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Abstract

We present a neural network-based face detection system.
A retinally connected neural network examines small win-
dows of an image, and decides whether each window con-
tains a face. The system arbitrates between multiple net-
works to improve performance over a single network. We
use a bootstrap algorithm for training the networks, which
adds false detections into the training set as training pro-
gresses. This eliminates the difficult task of manually se-
lecting non-face training examples, which must be chosen
to span the entire space of non-face images. Compar-
isons with other state-of-the-art face detection systems are
presented; our system has better performance in terms of
detection and false-positive rates.

1 Introduction

In this paper, we present a neural network-based algorithm
to detect frontal views of faces in gray-scale images1. The
algorithms and training methods are general, and can be
applied to other views of faces, as well as to similar object
and pattern recognition problems.

Training a neural network for the face detection task
is challenging because of the difficulty in characterizing
prototypical “non-face” images. Unlike face recognition, in
which the classes to be discriminated are different faces, the
two classes to be discriminated in face detection are “images
containing faces” and “images not containing faces”. It is
easy to get a representative sample of images which contain
faces, but it is much harder to get a representative sample
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1A demonstration at http://www.cs.cmu.edu/˜har/faces.html allows
anyone to submit images for processing by the face detector, and displays
the detection results for pictures submitted by others.

of those which do not. The size of the training set for the
second class can grow very quickly.

We avoid the problem of using a huge training set for
non-faces by selectively adding images to the training set
as training progresses [Sung and Poggio, 1994]. Detailed
descriptions of this training method, along with the net-
work architecture are given in Section 2. In Section 3, the
performance of the system is examined. We find that the
system is able to detect 90.5% of the faces over a test set of
130 images, with an acceptable number of false positives.
Section 4 compares this system with similar systems. Con-
clusions and directions for future research are presented in
Section 5.

2 Description of the system

Our system operates in two stages: it first applies a set of
neural network-based filters to an image, and then arbitrates
the filter outputs. The filters examine each location in the
image at several scales, looking for locations that might
contain a face. The arbitrator then merges detections from
individual filters and eliminates overlapping detections.

2.1 Stage one: A neural network-based filter

The first component of our system is a filter that receives
as input a 20x20 pixel region of the image, and generates
an output ranging from 1 to -1, signifying the presence or
absence of a face, respectively. To detect faces anywhere in
the input, the filter is applied at every location in the image.
To detect faces larger than the window size, the input image
is repeatedly subsampled by a factor of 1.2, and the filter is
applied at each scale.

The filtering algorithm is shown in Figure 1. First, a
preprocessing step, adapted from [Sung and Poggio, 1994],
is applied to a window of the image. The window is then
passed through a neural network, which decides whether
the window contains a face. The preprocessing first at-
tempts to equalize the intensity values across the window.
We fit a function which varies linearly across the window
to the intensity values in an oval region inside the window.
Pixels outside the oval may represent the background, so
those intensity values are ignored in computing the lighting
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variation across the face. The linear function will approx-
imate the overall brightness of each part of the window,
and can be subtracted from the window to compensate for a
variety of lighting conditions. Then histogram equalization
is performed, which non-linearly maps the intensity values
to expand the range of intensities in the window. The his-
togram is computed for pixels inside an oval region in the
window. This compensates for differences in camera input
gains, and improves the contrast in some cases.

The preprocessed window is then passed througha neural
network. The network has retinal connections to its input
layer; the receptive fields of hidden units are shown in
Figure 1. There are three types of hidden units: 4 which
look at 10x10 pixel subregions, 16 which look at 5x5 pixel
subregions, and 6 which look at overlapping 20x5 pixel
horizontal stripes of pixels. Each of these types was chosen
to allow the hidden units to represent localized features that
might be important for face detection. Although the figure
shows a single hidden unit for each subregion of the input,
these units can be replicated. For the experiments which
are described later, we use networks with two and three sets
of these hidden units. Similar input connection patterns are
commonly used in speech and character recognition tasks
[Waibel et al., 1989, Le Cun et al., 1989]. The network has
a single, real-valued output, which indicates whether or not
the window contains a face.

To train the neural network used in stage one to serve as an
accurate filter, a large number of face and non-face images
are needed. Nearly 1050 face examples were gathered
from face databases at CMU and Harvard2. The images
contained faces of various sizes, orientations, positions,
and intensities. The eyes and the center of the upper lip
of each face were located manually, and these points were
used to normalize each face to the same scale, orientation,

2Dr. Woodward Yang at Harvard provided over 400 mug-shot images.

and position, as follows:

1. Rotate image so both eyes appear on a horizontal line.
2. Scale image so the distance from the point between

the eyes to the upper lip is 12 pixels.
3. Extract a 20x20 pixel region, centered 1 pixel above

the point between the eyes and the upper lip.

In the training set,15 face examples are generated from each
original image, by randomly rotating the images (about their
center points) up to 10 5 , scaling between 90% and 110%,
translating up to half a pixel, and mirroring. Each 20x20
window in the set is then preprocessed (by applying lighting
correction and histogram equalization). The randomization
gives the filter invariance to translations of less than a pixel
and scalings of 6 10%. Larger changes in translation and
scale are dealt with by applying the filter at every pixel
position in an image pyramid, in which the images are
scaled by factors of 1.2.

Practically any image can serve as a non-face example
because the space of non-face images is much larger than
the space of face images. However, collecting small yet a
“representative” set of non-faces is difficult. Instead of col-
lecting the images before training is started, the images are
collected during training in the following manner, adapted
from [Sung and Poggio, 1994]:

1. Create an initial set of non-face images by generating
1000 images with random pixel intensities. Apply the
preprocessing steps to each of these images.

2. Train the neural network to produce an output of 1 for
the face examples, and -1 for the non-face examples.
The training algorithm is standard error backpropoga-
tion. On the first iteration of this loop, the network’s
weights are initially random. After the first iteration,
we use the weights computed by training in the previ-
ous iteration as the starting point for training.



3. Run the system on an image of scenery which contains
no faces. Collect subimages in which the network
incorrectly identifies a face (an output activation � 0).

4. Select up to 250 of these subimages at random, apply
the preprocessing steps, and add them into the training
set as negative examples. Go to step 2.

We used 120 images of scenery for collecting negative
examples in this bootstrap manner. A typical training
run selects approximately 8000 non-face images from the
146,212,178 subimages that are available at all locations
and scales in the training scenery images.

2.2 Stage two: Merging overlapping detections
and arbitration

The system described so far, using a single neural network,
will have some false detections. Below we mention some
techniques to reduce these errors; for more details the reader
is referred to [Rowley et al., 1995].

Because of a small amount of position and scale invari-
ance in the filter, real faces are often detected at multiple
nearby positions and scales, while false detections only ap-
pear at a single position. By setting a minimum threshold
on the number of detections, many false detections can be
eliminated. A second heuristic arises from the fact that
faces rarely overlap in images. If one detection overlaps
with another, the detection with lower confidence can be
removed.

During training, identical networks with different ran-
dom initial weights will select different sets of negative
examples, develop different biases and hence make differ-
ent mistakes. We can exploit this by arbitrating among
the outputs of multiple networks, for instance signalling a
detection only when two networks agree that there is a face.

3 Experimental results
The system was tested on three large sets of images, which
are completely distinct from the training sets. Test Set A
was collected at CMU, and consists of 42 scanned pho-
tographs, newspaper pictures, images collected from the
World Wide Web, and digitized television pictures. These
images contain 169 frontal views of faces, and require the
networks to examine 22,053,124 20x20 pixel windows.
Test Set B consists of 23 images containing 155 faces
(9,678,084 windows); it was used in [Sung and Poggio,
1994] to measure the accuracy of their system. Test Set
C is similar to Test Set A, but contains some images with
more complex backgrounds and without any faces, to more
accurately measure the false detection rate. It contains 65
images, 183 faces, and 51,368,003 windows.3

Rather than providinga binary output, the neural network
filters produce real values between 1 and -1, indicating

3The test sets are available at http://www.cs.cmu.edu/˜har/faces.html.

whether or not the input contains a face, respectively. A
threshold value of zero is used during training to select the
negative examples (if the network outputs a value of greater
than zero for any input from a scenery image, it is considered
a mistake). Although this value is intuitively reasonable,
by changing this value during testing, we can vary how
conservative the system is. We measured the detection and
false positive rates as the threshold was varied from 1 to
-1. At a threshold of 1, the false detection rate is zero, but
no faces are detected. As the threshold is decreased, the
number of correct detections will increase, but so will the
number of false detections. This tradeoff is illustrated in
Figure 2, which shows the detection rate plotted against the
number of false positives as the threshold is varied, for two
independently trained networks. Since the zero threshold
locations are close to the “knees” of the curves, as can
be seen from the figure, we used a zero threshold value
throughout testing.
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Table 1 shows the performance for four networks work-
ing alone, the effect of overlap elimination and collapsing
multiple detections, and the results of using ANDing, OR-
ing, voting, and neural network arbitration. Networks 3 and
4 are identical to Networks 1 and 2, respectively, except that
the negative example images were presented in a different
order during training. The results for ANDing and ORing
networks were based on Networks 1 and 2, while voting
was based on Networks 1, 2, and 3. The table shows the
percentage of faces correctly detected, and the number of
false detections over the combination of Test Sets A, B,
and C. [Rowley et al., 1995] gives a breakdown of the per-
formance of each of these system for each of the three test
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Missed Detect False False detect

Type System faces rate detects rate

0) Ideal System 0/507 100.0% 0 0/83099211
Single
network, no
heuristics

1) Network 1 (52 hidden units, 2905 connections) 37 92.7% 1768 1/47002
2) Network 2 (78 hidden units, 4357 connections) 41 91.9% 1546 1/53751
3) Network 3 (52 hidden units, 2905 connections) 44 91.3% 2176 1/38189
4) Network 4 (78 hidden units, 4357 connections) 37 92.7% 2508 1/33134

Single
network,
with
heuristics

5) Network 1 � threshold(2,1) � overlap elimination 46 90.9% 844 1/98459
6) Network 2 � threshold(2,1) � overlap elimination 53 89.5% 719 1/115576
7) Network 3 � threshold(2,1) � overlap elimination 53 89.5% 975 1/85230
8) Network 4 � threshold(2,1) � overlap elimination 47 90.7% 1052 1/78992

Arbitrating
among two
networks

9) Networks 1 and 2 � AND(0) 66 87.0% 209 1/397604
10) Networks 1 and 2 � AND(0) � threshold(2,3) � overlap elimination 107 78.9% 8 1/10387401
11) Networks 1 and 2 � threshold(2,2) � overlap elimination � AND(2) 74 85.4% 63 1/1319035
12) Networks 1 and 2 � thresh(2,2) � overlap � OR(2) � thresh(2,1) � overlap 48 90.5% 362 1/229556

Three nets 13) Networks 1, 2, 3 � voting(0) � overlap elimination 53 89.5% 195 1/426150

threshold(distance,threshold): Only accept a detection if there are at least threshold detections within a cube (extending along x, y, and scale) in the
detection pyramid surrounding the detection. The size of the cube is determined by distance, which is the number of a pixels from the center of the
cube to its edge (in either position or scale).

overlap elimination: A set of detections may erroneously indicate that some faces overlap with one another. This heuristic examines detections in order
(from those having the most votes within a small neighborhood to those having the least), and removing conflicting overlaps as it goes.

voting(distance), AND(distance), OR(distance): These heuristics are used for arbitrating among multiple networks. They take a distance parameter,
similar to that used by the threshold heuristic, which indicates how close detections from individual networks must be to one another to be counted as
occuring at the same location and scale. A distance of zero indicates that the detections must occur at precisely the same location and scale. Voting
requires two out of three networks to detect a face, AND requires two out of two, and OR requires one out of two to signal a detection.

sets, as well as the performance of systems using neural
networks to arbitration among multiple detection networks.
The parameters required for each arbitration method are
described below the table.

Systems 1 through 4 show the raw performance of the
networks. Systems 5 through 8 use the same networks,
but include the thresholding and overlap elimination steps
which decrease the number of false detections significantly,
at the expense of a small decrease in the detection rate. The
remaining systems all use arbitration among multiple net-
works. Arbitration further reduces the false positive rate,
and in some cases increases the detection rate slightly. Note
that for systems using arbitration, the ratio of false detec-
tions to windows examined is extremely low, ranging from
1 false detection per 229,556 windows to down to 1 in
10,387,401, depending on the type of arbitration used. Sys-
tems 10, 11, and 12 show that the detector can be tuned to
make it more or less conservative. System 10, which uses
ANDing, gives an extremely small number of false posi-
tives, and has a detection rate of about 78.9%. On the other
hand, System 12, which is based on ORing, has a higher
detection rate of 90.5% but also has a larger number of false
detections. System 11 provides a compromise between the
two. The differences in performance of these systems can
be understood by considering the arbitration strategy. When
using ANDing, a false detection made by only one network
is suppressed, leading to a lower false positive rate. On the
other hand, when ORing is used, faces detected correctly by

only one network will be preserved, improving the detection
rate. System 13, which votes among three networks, yields
about the same detection rate and lower false positive rate
than System 12, which using ORing with two networks.

Based on the results in Table 1, we concluded that System
11 makes an reasonable tradeoff between the number of
false detections and the detection rate. System 11 detects
on average 85.4% of the faces, with an average of one false
detection per 1,319,035 20x20 pixel windows examined.
Figure 3 shows examples output images from System 11.

4 Comparison to other systems

[Sung and Poggio, 1994] reports a face detection system
based on clustering techniques. Their system, like ours,
passes a small window over all portions of the image, and
determines whether a face exists in each window. Their
system uses a supervised clustering method with six “face”
and six “non-face” clusters. Two distance metrics measure
the distance of an input image to the prototype clusters.
The first metric measures the “partial” distance between the
test pattern and the cluster’s 75 most significant eigenvec-
tors. The second distance metric is the Euclidean distance
between the test pattern and its projection in the 75 dimen-
sional subspace. These distance measures have close ties
with Principal Components Analysis (PCA), as described
in [Sung and Poggio, 1994]. The last step in their system is
to use either a perceptron or a neural network with a hidden
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layer, trained to classify points using the two distances to
each of the clusters (a total of 24 inputs). The main com-
putational cost in [Sung and Poggio, 1994] is in computing
the two distance measures from each new window to 12
clusters. We estimate that this computation requires fifty
times as many floating point operations as are needed to

classify a window in our system, in which the main costs
are in preprocessing and applying neural networks to the
window. Table 2 shows the accuracy of their system on
Test Set B, along with the our results using Systems 10, 11,
and 12 in Table 1, and shows that for equal numbers of false
detections, we can achieve higher detection rates.
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Missed Detect False False detect
System faces rate detects rate

10) Networks 1 and 2 � AND(0) � threshold(2,3) � overlap elimination 34 78.1% 3 1/3226028
11) Networks 1 and 2 � threshold(2,2) � overlap elimination � AND(2) 20 87.1% 15 1/645206
12) Networks 1 and 2 � threshold(2,2) � overlap � OR(2) � threshold(2,1) � overlap 11 92.9% 64 1/151220

[Sung and Poggio, 1994] (Multi-layer network) 36 76.8% 5 1/1929655
[Sung and Poggio, 1994] (Perceptron) 28 81.9% 13 1/742175

Although our system is less computationally expensive
than [Sung and Poggio, 1994], the system described so far
is not real-time because of the number of windows which
must be classified. In the related task of license plate detec-
tion, [Umezaki, 1995] decreased the number of windows
that must be processed. The key idea was to have the neural
network be invariant to translations of about 25% of the size
of a license plate. Instead of a single number indicating the
existence of a face in the window, the output of Umezaki’s
network is an image with a peak indicating where the net-
work believes a license plate is located. These outputs are
accumulated over the entire image, and peaks are extracted
to give candidate locations for license plates. In [Rowley et
al., 1995], we show that a face detection network can also
be made translation invariant. However, this translation in-
variant face detector makes many more false detections than
one that detects only centered faces. We use the centered
face detector to verify candidates found by the translation
invariant network. With this approach, we can process a
320x240 pixel image in less than 5 seconds on an SGI Indy
workstation. This technique is related, at a high level, to
the technique presented in [Vaillant et al., 1994].

5 Conclusions and future research
Our algorithm can detect between 78.9% and 90.5% of faces
in a set of 130 test images, with an acceptable number of
false detections. Depending on the application, the system
can be made more or less conservative by varying the arbi-
tration heuristics or thresholds used. The system has been
tested on a wide variety of images, with many faces and
unconstrained backgrounds.

There are a number of directions for future work. The
main limitation of the current system is that it only detects
upright faces looking at the camera. Separate versions of
the system could be trained for different head orientations,
and the results could be combined using arbitrationmethods
similar to those presented here. Other methods of improv-
ing system performance include obtainingmore positive ex-
amples for training, or applying more sophisticated image
preprocessing and normalization techniques. For instance,
the color segmentation method used in [Hunke, 1994] for
color-based face tracking could be used to filter images.
The face detector would then be applied only to portions of

the image which contain skin color, which would speed up
the algorithm as well as eliminating some false detections.

One application of this work is in the area of media tech-
nology. Every year, improved technology provides cheaper
and more efficient ways of storing information. However,
automatic high-level classification of the information con-
tent is very limited; this is a bottleneck preventing media
technology from reaching its full potential. The work de-
scribed above allows a user to make queries of the form
“Which scenes in this video contain human faces?” and to
have the query answered automatically.
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