Tutorial on
Distance Transforms
for Image Matching

Prof. Dan Huttenlocher
May 2004

Outline

- Distance transforms
 - Of binary images
 - Of sampled functions
 - Algorithms
- Chamfer and Hausdorff distances
 - Probing the distance transform
- Distance transform and dilation
 - Application to Hausdorff distance and learning linear separators
- Pictorial structure flexible template models
 - Using distance transforms of functions
Distance Transforms

- Map of distance to nearest features
 - Computed from map of feature locations
 • E.g., edge detector output
 - Traditionally binary features, but need not be
- Powerful and widely applicable
 - Can think of as “smoothing in feature space”
 - Related to morphological dilation operation
 - Often preferable to explicitly searching for correspondences of features
- Efficiently algorithms for computing
 - Time linear in number of pixels, fast in practice

Distance Transform Definition

- Set of points, P, some measure of distance
 \[D_P(x) = \min_{y \in P} \| x - y \| \]
 - For each location x distance to nearest y in P
 - Think of as cones rooted at each point of P
- Commonly computed on a grid \(\Gamma \) using
 \[D_P(x) = \min_{y \in \Gamma} (\| x - y \| + 1_P(y)) \]
 - Where \(1_P(y) = 0 \) when \(y \in P \), \(\infty \) otherwise
Simple Dynamic Programming

- 1D case, L₁ distance: |x-y|
 - Two passes:
 - Find closest point on left
 - Find closest on right if closer than one on left
 - Incremental:
 - Moving left-to-right, closest point on left either previous closest point or current point
 - Analogous moving right-to-left for closest point on right
 - Can keep track of closest point as well as distance to it
 - Will illustrate distance; point follows easily

L₁ Distance Transform Algorithm

- Two pass O(n) algorithm for 1D L₁ norm (for simplicity distance and not source)
 1. Initialize: For all j
 D[j] ← 1ₚ[j]
 2. Forward: For j from 1 up to n-1
 D[j] ← min(D[j],D[j-1]+1)
 3. Backward: For j from n-2 down to 0
 D[j] ← min(D[j],D[j+1]+1)

L₁ Distance Transform

- 2D case analogous to 1D
 - Initialization
 - Forward and backward pass
 - Fwd pass finds closest above and to left
 - Bwd pass finds closest below and to right
 - Note does not depend on 0,∞ initialization
 - Can “distance transform” arbitrary array

<table>
<thead>
<tr>
<th>-1</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

L₂ (Euclidean) Distance Transform

- Approximations using fixed size masks
 - Analogous to L₁ case
 - Simple but don’t compute right answer
- Exact linear time methods for L₂²
 - Can compute sqrt but usually not needed
 - Have traditionally been complicated to implement and often slow (not widely used)
 - New method that is relatively simple and fast
 - 1D case – lower envelope of quadratics
 - Higher dimensions “cascade” of 1D cases
 - Based on distance transform of function
Distance Transform of Function

- For a set of points P distance transform is
 \[D_P(x) = \min_{y \in P} \| x - y \| \]
- Saw that often computed using indicator function
 \[D_P(x) = \min_{y \in \Gamma} (\| x - y \| + 1_P(y)) \]
 – Where $1_P(y) = 0$ when $y \in P$, ∞ otherwise
- Rather than having binary features (or points) have feature cost at each location
 \[D_f(x) = \min_{y \in \Gamma} (\| x - y \| + f(y)) \]
 – Where f an arbitrary (sampled) function measuring “quality” of feature (big=bad)

1D L₁ Illustration

- Distance transform of point set

- Distance transform of (discrete) function
1D L_1 Case

- Same dynamic programming method works for functions as for point sets
 - Previously applied to $0, \infty$ now to arbitrary sampled function
- For instance

 4 2 8 6 1 3 6 3 4

 - Forward pass with 1 0

 4 2 3 4 1 2 3 3 3

 - Backward pass with 0 1

 3 2 3 2 1 2 3 3 3

L_2^2 Distance Transform of Function

- For L_2^2 distance have a quadratics

 $h(x) = \min_y ((x-y)^2 + f(y))$

 - Also arises in many optimization problems
- Intuition: h small for inputs “near” those where f small
- Explicit consideration of x,y yields $O(n^2)$ time for n grid points
- Can compute in linear time

 - Difference between discrete values

 - Values lie on a grid
Quadratic Distance Transform (DT)

- Compute $h(x) = \min_y ((x-y)^2 + f(y))$
- Intuition: each value y defines a constraint
 - Geometric view: in one dimension, lower envelope of arrangement of n quadratics
 - Each rooted at $(y, f(y))$
 - Related to convex hull

Algorithm for Lower Envelope

- Quadratics ordered $x_1 < x_2 < ... < x_n$
- At step j consider adding j-th to LE
 - Maintain two ordered lists
 - Quadratics currently visible on LE
 - Intersections currently visible on LE
 - Compute intersection of j-th quadratic with rightmost visible on LE
 - If right of rightmost intersection add quadratic and intersection
 - If not, this quadratic hides at least rightmost quadratic, remove and try again
Running Time of LE Algorithm

- Consider adding each quadratic just once
 - Intersection and comparison constant time
 - Adding to lists constant time
 - Removing from lists constant time
 - But then need to try again
- Simple amortized analysis
 - Total number of removals $O(n)$
 - Each quadratic, once removed, never considered for removal again
- Thus overall running time $O(n)$

2D Algorithm

- Horizontal pass of 1D algorithm
 - Computes minimum i^2 distance (in first dim)
- Vertical pass of 1D algorithm on result of horizontal pass
 - Computes minimum i^2+j^2 distance
 - Note algorithm applies to any input (quadratics can be at any location)
- Actual code straightforward and fast
 - Each pass maintains arrays of indexes of visible parabolas and the intersections
 - Fills in distance values at each pixel after determining which parabolas visible
1D L_2^2 Distance Transform

```c
static float *dt(float *f, int n) {
    float *d = new float[n], *z = new float[n];
    int *v = new int[n];
    int k = 0;
    v[0] = 0;
    z[0] = -INF;
    z[1] = +INF;
    for (int q = 1; q <= n-1; q++) {
        float s = ((f[q]+square(q))-(f[v[k]]+square(v[k])))
                   / (2*q-2*v[k]);
        while (s <= z[k]) {
            k--;
            s = ((f[q]+square(q))-(f[v[k]]+square(v[k])))
                 / (2*q-2*v[k]);
        }
        k++;
        v[k] = q;
        z[k] = s;
        z[k+1] = +INF;
    }
    return d;
}
```

DT Values From Intersections

```c
k = 0;
for (int q = 0; q <= n-1; q++) {
    while (z[k+1] < q) {
        k++;
        d[q] = square(q-v[k]) + f[v[k]];
    }
    return d;
}
```

- No reason to approximate L_2 distance!
- Simple to implement, fast
Generalizations of DT

- Other distance functions
 - Potts: 0 when \(f_i = f_j \), \(\tau \) otherwise
 - (Truncated) linear: \(\min(\tau, |f_i - f_j|) \)
 - (Truncated) quadratic: \(\min(\tau, (f_i - f_j)^2) \)
- Truncation allows for discontinuities
 - Spatial non-coherence (boundaries)
- All can be computed in linear time

Distance Transforms in Matching

- Chamfer measure – asymmetric
 - Sum of distance transform values
 - “Probe” DT at locations specified by model and sum resulting values
- Hausdorff distance (and generalizations)
 - Max-min distance which can be computed efficiently using distance transform
 - Generalization to quantile of distance transform values more useful in practice
- Pictorial structure models
 - Flexible configuration of parts (features)
Chamfer Measure

- Asymmetric comparison of two binary images \(A, B \)
 - Use points of \(A \) to select corresponding values in distance transform of \(B \)
 - Sum selected values

\[
\text{chamf}(A,B) = \sum_{a \in A} \min_{b \in B} \| a-b \| \\
= \sum_{a \in A} D_B(a)
\]

1+1+2+3+3+3+3+4+4+5+12+14+15 = 72

Hausdorff Distance

- Classical definition
 - Directed distance (not symmetric)
 - \(h(A,B) = \max_{a \in A} \min_{b \in B} \| a-b \| \)
 - Distance (symmetry)
 - \(H(A,B) = \max(h(A,B), h(B,A)) \)

- Minimization term again simply a distance transform of \(B \)
 - \(h(A,B) = \max_{a \in A} D_B(a) \)
 - Maximize over selected values of DT

- Classical distance not robust, single "bad match" dominates value
Hausdorff Matching

- Partial (or fractional) Hausdorff distance to address robustness to outliers
 - Rank rather than maximum
 - $h_k(A,B) = \min_{a \in A} \min_{b \in B} \|a - b\| = k^{th}_{a \in A} D_B(a)$
 - K-th largest value of D_B at locations given by A
 - Often specify as fraction f rather than rank
 - 0.5, median of distances; 0.75, 75th percentile

- Best match
 - Minimum fractional Hausdorff distance over given space of transformations

- Good matches
 - Above some fraction (rank) and/or below some distance

- Each point in (quantized) transformation space defines a distance
 - Search over transformation space
 - Efficient branch-and-bound “pruning” to skip transformations that cannot be good
Fast Hausdorff Search

- Branch and bound hierarchical search of transformation space
- Consider 2D transformation space of translation in x and y
 - (Fractional) Hausdorff distance cannot change faster than linearly with translation (L_1 norm)
 - Similar constraints for other transformations
 - Quad-tree decomposition, compute distance for transform at center of each cell
 - If larger than cell half-width, rule out cell
 - Otherwise subdivide cell and consider children

Branch and Bound Illustration

- Guaranteed (or admissible) search heuristic
 - Bound on how good answer could be in unexplored region
 - Cannot miss an answer
 - In worst case won’t rule anything out
- In practice rule out vast majority of transformations
 - Can use even simpler tests than computing distance at cell center
Comparing DT Matching Measures

- Fractional Hausdorff distance
 - Kth largest value selected from DT
- Chamfer
 - Sum of values selected from DT
 - Suffers from same robustness problems as classical Hausdorff distance
 - Max intuitively worse but sum also bad
 - Robust variants
 - Trimmed: sum the K smallest distances (same as Hausdorff but sum rather than largest of K)
 - Truncated: truncate individual distances before summing

Experiments Comparing Measures

- Monte Carlo experiments with known object location and synthetic clutter
 - Matching edge locations
- Varying percent clutter
 - Probability of edge pixel 2.5-15%
- Varying occlusion
 - Single missing interval, 10-25% of boundary
- Search over location, scale, orientation

5% Clutter Image
ROC Curves

- Probability of false alarm vs. detection
 - 10% and 15% occlusion with 5% clutter
 - Chamfer is lowest, Hausdorff (f=.8) is highest
 - Chamfer truncated distance better than trimmed

Edge Orientation Information

- Match edge orientation as well as location
 - Edge normals or gradient direction
- Increases detection performance and speeds up matching
 - Better able to discriminate object from clutter
 - Better able to eliminate cells in branch and bound search
- Distance in 3D feature space \([p_x, p_y, \alpha p_o]\)
 - \(\alpha\) weights orientation versus location
 - \(kth_{a \in A} \min_{b \in B} \| a-b \| = kth_{a \in A} D_B(a)\)
ROC’s for Oriented Edge Pixels

- Vast improvement for moderate clutter
 - Images with 5% randomly generated contours
 - Good for 20-25% occlusion rather than 2-5%

Observations on DT Based Matching

- Fast compared to explicitly considering pairs of model and data features
 - Hierarchical search over transformation space
- Important to use robust distance
 - Straight Chamfer can be sensitive to outliers
 - Truncated DT can be computed fast
- No reason to use approximate DT
 - Fast exact method for L_2^2 or truncated L_2^2
- For edge features use orientation too
 - Comparing normals or using multiple edge maps
Template Clustering

- Cluster templates into tree structures to speed matching
 - Rule out multiple templates simultaneously
 - Coarse-to-fine search where coarse granularity can rule out many templates
 - Several variants: Olson, Gavrila, Stenger

- Applies to variety of DT based matching measures
 - Chamfer, Hausdorff and robust Chamfer

- Use hierarchical clustering techniques offline on templates

Example Hierarchical Clusters

Larger pairwise differences higher in tree
Application to Hand Tracking

- Tree-based filtering of hand templates using Chamfer matching
- 3D model and tree of 2D hand templates

DT and Morphological Dilation

- Dilation operation replaces each point of P with some fixed point set Q
 - $P \oplus Q = U_p \cup_q p+q$
- Dilation by a “disc” C^d of radius d replaces each point with a disc
 - A point is in the dilation of P by C^d exactly when the distance transform value is no more than d (for appropriate disc and distance fcn.)
 - $x \in P \oplus C^d \iff D_P(x) \leq d$
Dilate and Correlate Matching

- Fixed degree of “smoothing” of features
 - Dilate binary feature map with specific radius disc rather than all radii as in DT
- $h_k(A, B) \leq d \iff |A \cap B^d| \geq k$
 - At least k points of A contained in B^d
- For low dimensional transformations such as x-y-translation, best way to compute
 - Dilation and binary correlation are very fast
 - For higher dimensional cases hierarchical search using DT is faster

Dot Product Formulation

- Let A and B^d be (binary) vector representations of A and B
 - E.g. standard scan line order
- Then fractional Hausdorff distance can be expressed as dot product
 - $h_k(A, B) \leq d \iff A \cdot B^d \geq k$
- Note that if B is perturbation of A by d then $A \cdot B$ is arbitrary whereas $A \cdot B^d = A \cdot A$
- Hausdorff matching using linear subspaces
 - Eigenspace, PCA, etc.
Learning and Hausdorff Distance

- Learning linear half spaces
 - Dot product formulation defines linear threshold function
 - Positive if $A \cdot B^d \geq k$, negative otherwise
- PAC – probably approximately correct
 - Learning concepts that with high probability have low error
 - Linear programming and perceptrons can both be used to learn half spaces in PAC sense
- Consider small number of values for d (dilation parameter) and pick best

Illustration of Linear Halfspace

- Possible images define n-dimensional binary space
- Linear function separating positive and negative examples
Perceptron Algorithm

- Examples x_i each with label $y_i \in \{+, -, 0\}$
- Set initial prediction vector $v = 0$
- For $i = 1, ..., m$
 - If $\text{sign}(v \cdot x_i) \neq \text{sign}(y_i)$
 then $v = v + y_i x_i$
- Run repeatedly until no misclassifications on m training examples
 - Or less than some threshold number but then haven’t found linear separator
- Generally need many more negative than positive examples for effective training

Perceptron classifier learns concepts c of form $u \cdot c \geq 0$

- Our problem of form $u \cdot c \geq k$
- Map into one higher dimensional space
 - In practice converges most rapidly if constant proportional to length of vector (e.g., sqrt)
- Train perceptron on dilated training data
 - Positive and negative labeled examples
 - Try multiple dilations pick best
- Recognize by dot product of resulting concept with (un-dilated) image
Learned Half-Space Templates

Positive examples (500)

Negative examples (350,000)

All Model Coefs. Pos. Model Coefs.

Example Model (dilation d=3, picked automatically)

Detection Results

- Train on 80% test on 20% of data
 - No trials yielded any false positives
 - Average 3% missed detections, worst case 5%
Flexible Template Matching

- Pictorial structures
 - Parts connected by springs and appearance models for each part
 - Used for human bodies, faces
 - Fischler & Elschlager introduced in 1973, recent efficient algorithms

Formal Definition of Model

- Set of parts $V=\{v_1, \ldots, v_n\}$
- Configuration $L=(l_1, \ldots, l_n)$
 - Specifying locations of the parts
- Appearance parameters $A=(a_1, \ldots, a_n)$
 - Model for each part (e.g., template)
- Edge e_{ij}, $(v_i, v_j) \in E$ for connected parts
 - Explicit dependency between part locations l_i, l_j
- Connection parameters $C=\{c_{ij} \mid e_{ij} \in E\}$
 - Spring parameters for each pair of connected parts
Flexible Template Algorithms

- Difficulty depends on structure of graph
 - Which parts are connected (E) and how (C)
- General case exponential time
 - Consider special case in which parts translate with respect to common origin
 - E.g., useful for faces

 - Parts $V = \{v_1, \ldots, v_n\}$
 - Distinguished central part v_1
 - Spring c_{i1} connecting v_i to v_1
 - Quadratic cost for spring

Efficient Algorithm for Central Part

- Location $L=(l_1, \ldots, l_n)$ specifies where each part positioned in image
- Best location $\min_{l_i} \sum_i (m_i(l_i) + d_i(l_i,l_1))$
 - Part cost $m_i(l_i)$
 - Measures degree of mismatch of appearance a_i when part v_i placed at location l_i
 - Deformation cost $d_i(l_i,l_1)$
 - Spring cost c_{i1} of part v_i measured with respect to central part v_1
 - E.g., quadratic or truncated quadratic function
 - Note deformation cost zero for part v_1 (wrt self)
Central Part Model

- Spring cost c_{j1}: ideal location of l_j wrt l_1
 - Translation $o_j = r_j - r_1$
 - $T_j(x) = x + o_j$

- Spring cost deformation from this ideal
 - $d_j = (l_j - T_j(l_1))^2$

Consider Case of 2 Parts

- $\min_{l_1, l_2} \left(m_1(l_1) + m_2(l_2) + (l_2 - T_2(l_1))^2 \right)$
 - Where $T_2(l_1)$ transforms l_1 to ideal location with respect to l_2 (offset)

- $\min_{l_1} \left(m_1(l_1) + \min_{l_2} \left(m_2(l_2) + (l_2 - T_2(l_1))^2 \right) \right)$
 - But $\min_x (f(x) + \|x - y\|^2)$ is a distance transform

- $\min_{l_1} \left(m_1(l_1) + D_{m_2}(T_2(l_1)) \right)$

- Sequential rather than simultaneous min
 - Don’t need to consider each pair of positions for the two parts because a distance
 - Just distance transform the match cost function, m
Several Parts wrt Reference Part

- $\min_L (\sum_i (m_i(l_i) + d_i(l_i, l_1)))$
- $\min_L (\sum_i m_i(l_i) + (l_i - T_i(l_1))^2)$
 - Quadratic distance between location of part v_i and ideal location given location of central part
- $\min_{l_1} (m_1(l_1) + \sum_{i>1} \min_{l_i} (m_i(l_i) + (l_i - T_i(l_1))^2)))$
 - i-th term of sum minimizes only over l_i
- $\min_{l_1} (m_1(l_1) + \sum_{i>1} D_{m_i}(T_i(l_1))))$
 - Because $D_f(x) = \min_y (f(y) + (y-x)^2)$
 - Using distance transform of a function

Several Parts wrt Reference

- Simple overall computation
 - Match cost $m_i(l_i)$ for each part at each location
 - Distance transform of $m_i(l_i)$ for each part other than reference part
 - Shifted by ideal relative location $T_i(l_1)$ for that part
 - Sum the match cost for the first part with the distance transforms for the other parts
 - Find location with minimum value in this sum array (best match)
- DT allows for flexibility in part locations
Application to Face Detection

- Five parts: eyes, tip of nose, sides of mouth
- Each part a local image patch
 - Represented as response to oriented filters
 - 27 filters at 3 scales and 9 orientations
 - Learn coefficients from labeled examples
- Parts translate with respect to central part, tip of nose

Flexible Template Face Detection

- Runs at several frames per second
 - Compute oriented filters at 27 orientations and scales for part cost m_i
 - Distance transform for each part other than central one (nose tip)
More General Flexible Templates

- Efficient computation using distance transforms for any tree-structured model
 - Not limited to central reference part
- Two differences from reference part case
 - Relate positions of parts to one another using tree-structured recursion
 - Solve with Viterbi or forward-backward algorithm
 - Parameterization of distance transform more complex – transformation T_{ij} for each connected pair of parts

Tree Structured Model Examples
Variety of Poses

Summary

- Fast, simple algorithms for computing distance transforms
- Wide application in image matching
 - Comparing binary images using Chamfer or Hausdorff distance
 - Extension to comparing “feature quality” maps
 - Related to morphological dilation
 - Use for fast Hausdorff computation and learning models using linear separators
 - Distance transforms of functions for pictorial structure flexible templates
References

- P. Felzenszwalb and D. Huttenlocher. Distance transforms of sampled functions, paper draft.