Learning and Vision: Discriminative Models

Paul Viola
Microsoft Research
viola@microsoft.com

Overview

- Perceptrons
- Support Vector Machines
 - Face and pedestrian detection
- AdaBoost
 - Faces
- Building Fast Classifiers
 - Trading off speed for accuracy...
 - Face and object detection
- Memory Based Learning
 - Simard
 - Moghaddam

Historical Lesson

- 1950’s: Perceptrons are cool
 - Very simple learning rule, can learn “complex” concepts
 - Generalized perceptrons are better – too many weights
- 1960’s: Perceptron’s stink (M+P)
 - Some simple concepts require exponential # of features
 - Can’t possibly learn that, right?
- 1980’s: MLP’s are cool (R+M / PDP)
 - Sort of simple learning rule, can learn anything (?)
 - Create just the features you need
- 1990: MLP’s stink
 - Hard to train: Slow / Local Minima
- 1996: Perceptron’s are cool

Why did we need multi-layer perceptrons?

- Problems like this seem to require very complex non-linearities.
- Minsky and Papert showed that an exponential number of features is necessary to solve generic problems.

Why an exponential number of features?

\[
\Phi(x) = \begin{cases}
1, \\
 x_1, x_2, \\
 x_1^2, x_1 x_2, x_2^2, \\
 x_1^3, x_1^2 x_2, x_1 x_2^2, x_2^3, \\
\vdots
\end{cases}
\]

- 14th Order???
- 120 Features

\[
\begin{align*}
\text{polyorder} : & n \text{ variables} \\
\text{order poly} : & k \text{ monomials} \\
\frac{(n+k)!}{N!} \frac{(n+k)!}{k!} \Rightarrow 65,000 \text{ features}
\end{align*}
\]

MLP’s vs. Perceptron

- MLP’s are hard to train…
 - Takes a long time (unpredictably long)
 - Can converge to poor minima
- MLP are hard to understand
 - What are they really doing?
- Perceptrons are easy to train…
 - Type of linear programming. Polynomial time.
 - One minimum which is global.
- Generalized perceptrons are easier to understand.
 - Polynomial functions.
Perceptron Training is Linear Programming

\[y_i (w^T x_i) > 0 \]

Polynomial time in the number of variables and in the number of constraints.

What about linearly inseparable?

\[y_i (w^T x_i) + s_i > 0 \]

\[s_i > 0 \quad \forall i \]

Rebirth of Perceptrons

- How to train effectively
 - Linear Programming (… later quadratic programming)
 - Though on-line works great too.
- How to get so many features inexpensively?!!
 - Kernel Trick
- How to generalize with so many features?
 - VC dimension. (Or is it regularization?)

Support Vector Machines

Lemma 1: Weight vectors are simple

\[w_0 = 0 \quad \Delta w_i = \eta_i x_i \]

\[w_i = \sum_{i \in \ell} \eta_i x_i = \sum_{i} b_i x_i \quad w_i = \sum_{i} b_i \Phi(x_i) \]

- The weight vector lives in a sub-space spanned by the examples…
 - Dimensionality is determined by the number of examples not the complexity of the space.

Lemma 2: Only need to compare examples

\[w_i = \sum_{i} b_i \Phi(x_i) \]

\[y(x) = w^T \Phi(x) \]

\[= \left(\sum_{i} b_i \Phi(x_i) \right)^T \Phi(x) \]

\[= \sum_{i} b_i K(x_i, x) \]

Simple Kernels yield Complex Features

\[K(x, x') = (1 + x^T x')^2 \]

\[= (1 + x_1 x'_1 + x_2 x'_2)^2 \]

\[= 1 + x_1^2 x'_1^2 + x_2^2 x'_2^2 + 2 x_1 x'_1 x_2 x'_2 \]

\[\Phi(x) = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_1 x_2 \end{bmatrix} \]

But Kernel Perceptrons Can Generalize Poorly

\[K(x, x') = (1 + x^T x')^{14} \]
Perceptron Rebirth: Generalization

- Too many features … Occam is unhappy
 - Perhaps we should encourage smoothness?

\[\forall i: \ y_i \sum_j b_j K(x_j, x_i) + s_i > 0 \quad \min \sum_i s_i \]

\[\forall i: \ s_i > 0 \quad \min \sum_j b_j^2 \]

Linear Program is not unique

The linear program can return any multiple of the correct weight vector...

\[\forall i: \ y_i (w^T x_i) > 0 \Rightarrow \forall i: \ y_i (\lambda w)^T x_i > 0 \]

Slack variables & Weight prior
- Force the solution toward zero

Definition of the Margin

- Geometric Margin: Gap between negatives and positives measured perpendicular to a hyperplane

- Classifier Margin

\[\min_{i \in \text{POS}} (w^T x_i) - \max_{i \in \text{NEG}} (w^T x_i) \]

Require non-zero margin

- Allows solutions with zero margin

- Enforces a non-zero margin between examples and the decision boundary.

\[w^T x_i + s_i > 0 \quad \forall i \]

\[w^T x_i + s_i > 1 \quad \forall i \]

Constrained Optimization

\[y_i \sum_j b_j K(x_j, x_i) + s_i > 1 \quad \min \sum_i s_i \]

\[s_i > 0 \quad \min \sum_j b_j^2 \]

- Find the smoothest function that separates data
 - Quadratic Programming (similar to Linear Programming)
 - Single Minima
 - Polynomial Time algorithm

Constrained Optimization 2

\[w^T x_i = 1 \]

\[w = \alpha x_i \beta i \]

\[x^3 \text{ is inactive} \]
SVM: Key Ideas

- Augment inputs with a very large feature set
 - Polynomials, etc.
- Use Kernel Trick(TM) to do this efficiently
- Enforce/Encourage Smoothness with weight penalty
- Introduce Margin
- Find best solution using Quadratic Programming

SVM: Zip Code recognition

- Data dimension: 256
- Feature Space: 4th order
 - roughly 100,000,000 dims

The Classical Face Detection Process

- Classifier is Learned from Labeled Data
 - Training Data
 - 5000 faces
 - All frontal
 - 10^6 non faces
 - Faces are normalized
 - Scale, translation
 - Many variations
 - Across individuals
 - Illumination
 - Pose (rotation both in plane and out)

Key Properties of Face Detection

- Each image contains 10-50 thousand locs/scales
- Faces are rare 0-50 per image
 - 1000 times as many non-faces as faces
- Extremely small # of false positives: 10^{-6}
On to AdaBoost

- Given a set of weak classifiers
 - Originally: \(h_j(x) \in \{+1, -1\} \)
 - Also: \(h_j(x) \in \{\alpha, \beta\} \) "confidence rated"
 - None much better than random
- Iteratively combine classifiers
 - Form a linear combination
 \[
 C(x) = \theta \left(\sum h_j(x) + b \right)
 \]
 - Training error converges to 0 quickly
 - Test error is related to training margin
AdaBoost

\[h_t = \min_h \sum_i D_i(i) e^{-y_i h(x_i)} / Z_i \]

\[\{\alpha, \beta\} = \frac{1}{2} \log \left(\frac{W_0}{W_0} \right) \]

\[D_{i+1}(i) = \frac{D_i(i) e^{-y_i h(i)} / Z_i}{Z_i} \]

Weights Increased

Weak classifier 3

Final classifier is linear combination of weak classifiers

AdaBoost Properties

\[D_{i+1}(i) = \frac{D_i(i) e^{-y_i h(i)} / Z_i}{Z_i} = \prod_t e^{-y_i h(i)} / Z_i = \prod Z_i \]

\[\prod Z_i = \sum e^{-\gamma \sum h(i)} e^{-\beta \sum h(i)} \geq \text{Loss}(y_i, C(x_i)) \]

Boosted Face Detection: Image Features

```
“Rectangle filters”
Similar to Haar wavelets

\( h(x) = \begin{cases} 
\alpha & \text{if } f_i(x) > \theta_i \\
\beta & \text{otherwise} 
\end{cases} \)

\( C(x) = \theta \sum h(x) + b \)
```

60,000 x 100 = 6,000,000

Unique Binary Features

AdaBoost: Super Efficient Feature Selector

- Features = Weak Classifiers
- Each round selects the optimal feature given:
 - Previous selected features
 - Exponential Loss
Feature Selection

- For each round of boosting:
 - Evaluate each rectangle filter on each example
 - Sort examples by filter values
 - Select best threshold for each filter (min Z)
 - Select best filter/threshold (= Feature)
 - Reweight examples
- M filters, T thresholds, N examples, L learning time
- $O(MT L(MTN))$ Naive Wrapper Method
- $O(MN)$ AdaBoost feature selector

Example Classifier for Face Detection

A classifier with 200 rectangle features was learned using AdaBoost. 95% correct detection on test set with 1 in 14084 false positives. Not quite competitive...

Building Fast Classifiers

- Given a nested set of classifier hypothesis classes
- Computational Risk Minimization

Other Fast Classification Work

- Simard
- Rowley (Faces)
- Fleuret & Geman (Faces)

Cascaded Classifier

- A 1 feature classifier achieves 100% detection rate and about 50% false positive rate.
- A 5 feature classifier achieves 100% detection rate and 40% false positive rate (20% cumulative) -- using data from previous stage.
- A 20 feature classifier achieve 100% detection rate with 10% false positive rate (2% cumulative)

Comparison to Other Systems

<table>
<thead>
<tr>
<th>Detector</th>
<th>False Detections</th>
<th>False Detections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viola-Jones</td>
<td>76.3</td>
<td>85.2</td>
</tr>
<tr>
<td>Rowley-Baluja-Kanade</td>
<td>85.2</td>
<td>86.0</td>
</tr>
<tr>
<td>Schneiderman-Kanade</td>
<td>94.0</td>
<td>94.0</td>
</tr>
<tr>
<td>Roth-Yang-Ahuja</td>
<td>(04.8)</td>
<td></td>
</tr>
</tbody>
</table>
Output of Face Detector on Test Images

Solving other “Face” Tasks

- Facial Feature Localization
- Profile Detection
- Demographic Analysis

Feature Localization

- Surprising properties of our framework
 - The cost of detection is not a function of image size
 - Just the number of features
 - Learning automatically focuses attention on key regions
- Conclusion: the “feature” detector can include a large contextual region around the feature

Feature Localization Features

- Learned features reflect the task

Profile Detection

More Results
Profile Features

Features, Features, Features

- In almost every case:

 Good Features beat Good Learning
 Learning beats No Learning

- Critical classifier ratio: \(\frac{\text{quality}}{\text{complexity}} \)

- AdaBoost \(\gg \) SVM