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Dense surface models can be used to analyze 3D
facial morphology by establishing a correspon-
dence of thousands of points across each 3D face
image. The models provide dramatic visualiza-
tions of 3D face-shape variation with potential for
training physicians to recognize the key compo-
nents of particular syndromes. We demonstrate
their use to visualize and recognize shape differ-
ences in a collection of 3D face images that
includes 280 controls (2 weeks to 56 years of age),
90 individuals with Noonan syndrome (NS)
(7 months to 56 years), and 60 individuals with
velo-cardio-facial syndrome (VCFS; 3 to 17 years
of age). Ten-fold cross-validation testing of dis-
crimination between the three groups was carried
out on unseen test examples using five pattern
recognition algorithms (nearest mean, C5.0 deci-
sion trees, neural networks, logistic regression,
and support vector machines). For discriminating
between individuals with NS and controls, the
best average sensitivity and specificity levels
were 92 and 93% for children, 83 and 94% for
adults, and 88 and 94% for the children and adults
combined. For individuals with VCFS and con-
trols, the best results were 83 and 92%. In a
comparison of individuals with NS and indivi-
duals with VCFS, a correct identification rate of
95% was achieved for both syndromes. This article
contains supplementary material, which may
be viewed at the American Journal of Medical
Genetics website at http://www.interscience.
wiley.com/jpages/0148-7299/suppmat/index.html.
� 2004 Wiley-Liss, Inc.
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INTRODUCTION

Many dysmorphic syndromes involve craniofacial abnorm-
ality [Winter, 1996]. Experienced geneticists often make an
immediate diagnosis by recognizing characteristic facial
features of a syndrome. Inexperienced clinicians may struggle
to make such a Gestalt diagnosis, e.g., in very young children or
when they have had limited exposure to a particular syndrome
or to affected individuals of the same age or ethnicity. Thus, the
objective analysis of dysmorphic facial growth is potentially
useful in training clinical geneticists and in assisting clinical
diagnosis.

Objective techniques for analyzing facial abnormality, e.g.,
anthropometry, cephalometry, and photogrammetry, were
previously surveyed [Allanson, 1997]. Anthropometric studies
of the face have documented characteristic features and their
change over time for a number of dysmorphic syndromes, e.g.,
Down syndrome [Allanson et al., 1993], Rubinstein–Taybi
syndrome [Allanson and Hennekam, 1997], and Sotos syn-
drome [Allanson and Cole, 1996]. An early study of the Noonan
syndrome (NS) phenotype documented changes in facial form
causing some characteristic features to become more subtle
with age [Allanson et al., 1985]. This remodeling of the face was
reconfirmed in a 2D photogrammetric study [Sharland et al.,
1993] of 104 individuals with NS using an anthropometric
approach [Stengel-Rutkowski et al., 1984]. Forty-four cranio-
facial and 26 other features were used in a study of patterns of
dysmorphic morphology in schizophrenia [Scutt et al., 2001].
The study population included patients with velo-cardio-facial
syndrome (VCFS), a subgroup that subsequently formed the
bulk of one of the four major clusters identified. One hundred
patients between 1 year and 17 years with VCFS were the focus
of an anthropometric analysis in which a characteristic pattern
of craniofacial dysmorphology was established [Minugh-
Purvis et al., 2002]. A smaller study of 15 patients with
22q11 deletion made similar findings [Guyot et al., 2001]. A
study of lateral cephalometric radiographs of eight children
with Williams syndrome identified important skeletal features
contributing to facial appearance but it was not possible to
use them to characterize the facial morphology conclusively
[Mass and Belostoky, 1993]. Twenty-nine children under
10 years of age took part in a photogrammetric study of
Williams syndrome which established soft-tissue craniofacial
indices outside normal ranges [Hovis and Butler, 1997].
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Until relatively recently, most studies of facial morphology
have concentrated on the delineation of characteristic features
and not on the construction and testing of computational
models of face-shape variation, to be used to visualize and
discriminate facial differences between or within syndromes,
or between groups with specific syndromes and the general
population. The application of 2D face-shape analysis in fetal
alcohol syndrome (FAS) has resulted in a diagnostic protocol
that is used in a number of clinical centers [Sokol et al., 1991;
Astley and Clarren, 1996; Sampson et al., 2000]. More recently,
stereo-photogrammetry using multiple images to calculate 3D
measurements has proved more consistent than direct mea-
surement [Meintjes et al., 2002]. A technique for pixel level
analysis of 2D facial images, Gabor wavelet transformation,
showed potential in discriminating between individuals with
mucopolysaccharidosis type III (n¼ 6), Cornelia de Lange
(n¼ 12), fragile X (n¼ 12), Prader–Willi (n¼ 12) and Williams
(n¼ 13) syndromes with a success rate of 76% [Horsthemke
et al., 2002]. The small numbers and lack of confirmation of
blind testing suggests that this approach may not yet be fully
tested.

A 2D study of lateral head radiographs in the classification of
vertical facial deformity in non-syndromic patients used a
point distribution model (PDM), principal components analy-
sis (PCA) and pattern-matching techniques (nearest mean,
decision tree induction, and neural networks) to compare the
diagnoses of different experts [Hammond et al., 2001a]. The
PDM was generated using a template of landmarks identi-
fying important craniofacial features. A similar PDM-based
approach was initially applied in the delineation of NS using
2D face photographs but was transferred to 3D data once they
became available [Hammond et al., 2001b]. Many other
techniques have been applied in the computer-based diagnosis
of dysmorphic syndromes, often using other phenotypic de-
scriptors in addition to or instead of those of the face [Winter
et al., 1988; Evans, 1995; Evans and Winter, 1995; Braaten,
1996; Pelz et al., 1998].

The technique of geometric morphometrics is a structured
approach to the analysis of landmarks for shape variation
[Kendall, 1984; Bookstein, 1997; Dryden and Mardia, 1998].
Applications include comparative studies of human skull-
shape across regions and through evolutionary development
[O’Higgins and Jones, 1998; Hanihara, 2000; O’Higgins, 2000;
Hennessy and Stringer, 2002]. Typically, such studies use a
limited set of reproducible landmarks that are biologically
homologous. However, on soft-tissue surfaces such as the face
there are few such landmarks. Across the cheek and forehead,
for instance, there are no points that have an exact biological
correspondence and yet aspects of their shape contain useful
biological information. Our approach makes use of this extra
data by interpolating a dense correspondence between a small
set of reproducible landmarks [Hutton et al., 2001; Hutton
et al., 2003].

The 3D surface scans of the human face are obtainable from a
variety of sources. CT images are sometimes available for
patients with syndromes, e.g., for those requiring surgical
treatment of craniofacial dysostosis. More often, their use
for the study of facial-shape would be considered unethical or
too costly. Non-invasive acquisition methods include laser-
scanning [Arridge et al., 1985] and stereo-photogrammetry
[Ayoub et al., 1998]. Speed of capture is important when
young and potentially uncooperative children form the
major part of the study population. The photogrammetric
devices we have used acquire 3D surface images of the face
significantly quicker than laser-based systems and simulta-
neously capture the appearance of the face. The appearance
of the face also assists in the location of anatomical landmarks
on the face surface, an essential component of our data
preparation and model building. The method of image capture,

however, is irrelevant to the building of dense surface
models.

While the vast majority of VCFS individuals demonstrate an
interstitial deletion of chromosome 22q11, the genetic defect
underlying NS has yet to be identified conclusively. This
results in difficult diagnostic dilemmas for clinical geneticists
regarding some individuals who may present with unusual or
atypical features. Using a new technique to analyze 3D facial
morphology in patients with dysmorphic syndromes, we
compared facial morphology in individuals with VCFS, NS,
and normal controls. We hypothesized that 3D analysis of
facial morphology: (1) predicts the clinical diagnosis of NS
determined by clinical geneticists and (2) predicts the clinical
diagnosis of VCFS in individuals demonstrating a chromosome
22q11 deletion.

TECHNIQUE

Image Acquisition

The 3D images used in this study were captured with the
DSP400 and MU2 photogrammetric face scanners manufac-
tured by 3dMD in the UK (http://www.3dMD.com). Both are
non-contact scanners, and simultaneously capture photo-
graphic images of the face from four viewpoints using separate
CCD cameras (Fig. 1).

The speckle pattern (Fig. 2a) in each of these four images is
used to compute a 3D surface (Fig. 2b) that is overlaid with the
subject’s appearance using left and right three-quarter
portraits to give the final result (Fig. 2c).

A photogrammetric scanner was preferred to a laser-based
device because of its speed of capture (2 ms), essential for young
children who cannot hold a pose for long. For children and
adults with learning and/or physical disabilities resulting in
limited motor control or involuntary body movements, it was
necessary to wait until the subject became sufficiently calm or
was momentarily in a suitable pose.

The DSP400 is too clumsy and heavy to be transported
easily. The MU2 device and supporting computer hardware,
although still heavy, is more modular, can be transported by
car and is operable by one individual. The subject sits on a

Fig. 1. Multiple cameras of DSP400 3D face scanner.

Fig. 2. 3D Face image capture. A: Random speckle pattern projected
onto face showing one of four views/patches used to generate surface of the
face. B: Surface of face computed from four patches. C: 11 landmarks
typically located on each 3D image and used to build the dense surface
models.
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normal office-type chair, with height appropriately adjusted, in
front of the scanner. The operator uses on-screen views to
adjust the subject’s position and need only press a mouse
button to capture an image. In the vast majority of cases, it
was possible to obtain a 3D face image with the subject main-
taining a natural pose with neutral expression, as requested.
Some subjects were either unwilling or unable to respond to
this request. Where the pose distorted the face, or where the
expression was not neutral, or at least not ‘‘natural’’ to the
individual, the images were omitted. Some children, e.g.
those with hypotonia, had a very relaxed lower jaw. As this is
characteristic of NS, for example, such images were retained.
Inevitably, facial expression may interfere with the accurate
identification of facial morphology.

Image Processing

In order to build the dense surface models, 3D landmarks are
located manually on each image. Typically 11 landmarks were
used in the surface shape analyses: inner and outer canthi of
both eyes, center of upper lip, outer corners of the mouth,
nasion, pronasale, subnasale, and a chin point (Fig. 2c). Models
used solely for visualizations may employ as many as 25
landmarks to give finer detail. Too few landmarks results in
poor anatomical registration of the scans and too many
introduces noise into the resulting model because of the
inaccuracy in placing soft-tissue landmarks on a virtual image
without the ability to palpate and locate bony landmarks as in
conventional anthropometry. The landmarks were not employ-
ed to compute measurements, as in anthropometric studies, or
inclinations of lines and planes as in cephalometric analyses.
They could be used for this, but their primary use in our
approach is to guide the formation of a dense correspondence
between a common set of points across all face surfaces in the
study group. Once the dense correspondence has been made, as
many as 10,000 points are used as landmarks.

Full technical details of the generation of a dense surface
model are provided elsewhere [Hutton et al., 2003]. Here we
give an informal summary. Following the placing of landmarks
on a given set of 3D face surfaces, the generalized Procrustes
algorithm [Gower, 1975] is used to calculate the mean
landmarks for the set. Each surface is then warped using the
thin-plate spline (TPS) technique [Bookstein, 1997] to bring
corresponding landmarks on each face into precise alignment
with the mean landmarks. A dense correspondence (closest
point) is then made with the vertices of a base mesh, selected
arbitrarily from the dataset. The extent of the surface in the
images is quite varied, and may include unwanted areas of the
neck or clothing, a parent’s face to one side or even a steadying
hand on a shoulder. Such extraneous data is removed by
including only those vertices whose distance from their base
mesh location to every surface (after alignment) is at most
20 mm. Thus, the resulting collection of corresponded vertices
constitutes an intersection of the meshes underlying the scans.

This explains the loss of areas of the face not appearing in every
3D image (Fig. 3).

The mesh connectivity in the base mesh is then transferred
to the densely corresponded meshes in the other surfaces. The
original meshes/surfaces and the landmarks are then aban-
doned. Finally, the inverse of the TPS warp returns each
surface to its original location. The points in the revised surface
meshes can now be treated as landmarks to which we can apply
Procrustes alignment to compute an average shape. The set of
residuals of co-ordinate differences between points on indivi-
dual faces and corresponding points on the average face are
then subjected to a PCA to compute the major modes of shape
variation. Henceforth, the phrase dense surface model refers to
the set of PCA modes derived from a set of densely cor-
responded face surfaces.

Visualization and Pattern Recognition Testing

The dense surface models arising in this study were all
computed using software produced in-house in the Biomedical
Informatics Unit at UCL’s Eastman Dental Institute. This
software, ShapeFind, also provides a collection of tools with
which to inspect the resulting set of PCA modes. The visua-
lization in 3D of each separate mode can itself be illuminating,
as is the ability to morph between average faces of subgroups
of subjects within a single model. The former isolates major
variations in face-shape. It should be emphasized, however,
that these variations are specific to the dataset used and some
overlapping face-shape variation may be seen in multiple
modes. The morphing between averages of groups has great
potential for highlighting important facial characteristics of a
syndrome or between syndromes. Some still images are in-
cluded in the ‘‘Results,’’ but the visualizations are best
appreciated dynamically by visiting the companion web page
for this article.

For the comparison of controls and subjects with NS, the
dataset was analyzed in three stages: under 19.4 years, over
19.4 years, and with no age restriction. This staggered
approach was followed because of the previously reported
observation that in NS abnormal facial characteristics become
more subtle or even disappear completely in adulthood.

For each training-set, a dense surface model was computed
and the top modes covering 98% of the shape variation (usually
between 40 and 50) were exported for the pattern recognition
component of the study. Because of the relatively small size of
the subgroups under study, training-sets and test-sets of
unseen examples were generated for a 10-fold cross-validation.
For each pattern recognition experiment, the same proportion
of subjects with syndromes and control subjects were employed
for each training- and test-set pair.

The face surfaces used in the discrimination testing are
synthesized from the dense surface model. The more faces
included in the model, the better the synthesis. Therefore, we
included as many control faces as were compatible with the age
range of the group for the syndrome under scrutiny. Thus,
in the models there are significant imbalances between the
number of controls and the number of individuals with a
syndrome.

Logistic regression, neural networks, and C5.0 decision trees
were trained and tested within the Clementine data mining
environment [CLEM, 2004]. Proximity to the nearest mean
was evaluated within the ShapeFind system, and support
vector machines were trained and tested using LIBSVM
[Chang and Lin, 2001].

STUDY POPULATION

The collection of 3D face images available for this study
included individuals with putative diagnoses for NS (n¼ 146)
and VCFS (n¼ 64). A large collection of over 1,000 images of

Fig. 3. Mean face surfaces for control and Noonan syndrome (NS)
subgroups for individuals under 19.4 years VIDEO1 (see online addition
containing VIDEOS 1–22 at http://www.interscience.wiley.com/jpages/
0148-7299/suppmat/index.html).
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subjects not known to have a syndrome was also available. We
chose to demonstrate the potential use of dense surface models
in facial morphology on these particular syndromes for two
reasons. A diagnosis of NS still requires considerable clinical
judgement because the recently established molecular test
covers only about 35% of cases [Tartaglia et al., 2001]. In

contrast, a diagnosis is more certain for VCFS patients. These
two syndromes, therefore, provide a useful comparison when
testing the discriminating performance of the pattern recogni-
tion algorithms. The images of individuals with NS have been
inspected by four experienced clinical geneticists (J.E.A.,
R.C.M.H., I.K.T., R.M.W.) to identify individuals whose facial
appearance casts doubt on their diagnosis or even suggests an
alternative. A majority verdict of the experts suggested that 36
of the original 146 images be excluded from the study. Another
20 were excluded because of poor quality or non-European
ethnicity.

The majority of the images of individuals with NS were
captured at family meetings organised by specialist support
groups such as TNSSG in the USA and Birth Defects
Foundation in the UK. Some were recruited from a separate
10-year follow-on study of the NS phenotype [Shaw et al.,
2002]. Most of the VCFS patients were already taking part in
an existing study. Others were scanned at a conference
organised in the UK by the VCFS Educational Foundation.
Informed consent was obtained from all participants or their
parents/guardians. All subjects selected for this study were of
European ethnic background. A few individuals were scanned
on more than one occasion, typically between 6 months or
1 year apart. Individuals with substantial facial hair were
eliminated from the dataset.

The control population comprised individuals with no known
syndrome, without obvious facial growth abnormality and with
no previous maxillofacial surgery. They were either volunteers
from staff and student bodies and their children or healthy
siblings of children with a syndrome attending family support
groups. A small group of healthy babies and young children
was also recruited from a London postnatal clinic.

The study has involved building dense surface models of the
face to make three comparisons:

* NS vs. controls;
* VCFS vs. controls; and
* NS vs. VCFS.

Fig. 4. Morph of overall mean along the mean hyperline VIDEO2.

Fig. 5. Mode 1 of DSM for all NS and control individuals under
19.4 years. A: Distribution of mode 1 covering 73.1% of variation (mean, 0;
min, �3.5 SD; max, þ2.3 SD). B: Mode 1 variation at �3.5 and 2.3 SD;
VIDEO3. C: Scatter plot of mode 1 against age.

Fig. 6. Mode 2 of DSM for all NS and control individuals under
19.4 years. A: Distribution of mode 2 covering 6.5% of variation (mean, 0;
min, �2.9 SD; mad, þ3.3 SD). B: Mode 2 variation at �2.9 SD and þ3.3 SD
VIDEO4.
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RESULTS

NS vs. Controls

A division at 19.4 years splits the NS and control dataset into
220 non-adults and 210 adults, both convenient sizes for the
10-fold cross-validation.

NS vs. controls under 19.4 years (n¼220)
Mean face comparison. A dense surface model was built

using all 220 Noonan and control individuals under 19.4 years
for visualization purposes only. The model used 25 landmarks
and required 50 modes to cover 98% of the face-shape variation.
The mean face surfaces for the Noonan and control subsets are
shown in Figure 3 in full face and in profile.

The vector of PCA mode values corresponding to a face
represents a point in a multi-dimensional space. Similarly, the
means of the NS and control subgroups correspond to two
points in the same ‘‘face-shape’’ space. Each point representing
a face can be projected orthogonally onto a hyperline joining
the two means, henceforth referred to as the ‘‘mean hyperline’’
when the two subgroups are obvious. The overall mean can
then be morphed along this line to give a visualization of the

face-shape variation across the two groups. We can exaggerate
the overall mean as far as points on the mean hyperline that
represent faces projected onto it. Figure 4 shows static images
at each extreme. A dynamic morph can be viewed on the
companion web page for this article.

PCA modes for visualizing the DSM. The first mode is
similar to that found in all dense surface models of a mixed
group of children and adults. It reflects overall size of the
face and accounts for 73.1% of all shape variation in this
particular model. Figure 5a shows the distribution of this mode
(in terms of standard deviations relative to the mean), while
Figure 5b shows faces computed by morphing the overall
mean to the extremes of the range. The face on the left of
Figure 5b corresponds to an age of about 2 weeks. Figure 5c
is a scatter plot of mode1 against age, showing the strong
positive correlation between the two (Pearson product
moment¼ 0.882).

The second mode displays variation in the length and
squareness of the face, and accounts for about 6.5% of all
variation. Figure 6a shows the distribution and Figure 6b the
extremes of the mode. Children with NS score relatively high

Fig. 7. Scatter plot of mean hyperline against mode 2 for non-adult
controls (n¼ 160) and individuals with NS (n¼60). The labeled faces are
misclassified according to the nearest mean discrimination test. Faces D and
E are of very young babies and given the small number of such children in the

database, their misclassification is not surprising. Faces C is just closer to
the NS mean in this model. Faces A and B are misclassified as controls, but it
happens that some of their features are quite uncharacteristic of NS. For
ethical reasons, the faces of these individuals are not shown.

TABLE I. Average Sensitivity and Specificity of Cross-Validation*

Nearest mean (%)
Decision trees

(%)
Neural networks

(%)
Logistic

regression (%)
Support vector
machines (%)

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec
88 86 60 83 83 94 83 93 92 93

*Age <19.4 years; NS¼ 60; control¼160.

3D Analysis of Facial Morphology 343



on this mode. This is consistent with previous findings of
reduced midfacial growth and triangular shape of the lower
face. Of course, apparent face length will be accentuated for
individuals with the characteristic slackness in the lower jaw.

The remaining modes are not discussed in detail here. Mode
3 (VIDEO5) contains elements of facial flatness as well as
expression (smiling and grimacing). Amongst other features,
modes 5 (VIDEO6) and 10 (VIDEO7) display strong elements of
hypertelorism and ptosis, respectively—both characteristic
features of NS. They also include elements of nose-shape
change and aging.

Figure 7 is a 2D projection of the multi-dimensional face-
shape space onto the hyperline between the control and NS
means (as the x-axis) and mode 1 (as the y-axis), the latter
being located mid-way between the two means. Some indivi-
dual faces have been highlighted so as to emphasize their
displacement from the means. Thus, the location of a face to the
left or right of the y-axis, nearer to one or other of the mean
faces, is a simple classification device. In general, this informal
use of nearest mean as a discrimination test is unacceptable
because it tests the dataset used to compute the two means in
the first place. For a more valid evaluation of this, or any other,
classification algorithm, disjoint training and test cases must
be employed.

Ten-fold cross-validation testing. Table I summarizes the
average sensitivity and specificity obtained in a 10-fold cross-
validation of five different algorithms, including nearest mean.
The 10 dense surface models generated from the 90% training-

sets all used the same 11 landmarks that were described
earlier. The best classification result, an average sensitivity of
92% and an average specificity of 93%, was achieved using
support vector machines [Vapnik, 1995] with a radial basis
function kernel classification and the Hinton heuristic with
regularization parameter C¼ 100.

Previously, a similar discrimination evaluation was carried
out using 90 or so of the current NS study population—
including some of those individuals rejected by the expert
consensus. The sensitivity then, for a similar age range, was
85% [Hammond et al., 2002]. The improvement to 92% is likely
to be due in part to the rejection of patients with a dubious
diagnosis.

NS vs. controls over 19.4 years (n¼210)
Mean face comparison. The mean face surfaces for the

Noonan (n¼ 30) and control subgroups (n¼ 180) over
19.4 years are shown in Figure 8 in full face and in profile.

The exaggerated control and NS means are not shown
because they are only slightly different from the means
themselves. The video is of the morph between the exaggerated
means.

PCA modes for visualizing the DSM. As for the earlier
group of non-adults, a single dense surface model was built
using all 210 Noonan and control individuals over 19.4 years.
Figure 9a shows the distribution of the first mode of this model
while Figure 9b visualizes the faces at the extremes of the
range. Thus, mode 1 for this group of adults still reflects
variation in size of the face but here it also reflects gender—as
can be seen from the distribution shown in Figure 9a and the
faces in Figure 9b generated by morphing the mean to the
extremes of the distribution of mode 1.

Mode 2 (VIDEO10) reflects the usual long/oval to short/
square face-shape variation. Mode 3 (VIDEO11) involves a
combination of feature changes including hypotelorism and
nose width and length. Gender and facial expression variations
are strong in mode 4 (VIDEO12). Hypotelorism features in
mode 5 (VIDEO13) but alongside significant changes in nose
length. Mode 6 (VIDEO14) is dominated by retrognathic–
prognathic variation. Asymmetry of the face is a significant
element of mode 9 (VIDEO15). None of these modes appears to
be particularly noteworthy. Their dynamic morphs are avail-
able for inspection on the companion web site.

Ten-fold cross-validation testing. The average sensitivity
and specificity of a 10-fold cross-validation for the same five
pattern recognition algorithms tested on the non-adult popu-
lation are shown in Table II.

By comparison with the non-adult group, discrimination
between individuals with NS and controls in the adult group
is considerably less successful. This is consistent with the
previously cited diminution in adulthood of characteristic
facial differences in NS.

NS vs. controls without age restriction (n¼430). The
comparison of means and the visualization of modes is omitted
here as they are similar to those of the previous two sections.
Instead, we simply give the results of the 10-fold cross-
validation for the same five pattern recognition algorithms in
Table III below.

These results, generally intermediate between those for the
separate child and adult groups, are consistent with diminish-
ing differences in facial morphology during the maturing of
individuals with NS.

VCFS vs. Controls

VCFS vs. controls between 3 years and 17 years
(n¼190)

Mean faces. The mean face surfaces for the VCFS (n¼ 60)
and control subgroups (n¼ 130) between 3 years and 17 years
of age are shown in Figure 11 in full face and in profile.

Fig. 8. Mean face surfaces for control and NS individuals over 19.4 years
(VIDEO8).

Fig. 9. Mode 1 of DSM for all 210 controls and individuals with NS over
19.4 years of age. A: Distribution (mean, 0; min, �2.9 SD; max, 2.1 SD). B:
Mode 1 at �2.9 and 2.1 SD (VIDEO9).
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The exaggerated morphs of the overall mean along the mean
hyperline are only marginally different from the means so their
visualization is not included here but on the companion web
site.

Modes for visualizing the DSM. A dense surface model
was generated for the combined VCFS and control subgroups.
The first mode of this model reflects the usual size of face
variation (VIDEO17) and accounts for 60.9% of shape varia-
tion. The second mode, covering 12.9% of shape variation,
reflects VCFS characteristics such as the longer nose, narrow
nasal base, and somewhat tubular shape (Fig. 11), but also
some facial expression.

Figure 12 illustrates the same 2D projection of the face-
shape space using a mean hyperline vs. mode 1 scatter plot as
shown previously for NS. Once again, such within training-set
testing of the nearest mean algorithm gives excellent dis-
crimination between the two subgroups, with just five faces
misclassified.

Ten-fold cross-validation. The results of the unseen dis-
crimination testing in Table IV are not as good as those for the
NS–control comparison for a similar age range.

They emphasize the obvious fact that individuals with VCFS
have more subtle facial differences from controls than is the
case in NS. Moreover, the classification may also be impaired

by the fact that all but a handful of the VCFS 3D scans were
captured with the older scanner at a poorer resolution.
Therefore, more subtle facial features may not be modeled well.

VCFS vs. NS

VCFS vs. NS between 2 years and 20 years (n¼120)
Exaggerated means. The means and exaggerated morph

along the mean hyperline are not illustrated statically since
they are very similar to images already shown in Figures 3, 4,
and 10. The dynamic variation gives an excellent visualization

TABLE II. Average Sensitivity and Specificity of Cross-Validation*

Nearest mean (%)
Decision trees

(%)
Neural networks

(%)
Logistic

regression (%)
Support vector
machines (%)

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec
80 94 20 92 60 96 60 93 83 94

*Age �19.4 years; NS¼ 30; control¼180.

TABLE III. Average Sensitivity and Specificity of Cross-Validation*

Nearest mean (%)
Decision trees

(%)
Neural networks

(%)
Logistic

regression (%)
Support vector
machines (%)

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec
81 82 44 85 68 96 84 93 88 94

*NS¼90; control¼ 340.

TABLE IV. Average Sensitivity and Specificity of Cross-Validation*

Nearest mean (%)
Decision trees

(%)
Neural networks

(%)
Logistic

regression (%)
Support vector
machines (%)

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec
82 85 58 81 57 97 75 90 83 92

*VCFS¼60; control¼130.

Fig. 10. Mean face surfaces for control and velo-cardio-facial syndrome
(VCFS) subgroups for individuals between 3 years and 17 years (VIDEO16).

Fig. 11. Mode 2 of dense surface model for all 190 controls and VCFS
individuals aged 3–17 years. A: Distribution of mode 2 covering 12.9% of
variation (mean, 0; min, �2.4 SD; max, þ2.6 SD). B: Mode 2 variation at
�2.4 SD and þ2.6 SD VIDEO18
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Fig. 12. Scatter plot of mean hyperline (x-axis) against mode 1 (y-axis) for controls (n¼130) and individuals with VCFS (n¼60). The five faces labeled
A–E are misclassified according to the nearest mean discrimination test. As with Figure 7, individual faces are not shown. The images included illustrate the
extremes for each of the axes.

Fig. 13. Modes 3 and 4 of DSM for NS (n¼60) and VCFS (n¼60)
individuals aged 2–20 years. A: Mode 3 at �3.3 and 2.2 SD—VIDEO20. B:
Mode 4 at �2.1 and 3.1 SD—VIDEO21.

Fig. 14. Scatter plot of modes 3 and 4 of DSM for NS (n¼60) and VCFS
(n¼60) individuals aged 2–20 years illustrating their partial discriminat-
ing ability.
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of the overall difference in facial morphology between NS and
VCFS (VIDEO19).

PCA modes for visualizing the DSM. A dense surface
model was generated to visualize the PCA modes for the
combined VCFS and NS subgroups. The first two modes of this
model capture the usual face-size and -shape variations. Modes
3 and 4, shown in Figure 13 and scatter plotted in Figure 14,
undergo the greatest change during the morph along the mean
hyperline.

Mode 3 emphasizes differences in head width as well as
mandible size and shape. Mode 4 strongly reflects eye separa-
tion as well as width of both nasal bridge and nasal base. The
nasal shape differences are very noticeable, as would be
expected with these two syndromes.

Ten-fold cross-validation. The results of the unseen dis-
crimination testing are shown in Table V.

These results are generally better than for the syndrome
groups vs. control discrimination tests. This is due in part to
the more even balancing of the training- and test-sets and
suggests that in future a more thorough investigation should
be made of the interactions between training-test set balan-
cing, accuracy of face synthesis, and discriminating ability.

DISCUSSION

In this study, we found that a novel method of 3D analysis
demonstrates high levels of sensitivity (88%) and specificity
(94%) in discriminating between controls and individuals
previously diagnosed with NS and vetted visually by a further
panel of four experienced clinical geneticists. In addition, we
found high levels of sensitivity (83%) and specificity (92%) in
discriminating between individuals with VCFS (diagnosed
cytogenetically) and controls. We suggest that this novel
technique may assist the clinical geneticist in making a diag-
nosis in individuals who present with complex or atypical facial
features.

As the molecular defect in NS has yet to be characterized, the
diagnosis is generally made by experienced clinical geneticists.
However, it is probable that a small minority of patients,
diagnosed with NS by clinical geneticists, do not in fact have
NS and are phenocopies. Thus, the high sensitivity and speci-
ficity of 3D facial analysis reported in this study are potentially
confounded by the possibility of diagnostic error. In view of
this, we also performed 3D image analysis in people with a
known chromosome 22q11 microdeletion. The high sensitivity
and specificity we report in discriminating between people
with VCFS and controls demonstrates that diagnostic error is
an unlikely explanation for the high discriminating power of
this technique in NS.

In comparison to the portable scanner (MU2), the older
model (DSP400) does not capture both ear surfaces consis-
tently and captures far fewer surface points. As was previously
explained, the dense surface model involves computing an
intersection of captured face surfaces, and so our derived
models may not include any ear surface at all depending on the
particular images included in the model. In NS, where low ear
position is a characteristic trait, and in VCFS, where ear
shape can be dysmorphic, this is potentially damaging to any
analysis.

Figure 15 and the associated dynamic morph demonstrate
the huge improvement in the visualization when ears are in-
cluded in the captured surface. Moreover, dense surface
models generated from such images are likely to discriminate
with even greater success.

It is difficult to estimate the minimum number of 3D images
needed before a dense surface model supports useful visualiza-
tions or discrimination. Further testing is required before firm
conclusions can be drawn.

CONCLUSIONS

The still and dynamic images included here and on the
accompanying website demonstrate that dense surface models
can generate striking and informative visualizations of facial
morphology in 3D. Any benefit they may provide in the training
of clinical geneticists is yet to be evaluated.

Dense surface models when combined with state of the art
pattern recognition algorithms achieve impressive results in
discriminating between controls and individuals with a parti-
cular syndrome, as well as between individuals with different
syndromes—at least for the two syndromes covered. It is also
encouraging that the results presented here were obtained
using 3D meshes of different resolutions and quite varied co-
verage, often missing anatomical features important in facial
dysmorphology.

As was remarked earlier, the larger the number of examples
included in a dense surface model the greater the accuracy of
the synthesis of each face using the associated modes. The
rarity of some syndromes will limit the available dataset and
imbalance the mix of controls and individuals with a particular
syndrome. Inevitably, this will reduce the discrimination
accuracy. Therefore, it is important that image capture is
undertaken on an international basis, with sharing of data
once appropriate ethical approval and patient or parent con-
sent is obtained.

Our collection of 3D face scans also includes groups of
individuals with Angelman, Rett, Rubinstein–Taybi, Smith–
Magenis, and Williams syndromes. Having demonstrated that
dense surface models show promise in delineating and
discriminating face shape associated with Noonan and VCFS,
separate studies of the comparative 3D facial morphologies
of individuals with these other syndromes have begun. As
the data gathering for these becomes more internationally
widespread, it will also become possible to address the issue
of ethnic variation in facial morphology. Similar unavoid-
able confounding factors when considering facial morphology,

TABLE V. Average Sensitivity and Specificity of Cross-Validation*

Nearest mean
(%)

Decision trees
(%)

Neural networks
(%)

Logistic regression
(%)

Support vector
machines (%)

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec
85 90 86 71 91 87 93 89 95 95

*Using 60 NS as �ve and 60 VCFS as þve.

Fig. 15. Extreme faces on mean hyperline for NS vs. control using a
subset of images with good ear coverage (n¼ 106) VIDEO22.
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of course, are gender, age, and familial likeness. Before these
can begin to be addressed, much more data needs to be
gathered.
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