_3 - \lambda_1)^2}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}} \]
Diffusion Ellipsoid

White matter voxel is mostly occupied by closely packed myelinated axons. Water molecule diffusion is restricted in the direction perpendicular to the axonal fibers leading to an anisotropic diffusion pattern.

\[\lambda_1 \gg \lambda_2 \geq \lambda_3 \] (anisotropic diffusion)
\[\lambda_1 \approx \lambda_2 \approx \lambda_3 \] (isotropic diffusion)

In anisotropic diffusion, \(\lambda_1 \) indicates the direction of fiber. Isotropic diffusion suggests unaligned fibers.

In a gray-matter voxel, although the presence of cell membranes still poses restriction on diffusion, the well-oriented structure of white matter fiber tract no longer exists, and thus the diffusion pattern is more isotropic.
Isotropically Distributed Tensor Encoding Sets
The fibers that are oriented from left to right of the brain appear red, the fibers oriented anteriorly-posteriorly (front-back) appear green, and those oriented superiorly-inferiorly (top-bottom) appear blue.
Fiber tractography of human corpus callosum.
DTI with FLAIR

Fluid Attenuated Inversion Recovery DTI

(a) proton density map, (b) T2w turbo spin echo map, (c) FLAIR map, (d) tissue segmentation map (white matter is white, gray matter is gray and CSF is cyan). Tensor decoding of the reference map (e) and the diffusion weighted images (f) with fusion of the DTI data (mean diffusivity map (h) fused with the fractional anisotropy map (i) modulated by the principal vector e1 (j)) results in the composite map (g). Further fusion of (g) and the tissue segmentation map (d) provides the map in (k).
Connections of the callosal fibers (red: commissural fibers right-to-left) and the cortico-spinal track (blue: and association pathways (green: anterior-posterior).

Courtesy P.A. Narayan
MS Case

(a) RGB fusion (FLAIR, phase sensitive inversion recovery ps-T1IR, post Gadolinium), (b) Conventional MRI tissue segmentation (PD,T2w, FLAIR), (c) $|FA^*e^1|$ over FLAIR (d) RGB (DTI Eigenvalue Map) (e) $|FA*e1|$ over mean diffusivity Dav (f) $|FA*e1|$ segmented map in (b).

Loss of connectivity in the vicinity of the frontal lesion and the sustained tractability of the posterior callosal areas indicating possibly lesion activity, severity and duration.
Combining DTI fiber tractography with conventional fMRI

- High functional MRI (fMRI) activity during visual stimulation along the human ventro-temporal cortex are used as seeding points for DTI-based fiber reconstructions.
7-T Imaging

The high signal-to-noise ratio available at 7.0T enables excellent spatial resolution. T1-weighted 3D TFE with TR 19 ms, TE 9.5 ms, slices 1 mm, FOV 240 mm, matrix 700.

MS lesions can be seen in gray matter as well as white matter.

Courtesy Phillips Medical Systems