# Working with Implicit Surfaces and Point Clouds

Guillermo Sapiro Electrical and Computer Engineering University of Minnesota guille@ece.umn.edu

Supported by NSF, ONR, PECASE, CAREER, NIH

#### **Overview**

- Motivation
- Geodesics and generalized geodesics
- Comparing point clouds
- Meshless geometric subdivision
- The future and concluding remarks

#### **Motivation**

#### Implicit surfaces

- Facilitate fundamental computations
- Natural representation for many algorithms (e.g., medical imaging)
- Part of the computation very often (distance functions)

#### Point clouds

- Natural representation for 3D scanners
- Natural representation for manifold learning
- Dimensionality independent
- Pure geometry (no artificial meshes, etc)

#### **Geodesics and Generalized Geodesics**

Joint with Facundo Memoli

# **Motivation: A Few Examples**



# Motivation: A Few Examples (cont.)



#### **Motivation: What is a Geodesic?**

 $d_S^g(p,x) = \inf_C \int_C^x g(C) ds$ n



#### **Motivation: What is a Geodesic?**

 $d_S^g(p,x) = \inf_C \int_C^x g(C) ds$ 





- Complexity: O(n log n)
- Advantage: Works in any dimension and with any geometry (graphs)
- Problems:
  - Not consistent
  - Unorganized points?
  - Noise?
  - Implicit surfaces?



- Complexity: O(n log n)
- Advantage: Works in any dimension and with any geometry (graphs)
- Problems:
  - Not consistent
  - Unorganized points?
  - Noise?
  - Implicit surfaces?



- Complexity: O(n log n)
- Advantage: Works in any dimension and with any geometry (graphs)
- Problems:
  - Not consistent
  - Unorganized points?
  - Noise?
  - Implicit surfaces?



- Complexity: O(n log n)
- Advantage: Works in any dimension and with any geometry (graphs)
- Problems:
  - Not consistent
  - Unorganized points?
  - Noise?
  - Implicit surfaces?



- Complexity: O(n log n)
- Advantage: Works in any dimension and with any geometry (graphs)
- Problems:
  - Not consistent
  - Unorganized points?
  - Noise?
  - Implicit surfaces?

#### Background: Distance Functions as Hamilton-Jacobi Equations

- *g* = weight on the hyper-surface
- The g-weighted distance function between two points p and x on the hyper-surface S is:

$$\left\|\nabla_{S}d_{S}^{g}(p,x)\right\|=g$$



# Background: Computing Distance Functions as Hamilton-Jacobi Equations

 Solved in O(n log n) by Tsitsiklis, by Sethian, and by Helmsen, only for Euclidean spaces and Cartesian grids

$$\left\|\nabla d^{g}(p,x)\right\|=g$$

 Solved only for acute 3D triangulations by Kimmel and Sethian



# A real time <u>example</u>

#### **The Problem**

#### How to compute intrinsic distances and geodesics for

- General dimensions
- Implicit surfaces
- Unorganized noisy points (hyper-surfaces just given by examples)

### **Our Approach**

#### • We have to solve

$$\left\|\nabla_{S}d^{g}(p,x)\right\|=g$$



#### **Basic Idea**



#### **Basic Idea**



#### **Theorem** (Memoli-Sapiro):

$$\left|d^{g}-d^{g}_{S}\right|\rightarrow 0$$

#### **Basic idea**



$$\left|d^{g}-d^{g}_{S}\right| \rightarrow \begin{cases} h^{1/2} \\ h \\ h^{\gamma}, \gamma > \end{cases}$$

general local analytic

>1 "smart" metric

#### Why is this good?



#### **Implicit Form Representation**

#### $S = level - set of \Psi : R^n \rightarrow R = \{x : \Psi(x) = 0\}$



Figure from G. Turk

#### **Data extension**

• Embed M:

$$\mathbf{M} = \{ x : \Psi(x) = 0 \}$$

• Extend I outside M:

$$\frac{\partial \mathbf{I}}{\partial \mathbf{t}} + sign(\psi) (\nabla \mathbf{I} \cdot \nabla \psi) = \mathbf{0}$$



# **Examples**



# Examples







# Examples







# **Unorganized points**



# **Unorganized points (cont.)**



# **Unorganized points**





# Randomly sampled manifolds (with noise)

Theorem (Memoli - S. 2002):

$$\max_{p,q\in\mathcal{S}} \left( d_{\mathcal{S}}(p,q) - d_{\Omega^{h}_{\mathcal{P}_{n(h)}(h)}}(p,q) \right) \leq C_{\mathcal{S}}\sqrt{h}$$

$$P(\max_{p,q\in calS}\left(d_{\mathcal{S}}(p,q) - d_{\Omega^{h}_{\mathcal{P}_{n}}}(p,q)\right) > \varepsilon) \xrightarrow{n\uparrow\infty} 0$$

$$\lim_{h,n} P(d_{\mathcal{H}}(\mathcal{S}, \Omega^{h}_{\mathcal{P}_{n}}) > \varepsilon) = 0$$

# **Examples (VRML)**




## **Examples**



## **Intrinsic Voronoi of Point Clouds**



## Intermezzo: de Silva, Tenenbaum, et al...





## Intermezzo: Tenenbaum, de Silva, et al...

#### • Main Problem:

 Doesn't address noisy examples/measurements: Much less robust to noise!



 $\mathbf{\mathbf{a}}$  $\succeq$ 

#### **Error increases with the number of samples!**



## Intermezzo: de Silva, Tenenbaum, et al...

#### Problems:

- Doesn't address noisy examples/measurements: Much less robust to noise!
- Only convex surfaces
- Uses Dijkestra (back to non consistency)
- Doesn't work for implicit surface representations

# Is this a geodesic?



## Generalized geodesics: Harmonic maps

 Find a smooth map from two manifolds (M,g) and (N,h) such that

$$\min_{C:M\to N} \int_{\Omega} \left\| \nabla_M C \right\|^p \, dvol_M$$

$$\left(\frac{\partial C}{\partial t}\right) =$$

 $\Delta_{M}C + A_{N}(C) < \nabla_{M}C, \nabla_{M}C >= 0$ 

## **Examples**

#### • M is an Euclidean space and N the real line

$$\Delta C = \mathbf{0}$$

• M = [0,1], geodesics!

$$\frac{\partial^2 C}{\partial t^2} + A_N(C) < \nabla_M C, \nabla_M C >= 0$$

### Color Image Enhancement (with B. Tang and V. Caselles)











## Implicit surfaces

 Domain and target are implicitly represented: Simple Cartesian numerics

$$\frac{\partial \mathbf{C}}{\partial \mathbf{t}} = \operatorname{div}(\mathbf{P}_{\nabla \Psi} \nabla \mathbf{C}) + \left(\sum_{\mathbf{k}} \mathbf{H}_{\Phi} \left\langle \frac{\partial \mathbf{C}}{\partial \mathbf{x}_{\mathbf{k}}}, \frac{\partial \mathbf{C}}{\partial \mathbf{x}_{\mathbf{k}}} \right\rangle \right) \| \nabla \Phi \|$$

## **Example: Chroma denoising on a Surface** (with Bertalmio, Cheng, Osher)



## **Example: Direction denoising** (with Bertalmio, Cheng, Osher)



## Application (with G. Gorla and V. Interrante)



## **Texture mapping denoising**



# **Texture mapping denoising**



## **Examples** (with Betalmio, Cheng, Osher)



Vector field visualization (e.g., principal directions) (with Bertalmio, Cheng, Osher)



## **Concluding remarks**

 A general computational framework for distance functions, geodesics, and generalized geodesics

 Implicit hyper-surfaces and un-organized points

# **Comparing Point Clouds**

Joint with Facundo Memoli

## What is and Motivation

#### Comparing point clouds

- Dimension independent
- Geometric
- Bending (isometric) invariant
- Supported by theory and computational framework





## **The Gromov-Hausdorff Distance**

#### Hausdorff distance

$$d_{\mathcal{H}}^{Z}(X,Y) \stackrel{ riangle}{=} \max(\sup_{x \in X} d(x,Y), \sup_{y \in Y} d(y,X))$$

Gromov-Hausdorff distance

$$d_{\mathcal{GH}}(X,Y) \stackrel{\triangle}{=} \inf_{Z,f,g} d_{\mathcal{H}}^Z(X,Y)$$

f:X
ightarrow Z, g:Y
ightarrow Z isometric embeddings

## **Key question**

 How to estimate the Gromov-Housdorff distance from noisy samples of the metric space



## First step: Working with point clouds

Let X and Y be compact metric spaces,  $\mathbf{X}_m$ an r-covering of X and  $\mathbf{Y}_{m'}$  an r'-covering of Y. Then

$$|d_{\mathcal{GH}}(X,Y) - d_{\mathcal{GH}}(\mathbf{X}_m,\mathbf{Y}_{m'})| \le r + r'$$

 Consequence: Working with point clouds "is possible"

### How we compute the distance?

$$d_{\mathcal{I}}(\mathbf{X},\mathbf{Y}) \stackrel{\triangle}{=} \min_{\pi \in \mathcal{P}_n} \max_{1 \leq i,j \leq n} \frac{1}{2} | d_{\mathbf{X}}(x_i,x_j) - d_{\mathbf{Y}}(y_{\pi_i},y_{\pi_j})$$

#### $d_{\mathcal{GH}}(\mathbf{X},\mathbf{Y}) \leq d_{\mathcal{I}}(\mathbf{X},\mathbf{Y})$

#### $d_{\mathcal{GH}}(X,Y) \leq R_X + R_Y + d_{\mathcal{I}}(\mathbf{X},\mathbf{Y})$

Consequence: If we see a small pairwise distance, the objects are isometric

# The need for a probabilistic framework

Let  $(X, d_X)$  and  $(Y, d_Y)$  be any pair of given compact metric spaces and let  $\eta = d_{\mathcal{GH}}(X, Y)$ . Also, let  $N_{X,n}^{(r,s)} = \{x_1, \ldots, x_n\}$  be given. Then, given  $\alpha > 0$  there exist points  $\{y_1^{\alpha}, \ldots, y_n^{\alpha}\} \subset Y$ such that

1. 
$$d_{\mathcal{I}}(N_{X,n}^{(r,s)}, \{y_1^{\alpha}, \dots, y_n^{\alpha}\}) \le (\eta + \alpha)$$

2. 
$$B_Y(\{y_1^{\alpha}, \dots, y_n^{\alpha}\}, r+2(\eta+\alpha)) = Y$$

3. 
$$d_Y(y_i^{\alpha}, y_j^{\alpha}) \ge s - 2(\eta + \alpha)$$
 for  $i \ne j$ 



The problem is well posed

• No reason for the *y*'s to be given:

$$d_{\mathcal{I}}(N_{X,n}^{(r,s)}, N_{Y,n}^{(\hat{r},\hat{s})}) \leq d_{\mathcal{I}}(N_{X,n}^{(r,s)}, N_{Y,n}^{(r,s)}) + d_{\mathcal{I}}(N_{Y,n}^{(\hat{r},\hat{s})}, N_{Y,n}^{(r,s)}) \\ = 0 + \operatorname{small}(r, \hat{r})$$

#### We need probabilistic bounds!

## The probabilistic framework

Bottleneck distance between two samples of the same space:

$$d_{\mathcal{B}}^{Z}(\mathbf{Z},\mathbf{Z}') \stackrel{ riangle}{=} \min_{\pi \in \mathcal{P}_{n}} \max_{k} d_{Z}(z_{k},z_{\pi_{k}}') \geq d_{\mathcal{I}}(\mathbf{Z},\mathbf{Z}')$$

 Using concepts from intrinsic Voronoi diagrams and coupon collector theorem we have:

# The probabilistic framework (cont.)

Let  $(Z, d_Z)$  be a smooth compact submanifold of  $I\!\!R^d$ . Given a covering  $N_{Z,n}^{(r,s)}$  of Z and a number  $p \in (0,1)$ , there exists a positive integer  $m = m_n(p)$  such that if  $\mathbf{Z}_m = \{z_k\}_{k=1}^m$ is a sequence of *i.i.d.* points sampled uniformly from Z, with probability p one can find a set of n different indices  $\{i_1, \ldots, i_n\} \subset \{1, \ldots, m\}$  with

$$d_{\mathcal{B}}^{Z}(N_{Z,n}^{(r,s)}, \{z_{i_1}, \dots, z_{i_n}\}) \leq r$$

# The probabilistic framework (cont.)

Let X and Y compact submanifolds of  $\mathbb{R}^d$ . Let  $N_{X,n}^{(r,s)}$  be a covering of X with separation s such that for some positive constant c,  $s - 2d_{\mathcal{GH}}(X,Y) > c$ . Then, given any number  $p \in (0,1)$ , there exists a positive integer  $m = m_n(p)$  such that if  $\mathbf{Y}_m = \{y_k\}_{k=1}^m$  is a sequence of *i.i.d.* points sampled uniformly from Y, we can find, with probability at least p, a set of n different indices  $\{i_1, \ldots, i_n\} \subset \{1, \ldots, m\}$ such that

 $d_{\mathcal{I}}(N_{X,n}^{(r,s)}, \{y_{i_1}, \dots, y_{i_n}\}) \leq \exists d_{\mathcal{GH}}(X, Y) + r$ 

## **Computational considerations**

- Bounds on the number of sample points needed
- Covers of Y found using farthest point sampling.
- Geodesic distances for points on X and Y
- Select matching points of X and Y following our theory

# Examples



## **Meshless Geometric Subdivision**

Joint with

Carsten Moenning Facundo Memoli Nira Dyn N. Dodgson

## What is and Motivation

#### Mesh based subdivision

- Refinement (add points and edges)
- Averaging





#### Mesh not really geometric
# What is and Motivation (cont.)

- Point clouds are natural for 3D scanners
- Point clouds are the "true" geometry
- Point clouds are dimensionality independent
- All operations are geometric

## **Main Steps**

- Intrinsic point cloud simplification
- Intrinsic proximity information
- Geodesic centroid computation

Intrinsic subdivision scheme

# Intrinsic point cloud simplification

- Follows Meonning & Dodgson
- Based on progressive farthest point sampling
- Computed based on intrinsic Voronoi diagram (uses distance on point clouds)
- Guaranteed bounds on distance between samples





# Intrinsic proximity information

- "Replaces" (nongeometric) connectivity in mesh techniques
- Given by neighbors from the intrinsic Voronoi
- Easily updated when the point cloud is refined (using geodesics on point clouds)







# **Geodesic centroid computation**



# Geodesic centroid computation (cont.)

$$\begin{aligned} \text{centroid} &:= \min_{g} \frac{1}{2} \sum_{k=1}^{n} w_k d_M^2(g, p_k) \\ V(g) &:= \sum_{k=1}^{n} w_k \nabla_M \frac{1}{2} d_M^2(g, p_k) = 0 \\ \end{aligned}$$
$$\begin{aligned} g_0 &:= \Pi_M \left( \sum_{k=1}^{n} w_k p_k \right) \right) \to_{-V(g)} \text{centroid} \end{aligned}$$

## Intrinsic subdivision scheme

 Geometric averaging rule: Replace the point by the geodesic centroid of its intrinsic neighborhood

 Refinement rule: For each neighbor, insert the geodesic centroid of the joint neighborhood

# Example P<sub>0</sub> **P**1 P<sub>2</sub>

#### Quantitative study in the paper

# Example





# Conclusions

#### • Work with implicit surfaces and point clouds!!!

## Thanks

**F. Memoli** and G. Sapiro, "Fast computation of weighted distance functions and geodesics on implicit hypersurfaces," *Journal of Computational Physics* 173:2, pp. 730-764, November 2001.

**B. Tang**, G. Sapiro, and V. Caselles, "Color image enhancement via chromaticity diffusion," *IEEE Trans. Image Processing* 10, pp. 701-707, May 2001.

**B. Tang**, G. Sapiro, and V. Caselles, "Diffusion of general data on non-flat manifolds via harmonic maps theory: The direction diffusion case," *Int. Journal Computer Vision* 36:2, pp. 149-161, February 2000.

M. Bertalmio, L. T. Cheng, S. Osher, and G. Sapiro, "Variational problems and partial differential equations on implicit surfaces," *Journal of Computational Physics* 174:2, pp. 759-780, 2001.

A. Bartesaghi and G. Sapiro, "A system for the generation of curves on 3D brain images," *Human Brain Mapping* 14:1, pp. 1-15, 2001.

**F. Memoli**, G. Sapiro, and S. Osher, "Solving PDEs and variational problems onto general target surfaces," *Journal of Computational Physics*, 2004.

F. Memoli, G. Sapiro, and P. Thompson, "Implicit brain imaging," *Brain Imaging,* to appear.

F. Memoli and G. Sapiro, "Comparing point clouds," IMA TR, April 2004 (www.ima.umn.edu)

F. Memoli and G. Sapiro, "Geodesics on point clouds," IMA TR, Dec. 2002/April 2003 (<u>www.ima.umn.edu</u>)

C. Moenning, F. Memoli, et al., "Mesheless geometric subdivision," IMA TR, April 2004 (www.ima.umn.edu)



# Sulcii extraction on meshes

#### (with A. Bartesaghi)



Follows Kimmel-Sethian