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Overview

• Perceptrons
• Support Vector Machines

– Face and pedestrian detection
• AdaBoost

– Faces
• Building Fast Classifiers

– Trading off speed for accuracy…
– Face and object detection

• Memory Based Learning
– Simard
– Moghaddam
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History Lesson
• 1950’s   Perceptrons are cool

– Very simple learning rule, can learn “complex” concepts
– Generalized perceptrons are better -- too many weights

• 1960’s   Perceptron’s stink (M+P)
– Some simple concepts require exponential # of features

• Can’t possibly learn that,  right?

• 1980’s   MLP’s are cool  (R+M / PDP)
– Sort of simple learning rule,  can learn anything (?)
– Create just the features you need

• 1990     MLP’s stink
– Hard to train :  Slow  /  Local Minima

• 1996     Perceptron’s are cool
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Why did we need multi-layer 
perceptrons?

• Problems like this seem to require very complex 
non-linearities.  

• Minsky and Papert showed that an exponential 
number of features is necessary to solve generic 
problems.
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Why an exponential number of features?
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14th Order???
120 Features
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N=21, k=5 --> 65,000 featuresN=21, k=5 --> 65,000 features
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MLP’s vs. Perceptron
• MLP’s are hard to train… 

– Takes a long time (unpredictably long)
– Can converge to poor minima

• MLP are hard to understand
– What are they really doing?

• Perceptrons are easy to train… 
– Type of linear programming.  Polynomial time.
– One minimum which is global.

• Generalized perceptrons are easier to understand.
– Polynomial functions.
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Perceptron Training is 
Linear Programming

( ) 0: >∀ i
T

i wyi x

Polynomial time in the number of variables
and in the number of constraints.

isi ∀> 0

∑
i

ismin

What about linearly inseparable?

( ) 0: >+∀ ii
T

i swyi x

{ }),(
:

}1,1{:

ii

N

y
R

y

x
x

−+

Viola 2003

Rebirth of Perceptrons
• How to train effectively

– Linear Programming (…  later quadratic programming)
– Though on-line works great too.

• How to get so many features inexpensively?!?
– Kernel Trick

• How to generalize with so many features?
– VC dimension.  (Or is it regularization?)

Support Vector Machines
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Lemma 1: Weight vectors are simple

• The weight vector lives in a sub-space spanned by 
the examples…  
– Dimensionality is determined by the number of 

examples not the complexity of the space.
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Lemma 2: Only need to compare examples
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Simple Kernels yield Complex Features
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But Kernel Perceptrons Can
Generalize Poorly
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Perceptron Rebirth: Generalization
• Too many features …  Occam is unhappy

– Perhaps we should encourage smoothness? 
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The linear program can return any multiple of the correct
weight vector... 

Linear Program is not unique

Slack variables & Weight prior 
- Force the solution toward zero
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Definition of the Margin

• Geometric Margin: Gap between negatives and 
positives measured perpendicular to a hyperplane

• Classifier Margin ( ) ( )i
T

NEGii
T

POSi
ww xx

∈∈
− maxmin

Viola 2003

Require non-zero margin

Allows solutions
with zero margin
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Enforces a non-zero
margin between examples
and the decision boundary.
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Constrained Optimization

• Find the smoothest function that separates  data
– Quadratic Programming (similar to Linear 

Programming)
• Single Minima
• Polynomial Time algorithm

1),( >+∑ ll
j

jjl sKby xx

0>ls

∑
l

lsmin

∑
j

jb2min

Viola 2003

Constrained Optimization 2

inactiveisx3
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SVM: examples
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SVM: Key Ideas

• Augment inputs with a very large feature set
– Polynomials, etc.

• Use Kernel Trick(TM) to do this efficiently
• Enforce/Encourage Smoothness with weight penalty
• Introduce Margin
• Find best solution using Quadratic Programming 
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SVM:  Zip Code recognition

• Data dimension: 256
• Feature Space: 4 th order

– roughly 100,000,000 dims
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The Classical Face Detection Process

Smallest
Scale

Larger
Scale

50,000 Locations/Scales
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Classifier is Learned from Labeled Data

• Training Data
– 5000 faces

• All frontal

– 108 non faces
– Faces are normalized

• Scale, translation

• Many variations
– Across individuals
– Illumination
– Pose (rotation both in plane and out)
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Key Properties of Face Detection
• Each image contains 10 - 50 thousand locs/scales
• Faces are rare 0 - 50 per image

– 1000 times as many non-faces as faces

• Extremely small # of false positives: 10-6
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Sung and Poggio
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Rowley, Baluja & Kanade

First Fast System
- Low Res to Hi

Viola 2003

Osuna, Freund, and Girosi
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Support Vectors
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P, O, & G:  First Pedestrian Work
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On to AdaBoost

• Given a set of weak classifiers

– None much better than random

• Iteratively combine classifiers
– Form a linear combination

– Training error converges to 0 quickly
– Test error is related to training margin
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AdaBoost
Weak 

Classifier 1

Weights
Increased

Weak
classifier 3

Final classifier is 
linear combination of 
weak classifiers
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AdaBoost Properties
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AdaBoost:
Super Efficient Feature Selector

• Features = Weak Classifiers
• Each round selects the optimal feature 

given:
– Previous selected features
– Exponential Loss
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Boosted Face Detection: Image Features

“Rectangle filters”

Similar to Haar wavelets 
Papageorgiou, et al.
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Feature Selection

• For each round of boosting:
– Evaluate each rectangle filter on each example
– Sort examples by filter values
– Select best threshold for each filter (min Z)
– Select best filter/threshold (= Feature) 
– Reweight examples

• M filters, T thresholds, N examples, L learning time
– O( MT L(MTN) )  Naïve Wrapper Method
– O( MN )  Adaboost feature selector
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Example Classifier for Face Detection

ROC curve for 200 feature classifier

A classifier with 200 rectangle features was learned using AdaBoost

95% correct detection on test set with 1 in 14084
false positives.

Not quite competitive...
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Building Fast Classifiers

• Given a nested set of classifier 
hypothesis classes

• Computational Risk Minimization

vs false negdetermined by
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Other Fast Classification Work

• Simard

• Rowley (Faces)
• Fleuret & Geman (Faces)
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Cascaded Classifier

1 Feature 5 Features

F

50%
20 Features

20% 2%
FACE

NON-FACE

F

NON-FACE

F

NON-FACE

IMAGE
SUB-WINDOW

• A 1 feature classifier achieves 100% detection rate 
and about 50% false positive rate.

• A 5 feature classifier achieves 100% detection rate 
and 40% false positive rate (20% cumulative)
– using data from previous stage. 

• A 20 feature classifier achieve 100% detection 
rate with 10% false positive rate (2% cumulative)
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Comparison to Other Systems

(94.8)Roth-Yang-Ahuja

94.4Schneiderman-Kanade

89.990.189.286.083.2Rowley-Baluja-
Kanade

93.791.891.190.890.190.088.885.278.3Viola-Jones

422167110957865503110
Detector

False Detections
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Output of Face Detector on Test Images
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Solving other “Face” Tasks 

Facial Feature Localization

Demographic
Analysis

Profile Detection 
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Feature Localization
• Surprising properties of our framework

– The cost of detection is not a function of image size
• Just the number of features

– Learning automatically focuses attention on key regions

• Conclusion:  the “feature” detector can include a 
large contextual region around the feature
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Feature Localization Features
• Learned features reflect the task

Viola 2003

Profile Detection
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More Results
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Profile Features 
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Features, Features, Features

• In almost every case:
Good Features      beat      Good Learning

Learning     beats     No Learning

• Critical classifier ratio:

• AdaBoost   >>   SVM

 
complexity

quality


