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INTRODUCTION

A “graphical model” is a type of probabilistic network that has roots in several different

research communities, including artificial intelligence (Pearl, 1988), statistics (Lauritzen,

1996), error-control coding (Gallager, 1963), and neural networks. The graphical models

framework provides a clean mathematical formalism that has made it possible to understand

the relationships among a wide variety of network-based approaches to computation, and in

particular to understand many neural network algorithms and architectures as instances of

a broader probabilistic methodology.

Graphical models use graphs to represent and manipulate joint probability distributions.

The graph underlying a graphical model may be directed, in which case the model is often

referred to as a belief network or a Bayesian network (see BAYESIAN NETWORKS), or

the graph may be undirected, in which case the model is generally referred to as a Markov

random field. A graphical model has both a structural component—encoded by the pattern

of edges in the graph—and a parametric component—encoded by numerical “potentials”

associated with sets of edges in the graph. The relationship between these components un-

derlies the computational machinery associated with graphical models. In particular, general

inference algorithms allow statistical quantities (such as likelihoods and conditional prob-

abilities) and information-theoretic quantities (such as mutual information and conditional

entropies) to be computed efficiently. These algorithms are the subject of the current article.

Learning algorithms build on these inference algorithms and allow parameters and structures

to be estimated from data (see GRAPHICAL MODELS, PARAMETER LEARNING and

GRAPHICAL MODELS, STRUCTURE LEARNING).
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BACKGROUND

Directed and undirected graphical models differ in terms of their Markov properties (the

relationship between graph separation and conditional independence) and their parameteri-

zation (the relationship between local numerical specifications and global joint probabilities).

These differences are important in discussions of the family of joint probability distribution

that a particular graph can represent. In the inference problem, however, we generally have

a specific fixed joint probability distribution at hand, in which case the differences between

directed and undirected graphical models are less important. Indeed, in the current article,

we treat these classes of model together and emphasize their commonalities.

Let U denote a set of nodes of a graph (directed or undirected), and let Xi denote the

random variable associated with node i, for i ∈ U . Let XC denote the subset of random

variables associated with a subset of nodes C, for any C ⊆ U , and let X = XU denote the

collection of random variables associated with the graph.

The family of joint probability distributions associated with a given graph can be param-

eterized in terms of a product over potential functions associated with subsets of nodes in

the graph. For directed graphs, the basic subset on which a potential is defined consists of

a single node and its parents, and a potential turns out to be (necessarily) the conditional

probability of the node given its parents. Thus, for a directed graph, we have the following

representation for the joint probability:

p(x) =
∏
i

p(xi | xπi
), (1)

where p(xi | xπi
) is the local conditional probability associated with node i, and πi is the set
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of indices labeling the parents of node i. For undirected graphs, the basic subsets are cliques

of the graph—subsets of nodes that are completely connected. For a given clique C, let

ψC(xC) denote a general potential function—a function that assigns a positive real number

to each configuration xC . We have:

p(x) =
1

Z

∏
C∈C

ψC(xC), (2)

where C is the set of cliques associated with the graph and Z is an explicit normalizing

factor, ensuring that
∑

x p(x) = 1. (We work with discrete random variables throughout for

simplicity).

Eq. (1) can be viewed as a special case of Eq. (2). Note in particular that we could have

included a normalizing factor Z in Eq. (1), but, as is easily verified, it is necessarily equal

to one. Second, note that p(xi | xπi
) is a perfectly good example of a potential function,

except that the set of nodes that it is defined on—the collection {i ∪ πi}—is not in general

a clique (because the parents of a given node are not in general interconnected). Thus, to

treat Eq. (1) and Eq. (2) on an equal footing, we find it convenient to define the so-called

moral graph Gm associated with a directed graph G. The moral graph is an undirected graph

obtained by connecting all of the parents of each node in G, and removing the arrowheads.

On the moral graph, a conditional probability p(xi | xπi
) is a potential function, and Eq. (1)

reduces to a special case of Eq. (2).

PROBABILISTIC INFERENCE

Let (E,F ) be a partitioning of the node indices of a graphical model into disjoint subsets,

such that (XE , XF ) is a partitioning of the random variables. There are two basic kinds of



Jordan and Weiss: Probabilistic inference in graphical models 4

inference problem that we wish to solve:

• Marginal probabilities:

p(xE) =
∑
xF

p(xE , xF ). (3)

• Maximum a posteriori (MAP) probabilities:

p∗(xE) = max
xF

p(xE , xF ). (4)

From these basic computations we can obtain other quantities of interest. In particular, the

conditional probability p(xF | xE) is equal to:

p(xF | xE) =
p(xE , xF )∑
xF
p(xE , xF )

, (5)

and this is readily computed for any xF once the denominator is computed—a marginaliza-

tion computation. Moreover, we often wish to combine conditioning and marginalization, or

conditioning, marginalization and MAP computations. For example, letting (E,F,H) be a

partitioning of the node indices, we may wish to compute:

p(xF | xE) =
p(xE , xF )∑
xF
p(xE , xF )

=

∑
xH
p(xE , xF , xH)∑

xF

∑
xH
p(xE , xF , xH)

. (6)

We first perform the marginalization operation in the numerator and then perform a subse-

quent marginalization to obtain the denominator.
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Figure 1: (a) A directed graphical model. (b) The intermediate terms that arise during a run

of Eliminate can be viewed as messages attached to the edges of the moral graph. Here the

elimination order was (1, 2, 4, 3). (c) The set of all messages computed by the sum-product

algorithm.

Elimination

In this section we introduce a basic algorithm for inference known as “elimination.”

Although elimination applies to arbitrary graphs (as we will see), our focus in this section

is on trees.

We proceed via an example. Referring to the tree in Figure 1(a), let us calculate the

marginal probability p(x5). We compute this probability by summing the joint probability

with respect to {x1, x2, x3, x4}. We must pick an order over which to sum, and with some
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malice of forethought, let us choose the order (1, 2, 4, 3). We have:

p(x5) =
∑
x3

∑
x4

∑
x2

∑
x1

p(x1, x2, x3, x4, x5)

=
∑
x3

∑
x4

∑
x2

∑
x1

p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3)p(x5 | x3)

=
∑
x3

p(x5 | x3)
∑
x4

p(x4 | x3)
∑
x2

p(x3 | x2)
∑
x1

p(x1)p(x2 | x1)

=
∑
x3

p(x5 | x3)
∑
x4

p(x4 | x3)
∑
x2

p(x3 | x2)m12(x2),

where we introduce the notation mij(xj) to refer to the intermediate terms that arise in

performing the sum. The index i refers to the variable being summed over, and the index j

refers to the other variable appearing in the summand (for trees, there will never be more

than two variables appearing in any summand). The resulting term is a function of xj . We

continue the derivation:

p(x5) =
∑
x3

p(x5 | x3)
∑
x4

p(x4 | x3)
∑
x2

p(x3 | x2)m12(x2)

=
∑
x3

p(x5 | x3)
∑
x4

p(x4 | x3)m23(x3)

=
∑
x3

p(x5 | x3)m23(x3)
∑
x4

p(x4 | x3)

=
∑
x3

p(x5 | x3)m23(x3)m43(x3)

= m35(x5).

The final expression is a function of x5 only and is the desired marginal probability.
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This computation is formally identically in the case of an undirected graph. In particular,

an undirected version of the tree in Figure 1(a) has the parameterization:

p(x) =
1

Z
ψ12(x1, x2)ψ23(x2, x3)ψ34(x3, x4)ψ35(x3, x5). (7)

The first few steps of the computation of p(x5) are then as follows:

p(x5) =
1

Z

∑
x3

ψ35(x3, x5)
∑
x4

ψ34(x3, x4)
∑
x2

ψ23(x2, x3)
∑
x1

ψ12(x1, x2)

=
1

Z

∑
x3

ψ35(x3, x5)
∑
x4

ψ34(x3, x4)
∑
x2

ψ23(x2, x3)m12(x2),

and the remainder of the computation proceeds as before.

These algebraic manipulations can be summarized succinctly in terms of a general al-

gorithm that we refer to here as Eliminate (see Figure 2). The algorithm maintains an

“active list” of potentials, which at the outset represent the joint probability and at the end

represent the desired marginal probability. Nodes are removed from the graph according to

an elimination ordering that must be specified. The algorithm applies to both directed and

undirected graphs. Also, as we will see shortly, it is in fact a general algorithm, applying

not only to trees but to general graphs.

Message-passing algorithms

In many problems we wish to obtain more than a single marginal probability. Thus, for

example, we may wish to obtain both p(x4) and p(x5) in Figure 1(a). Although we could

compute each marginal with a separate run of Eliminate, this fails to exploit the fact
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Eliminate(G)
place all potentials ψC(xC) on the active list
choose an ordering I of the indices F
for each Xi in I

find all potentials on the active list that reference Xi

and remove them from the active list
define a new potential as the sum (with respect to xi) of the

product of these potentials
place the new potential on the active list

end
return the product of the remaining potentials

Figure 2: A simple elimination algorithm for marginalization in graphical models.

that common intermediate terms appear in the different runs. We would like to develop an

algebra of intermediate terms that allows them to be reused efficiently.

Suppose in particular that we wish to compute p(x4) in the example in Figure 1(a). Using

the elimination order (1, 2, 5, 3), it is easily verified that we generate the terms m12(x2) and

m23(x3) as before, and also generate new terms m53(x3) and m34(x4).

As suggested by Figure 1(b), the intermediate terms that arise during elimination can be

viewed as “messages” attached to edges in the moral graph. Rather than viewing inference

as an elimination process, based on a global ordering, we instead view inference in terms of

local computation and routing of messages. The key operation of summing a product can

be written as follows:

mij(xj) =
∑
xi

ψij(xi, xj)
∏

k∈N(i)\j
mki(xi), (8)

where N(i) is the set of neighbors of node i. Thus, summing over xi creates a message
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mij(xj) which is sent to the node j. The reader can verify that each step in our earlier

computation of p(x5) has this form.

A node can send a message to a neighboring node once it has received messages from all

of its other neighbors. As in our example, a message arriving at a leaf node is necessarily a

marginal probability. In general, the marginal probability at a node is given by the product

of all incoming messages:

p(xi) ∝
∏ ∏

k∈N(i)

mki(xi). (9)

The pair of equations given by Eq. (8) and Eq. (9) define an algorithm known as “sum-

product algorithm” or the “belief propagation algorithm.” It is not difficult to prove that

this algorithm is correct for trees.

The set of messages needed to compute all of the individual marginal probabilities for

the graph in Figure 1(a) is shown in Figure 1(b). Note that a pair of messages is sent along

each edge, one message in each direction.

Neural network also involve message-passing algorithms and local numerical operations.

An important difference, however, is that in the neural network setting each node generally

has a single “activation” value that it passes to all of its neighbors. In the sum-product

algorithm, on the other hand, individual messages are prepared for each neighbor. Moreover,

the message mij(xj) from i to j is not included in the product that node j forms in computing

a message to send back to node i. The sum-product algorithm avoids “double-counting.”

Maximum a posteriori (MAP) probabilities

Referring again to Figure 1(a), let us suppose that we wish to compute p∗(x5), the
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maximum probability configuration of the variables (X1, X2, X3, X4), for a given value of

X5. Again choosing a particular ordering of the variables, we compute:

p∗(x5) = max
x3

max
x4

max
x2

max
x1

p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3)p(x5 | x3)

= max
x3

p(x5 | x3) max
x4

p(x4 | x3) max
x2

p(x3 | x2) max
x1

p(x1)p(x2 | x1),

and the remaining computation proceeds as before. We see that the algebraic operations

involved in performing the MAP computation are isomorphic to those in the earlier marginal-

ization computation. Indeed, both the elimination algorithm and the sum-product algorithm

extend immediately to MAP computation; we simply replace “sum” with “max” throughout

in both cases. The underlying justification is that “max” commutes with products just as

“sum” does.

General graphs

Our goal in this section is to describe the junction tree algorithm, a generalization of

the sum-product algorithm that is correct for arbitrary graphs. We derive the junction tree

algorithm by returning to the elimination algorithm. Note that Eliminate is correct for

arbitrary graphs—the algorithm simply describes the creation of intermediate terms in a

chain of summations that compute a marginal probability. Thus the algorithm is correct,

but it is limited to the computation of a single marginal probability.

To show how to generalize the elimination algorithm to allow all individual marginals to

be computed, we again proceed by example. Referring to the graph in Figure 3(a), suppose

that we wish to calculate the conditional probability p(x1). Let us use the elimination

ordering (5, 4, 3, 2). At the first step, in which we sum over x5, we remove the potentials
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Figure 3: (a) An undirected graphical model. (b) The same model, with additional edges

that reflect the dependencies created by the elimination algorithm.

ψ35(x3, x5) and ψ45(x4, x5) from the active list and form the sum:

m32(x3, x4) =
∑
x5

ψ35(x3, x5)ψ45(x4, x5), (10)

where the intermediate term, which is clearly a function of x3 and x4, is denoted m32(x3, x4).

(We explain the subscripts below). The elimination of X5 has created an intermediate

term that effectively links X3 and X4, variables that were not linked in the original graph.

Similarly, at the following step, we eliminate X4:

m21(x2, x3) =
∑
x4

ψ24(x2, x4)m32(x3, x4) (11)

and obtain a term that links X2 and X3, variables that were not linked in the original graph.

A graphical record of the dependencies induced during the run of Eliminate is shown

in Figure 3(b). We could also have created this graph according to a simple graph-theoretic

algorithm in which nodes are removed in order from a graph, where, when a node is removed,

its remaining neighbors are linked. Thus, for example, when node 5 is removed, nodes 3 and
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4 are linked. When node 4 is removed, nodes 2 and 3 are linked. Let us refer to this algorithm

as GraphEliminate.

We can also obtain the desired marginal p(x1) by working with the “filled-in” graph in

Figure 3(b) from the outset. Noting that the cliques in this graph are C1 = {x1, x2, x3}

C2 = {x2, x3, x4} and C3 = {x3, x4, x5}, and defining the potentials:

ψC1(x1, x2, x3) = ψ12(x1, x2)ψ13(x1, x3)

ψC2(x2, x3, x4) = ψ24(x2, x4)

ψC3(x3, x4, x5) = ψ35(x3, x5)ψ45(x4, x5),

we obtain exactly the same product of potentials as before. Thus we have:

p(x) =
1

Z
ψ12(x1, x2)ψ13(x1, x3)ψC2(x2, x3, x4) = ψ24(x2, x4)ψ35(x3, x5)ψ45(x4, x5)

1

Z
ψC1ψC2ψC3 .

(12)

We have essentially transferred the joint probability distribution from Figure 3(a) to Fig-

ure 3(b). Moreover, the steps of the elimination algorithm applied to Figure 3(b) are exactly

the same as before, and we obtain the same marginal. An important difference, however, is

that in the case of Figure 3(b) all of the intermediate potentials created during the run of

the algorithm are also supported by cliques in the graph.

Graphs created by GraphEliminate are known as triangulated graphs, and they have

a number of special properties. In particular, they allow the creation of a data structure

known as a junction tree on which a generalized message-passing algorithm can be defined.
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A junction tree is a tree, in which each node is a clique from the original graph. Messages,

which correspond to intermediate terms in Eliminate, pass between these cliques.

Although a full discussion of the construction of junction trees is beyond the scope of

the article, it is worth noting that a junction tree is not just any tree of cliques from a

triangulated graph. Rather, it is a maximal spanning tree (of cliques), with weights given

by the cardinalities of the intersections between cliques.

Given a triangulated graph, with cliques Ci ∈ C and potentials ψCi
(xCi

), and given a

corresponding junction tree (which defines links between the cliques), we send the following

“message” from clique Ci to clique Cj:

mij(xSij
) =

∑
Ci\Sij

ψCi
(xCi

)
∏

k∈N (i)\j
mki(xSki

), (13)

where Sij = Ci∩Cj , and where N (i) are the neighbors of clique Ci in the junction tree. More-

over, it is possible to prove that we obtain marginal probabilities as products of messages.

Thus:

p(xCi
) ∝ ∏

k∈N (i)

mki(xSki
) (14)

is the marginal probability for clique Ci. (Marginals for single nodes can be obtained via

further marginalization: i.e., p(xi) =
∑

C\i p(xC), for i ∈ C).

The junction tree corresponding to the triangulated graph in Figure 3(b) is shown in

Figure 4, where the corresponding messages are also shown. The reader can verify that the

leftward-going messages are identical to the intermediate terms created during the run of

Eliminate. The junction tree algorithm differs from Eliminate, however, in that mes-
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x1 x3x2 x4x3x2 x5x4x3

m 12 (         )x2 x3,

m 21 (         )x , x3

m 23 (         )x3 x4,

m 32 (         )x3 x4,
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2

Figure 4: The junction tree corresponding to the triangulated graph in Figure 3(b).

sages pass in all directions, and the algorithm yields all clique marginals, not merely those

corresponding to a single clique.

The sum-product algorithm described earlier in Eq. (8) and Eq. (9) is a special case of

Eq. (13) and Eq. (14), obtained by noting that the original tree in Figure 1(a) is already

triangulated, and has pairs of nodes as cliques. In this case, the “separator sets” Sij are

singleton nodes.

Once again, the problem of computing MAP probabilities can be solved with a minor

change to the basic algorithm. In particular, the “sum” in Eq. (13) is changed to a “max.”

There are many variations on exact inference algorithms, but all of them are either

special cases of the junction tree algorithm or are close cousins. The basic message from

the research literature on exact inference is that the operations of triangulating a graph and

passing messages on the resulting junction tree capture in a succinct way the basic algebraic

structure of probabilistic inference.

Computational complexity

The computational complexity of the junction tree algorithm is a function of the size of

the cliques upon which message-passing operations are performed. In particular, summing

a clique potential is exponential in the number of nodes in the clique.
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The problem of finding the optimal triangulation—the triangulation yielding the small-

est maximal clique—turns out to be NP-hard. Clearly, if we had to search over all possible

elimination orderings, the search would take exponential time. Triangulation can also be

defined in other ways, however, and practical triangulation algorithms need not search over

orderings. But the problem is still intractable, and can be a practical computational bottle-

neck.

An even more serious problem is that in practical graphical models the original graph

may have large cliques, or long loops, and even the optimal triangulation would yield un-

acceptable complexity. This problem is particularly serious because it arises not during the

“compile-time” operation of triangulation, but during the “run-time” operation of message-

passing. Problems in error-control coding and image processing are particularly noteworthy

for yielding such graphs, as are discretizations of continuous-time problems, and layered

graphs of the kinds studied in the neural network field. To address these problems, we turn

to the topic of approximate probabilistic inference.

APPROXIMATE INFERENCE

The junction tree algorithm focuses on the algebraic structure of probabilistic inference,

exploiting the conditional independencies present in a joint probability distribution, as en-

coded in the pattern of (missing) edges in the graph. There is another form of structure in

probability theory, however, that is not exploited in the junction tree framework, and which

leads us to hope that successful approximate inference algorithms can be developed. In par-

ticular, laws of large numbers and other concentration theorems in probability theory show

that sums and products of large numbers of terms can behave in simple, predictable ways,
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despite the apparent combinatorial complexity of these operations. Approximate algorithms

attempt to exploit these numerical aspects of probability theory.

We discuss two large classes of approximate inference algorithms in this section—Monte

Carlo algorithms and variational algorithms. While these classes do not exhaust all of

the approximation techniques that have been studied, they capture the most widely-used

examples.

Monte Carlo algorithms

Monte Carlo algorithms are based on the fact that while it may not be feasible to compute

expectations under p(x), it may be possible to obtain samples from p(x), or from a closely-

related distribution, such that marginals and other expectations can be approximated using

sample-based averages. We discuss three examples of Monte Carlo algorithms that are

commonly used in the graphical model setting—Gibbs sampling, the Metropolis-Hastings

algorithm and importance sampling (for a comprehensive presentation of these methods and

others, see Andrieu, et al., in press).

Gibbs sampling is an example of a Markov chain Monte Carlo (MCMC) algorithm. In an

MCMC algorithm, samples are obtained via a Markov chain whose stationary distribution is

the desired p(x). The state of the Markov chain is a set of assignments of values to each of the

variables, and, after a suitable “burn-in” period so that the chain approaches its stationary

distribution, these states are used as samples.

The Markov chain for the Gibbs sampler is constructed in a straightforward way: (1) at

each step one of the variables Xi is selected (at random or according to some fixed sequence),

(2) the conditional distribution p(xi | xU\i) is computed, (3) a value xi is chosen from this
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distribution, and (4) the sample xi replaces the previous value of the ith variable.

The implementation of Gibbs sampling thus reduces to the computation of the conditional

distributions of individual variables given all of the other variables. For graphical models,

these conditionals take the following form:

p(xi | xU\i) =

∏
C∈C ψC(xC)∑

xi

∏
C∈C ψC(xC)

=

∏
C∈Ci

ψC(xC)∑
xi

∏
C∈Ci

ψC(xC)
, (15)

where Ci denotes the set of cliques that contain index i. This set is often much smaller than

the set C of all cliques, and in such cases each step of the Gibbs sampler can be implemented

efficiently. Indeed, the conditional of node i depends only on the neighbors of node i in

the graph, and thus the computation of the conditionals often takes the form of a simple

message-passing algorithm that is reminiscent of the sum-product algorithm.

A simple example of a Gibbs sampler is provided by the Boltzmann machine, an undi-

rected graphical model in which the potentials are defined on pairwise cliques. Gibbs sam-

pling is often used for inference in the Boltzmann machine, and the algorithm in Eq. (15)

takes the form of the classical computation of the logistic function of a weighted sum of the

values of neighboring nodes.

When the computation in Eq. (15) is overly complex, the Metropolis-Hastings algorithm

can provide an effective alternative. Metropolis-Hastings is an MCMC algorithm that is

not based on conditional probabilities, and thus does not require normalization. Given the

current state x of the algorithm, Metropolis-Hastings chooses a new state x̃ from a “proposal

distribution,” which often simply involves picking a variable Xi at random and choosing a

new value for that variable, again at random. The algorithm then computes the “acceptance
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probability”:

α = min

(
1,

∏
C∈Ci

ψC(x̃C)∏
C∈Ci

ψC(xC)

)
. (16)

With probability α the algorithm accepts the proposal and moves to x̃, and with probability

1 − α the algorithm remains in state x. For graphical models, this computation also turns

out to often takes the form of a simple message-passing algorithm.

While Gibbs sampling and Metropolis-Hastings aim at sampling from p(x), importance

sampling is a Monte Carlo technique in which samples are chosen from a simpler distribution

q(x), and these samples are reweighted appropriately. In particular, we approximate the

expectation of a function f(x) as follows:

E[f(x)] =
∑
x

p(x)f(x)

=
∑
x

q(x)

(
p(x)

q(x)
f(x)

)

≈ 1

N

N∑
i=1

p(x(t))

q(x(t))
f(x(t)),

where the values x(t) are samples from q(x). The choice of q(x) is in the hands of the

designer, and the idea is that q(x) should be chosen to be relatively simple to sample from,

while reasonably close to p(x) so that the weight p(x(t))/q(x(t)) is reasonably large. In the

graphical model setting, natural choices of q(x) are often provided by simplifying the graph

underlying p(x) in some way, in particular by deleting edges.

The principal advantages of Monte Carlo algorithms are their simplicity of implementa-

tion and their generality. Under weak conditions, the algorithms are guaranteed to converge.
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A problem with the Monte Carlo approach, however, is that convergence times can be long,

and it can be difficult to diagnose convergence.

We might hope to be able to improve on Monte Carlo methods in situations in which

laws of large numbers are operative. Consider, for example, the case in which a node i

has many neighbors, such that the conditional p(xi | xU\i) has a single, sharply-determined

maximum for most configurations of the neighbors. In this case, it would seem wasteful

to continue to sample from this distribution; rather, we would like to be able to compute

the maximizing value directly in some way. This way of thinking leads to the variational

approach to approximate inference.

Variational methods

The key to the variational approach lies in converting the probabilistic inference problem

into an optimization problem, such that the standard tools of constrained optimization can

be exploited. The basic approach has a similar flavor to importance sampling, but instead of

choosing a single q(x) a priori, a family of approximating distributions {q(x)} is used, and

the optimization machinery chooses a particular member from this family.

We begin by showing that the joint probability p(x) can be viewed as the solution to

an optimization problem. In particular, define the energy of a configuration x by E(x) =

− log p(x) − logZ, and define the variational free energy as follows:

F ({q(x)}) =
∑
x

q(x)E(x) +
∑
x

q(x) log q(x)

= −∑
x

q(x) log p(x) +
∑
x

q(x) log q(x) − logZ.
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The variational free energy is equal (up to an additive constant) to the Kullback-Leibler

divergence between q(x) and p(x). It is therefore minimized when q(x) = p(x) and attains

the value of − logZ at the minimum. We have thus characterized p(x) variationally.

Minimizing F is as difficult as doing exact inference, and much effort has been invested

into finding approximate forms of F that are easier to minimize. Each approximate version

of F gives a approximate variational inference algorithm.

For example, the simplest variational algorithm is the mean field approximation, in which

{q(x)} is restricted to the family of factorized distributions: q(x) =
∏

i qi(xi). In this case F

simplifies to:

FMF ({qi}) = −∑
C

∑
xC

logψC(xC)
∏
i∈C

qi(xi) +
∑

i

∑
xi

qi(xi) log qi(xi), (17)

subject to the constraint
∑

xi
qi(xi) = 1.

Setting the derivative with respect to qi(xi) equal to zero gives:

qi(xi) = α exp


∑

C

∑
xC\i

logψC(xC)
∏

j∈C,j �=i

qj(xj)


 (18)

where α is a normalization constant chosen so that
∑

xi
qi(xi) = 1. The sum over cliques C

is over all cliques that node i belongs to.

Eq. (18) defines an approximate inference algorithm. We initialize approximate marginals

q(xi) for all nodes in the graph and then update the approximate marginal at one node based

on those at neighboring nodes (note that the right hand side of Eq. (18) depends only on

cliques that node i belongs to). This yields a message-passing algorithm that is similar to
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neural network algorithms; in particular, the value q(xi) can be viewed as the “activation”

of node i.

More elaborate approximations to the free energy give better approximate marginal prob-

abilities. While the mean field free energy depends only on approximate marginals at single

nodes, the Bethe free energy depends on approximate marginals at single nodes qi(xi) as well

as approximate marginals on cliques qC(xC):

Fβ({qi, qC}) =
∑
C

∑
xC

qC(xC) log
qC(xC)

ψc(xC)
(19)

−∑
i

(di − 1)
∑
xi

qi(xi) log qi(xi) (20)

where di − 1 denotes the number of cliques that node i belongs to.

The approximate clique marginals and the approximate singleton marginals must satisfy

a simple marginalization constraint:
∑

xC\i qC(xC) = qi(xi). When we add Lagrange multi-

pliers and differentiate the Lagrangian we obtain a set of fixed point equations. Surprisingly,

these equations end up being equivalent to the “sum-product” algorithm for trees in Eq. (8).

The messages mij(xj) are simply exponentiated Lagrange multipliers. Thus the Bethe ap-

proximation is equivalent to applying the local message-passing scheme developed for trees

to graphs that have loops (see Yedidia, Freeman, and Weiss, 2001). This approach to ap-

proximate inference has been very successful in the domain of error-control coding, allowing

practical codes based on graphical models to nearly reach the Shannon limit.
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DISCUSSION

The unified perspective on inference algorithms that we have presented in this article has

arisen through several different historical strands. We briefly summarize these strands here

and note some of the linkages with developments in the neural network field.

The elimination algorithm has had a long history. The “peeling” algorithm developed

by geneticists is an early example (Cannings, Thompson, & Skolnick, 1978), as are the

“decimation” and “transfer matrix” procedures in statistical physics (Itzykson & Drouffe,

1987). For a recent discussion of elimination algorithms, including more efficient algorithms

than the simple Eliminate algorithm presented here, see Dechter (1999).

Belief propagation has also had a long history. An early version of the sum-product

algorithm was studied by Gallager (1963) in the context of error-control codes. See McEliece,

MacKay and Cheng (1996) and Kschischang, Frey and Loeliger (2001) for recent perspectives.

Well-known special cases of sum-product include the forward-backward algorithm for hidden

Markov models (see HIDDEN MARKOV METHODS), and the Kalman filtering/smoothing

algorithms for state-space models. A systematic presentation of the sum-product algorithm

was provided by Pearl (1988).

The variant of the junction tree algorithm that we have defined is due to Shafer and

Shenoy (1990), and has also been called the “generalized distributive law” by Aji and

McEliece (2000). A closely-related variant known as the “Hugin algorithm” is described

by Jensen (2001).

Many neural network architectures are special cases of the general graphical model for-

malism, both representationally and algorithmically. Special cases of graphical models in-
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clude essentially all of the models developed under the rubric of “unsupervised learning”

(see UNSUPERVISED LEARNING WITH GLOBAL OBJECTIVE FUNCTIONS, INDE-

PENDENT COMPONENT ANALYSIS, and HELMHOLTZ MACHINES AND SLEEP-

WAKE LEARNING), as well as Boltzmann machines (see SIMULATED ANNEALING

AND BOLTZMANN MACHINES), mixtures of experts (see MODULAR AND HIERAR-

CHICAL LEARNING SYSTEMS), and radial basis function networks (see RADIAL BASIS

FUNCTION NETWORKS). Many other neural networks, including the classical multilayer

perceptron (see PERCEPTRONS, ADALINES AND BACKPROPAGATION) can be prof-

itably analyzed from the point of view of graphical models. For more discussion of these

links, see the articles in Jordan (1999).
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