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Outline
Philosophy and motivation

1. Graph cut algorithms
2. Using graph cuts for energy 

minimization in vision
3. What energy functions can be 

minimized via graph cuts?

Problem reductions
Suppose you’re given a problem you 
don’t know how to solve

Turn it into one that you can solve

If any instance of a hard problem can 
be turned into your problem, then your 
problem is at least as hard
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Pixel labeling problem

Assignment cost for giving a 
particular label to a particular 
node. Written as D.

Separation cost for assigning a 
particular pair of labels to 
neighboring nodes. Written as V.
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Such that the sum of the 
assignment costs and separation 
costs (the energy E) is small
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We want to minimize the energy E(f)

Solving pixel labeling problems

Problem show up constantly in vision 
And in other fields as well

Bayesian justification (MRF’s)
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Pixel labeling for stereo

Labels are shifts (disparities, hence depths)
At the right disparity, I1(p) ≅ I2(p+d)

Assignment cost is D(p,d) = (I1(p) – I2(p+d))2

Neighboring pixels should be at similar depths
Except at the borders of objects!

Stereo

Classical solutions 
No good solutions until recently
General purpose optimization methods

Simulated annealing, or some such
Bad answers, slowly

Local methods 
Each pixel chooses a label independently
Bad answers, fast

How fast do you want the 
wrong answer?

Right answers Fast (correlation)Slow (annealing)FastSlowGraph cuts
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What do graph cuts provide?
For less interesting V, polynomial 
algorithm for global minimum!
For a particularly interesting V, 
approximation algorithm

Proof of NP hardness
For many choices of V, algorithms that 
find a strong local minimum
Very strong experimental results

Part A: Graph Cuts

Everything you never wanted to 
know about cuts and flows 

(but were afraid to ask)

Maximum flow problem
Max flow problem:

Each edge is a “pipe”
Find the largest flow F 
of “water” that can be 
sent from the “source”
to the “sink” along the 
pipes
Edge weights give the 
pipe’s capacity

“source”

A graph with two terminals

S T
“sink”

a flow F

Minimum cut problem 
Min cut problem:

Find the cheapest way 
to cut the edges so that 
the “source” is 
completely separated 
from the “sink”
Edge weights now 
represent cutting 
“costs”

a cut C

“source”

A graph with two terminals

S T
“sink”
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Max flow/Min cut theorem
Max Flow = Min Cut:

Maximum flow saturates the 
edges along the minimum 
cut.
Ford and Fulkerson, 1962
Problem reduction!

Ford and Fulkerson gave 
first polynomial time 
algorithm for globally 
optimal solution 

“source”

A graph with two terminals

S T
“sink”

Fast algorithms for min cut
Max flow problem can be solved fast

Many algorithms, we’ll sketch one

This is not at all obvious
Variants of min cut are NP-hard

Multiway cut problem
More than 2 terminals
Find lowest cost edges separating them all

“Augmenting Path” algorithms
Find a path from S 
to T along non-
saturated edges

“source”

A graph with two terminals

S T
“sink”

Increase flow along 
this path until some 
edge saturates

“Augmenting Path” algorithms
Find a path from S 
to T along non-
saturated edges

“source”

A graph with two terminals

S T
“sink”

Increase flow along 
this path until some 
edge saturates

Find next path…
Increase flow…
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“Augmenting Path” algorithms
Find a path from S 
to T along non-
saturated edges

“source”

A graph with two terminals

S T
“sink”

Increase flow along 
this path until some 
edge saturates

Iterate until …
all paths from S to T have 
at least one saturated edge

Implementation notes
There are many fast flow algorithms
Augmenting paths depends on ordering

Breadth first = Edmonds-Karp
Vision problems have many short paths
Subtleties needed due to directed edges

[BK ’04] gives an algorithm especially 
for vision problems

Software is freely available

Part B: Graph cuts in vision

How you can turn vision problems 
into min cut problems

for fun and profit (or, not)

A surprising result
Minimizing E in vision is difficult

Huge search space
Many local minima

With 2 labels, can find the global min!
[Greig, Porteus, Shehult, 1986]

Problem reduction to min cut
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Construction
Exactly 1 green link is 
cut, for every pixel

Cuts are labelings
Two obvious 
encodings

If two adjacent pixels 
end up linked to 
different terminals, the 
black link between 
them must be cut

Cost of cut is energy 
of labeling

Smoothness term matters
V determines what the solution prefers 

Consider uniform D
Comes from the MRF’s prior

Convex V over-penalizes discontinuities
|d1 – d2|
Non-convex V is important
T[d1 != d2], called the Potts model
min(|d1 - d2|,K)

Why is the problem hard?
Minimizing the energy for the 
interesting choices of V is NP-hard

Problem reduction from multiway cut
Result is somewhat recent [BV&Z ’01]

Requires exponential search
Dimension = number of pixels

Convex V is easy

Graph cuts can rapidly compute the 
global minimum

Convex V, contiguous integer labels
[Ishikawa ’04]

Another amazing result
Not of practical interest (IMHO)
You can really see the over-smoothing
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Local minima and moves
A local minimum is all we can hope for

For the important class of V
Minimum relative to a set of moves

Better than any “nearby” solution

We will compute a local minimum with 
respect to very powerful moves

Starting point

Green-yellow swap move

Red expansion move

Swap move algorithm
1. Start with an arbitrary labeling
2. Cycle through every label pair (α,β) in 
some order

2.1 Find the lowest E labeling within a single 
α,β-swap
2.2 Go there if this has lower E than the 
current labeling

3. If E did not decrease in the cycle, we’re 
done. Otherwise, go to step 2

Expansion move algorithm
1. Start with an arbitrary labeling
2. For each label α in some order

2.1 Find the lowest E labeling within a single α-
expansion
2.2 Go there if this has lower E than the 
current labeling

3. If E did not decrease in the cycle, we’re 
done. Otherwise, go to step 2
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Algorithm properties
In a cycle the energy E doesn’t increase

These are greedy methods
Convergence guaranteed in O(n) cycles

In practice, termination occurs in a few cycles

When the algorithms converge, the 
resulting labeling is a local minimum

Even when allowing an arbitrary swap 
move or expansion move

Strong local minima
A local minimum with respect to these moves 
is the best answer in a very large 
neighborhood

For example, there are O(k 2n) labelings within a 
single expansion move
Starting at an arbitrary labeling, you can get to 
the global minimum in k expansion moves

The expansion move algorithm yields a 2-
approximation for Potts model V

Binary sub-problem
The input problem involves k labels, but 
the key sub-problem involves only 2

Minimize E over all O(2n) labelings within a 
single α-expansion move from f
Each pixel p either keeps its old label fp, or 
acquire the new label α

Classical problem reduction
To min cut problem

Part C: What energy functions 
can graph cuts minimize?

Or, what else can we do with this?
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Different D example

Birchfield-Tomasi method
Compute an intensity interval

Use this as basis for D(p,d)

Handles sampling error

Different V example
Stereo Image:  White rectangle moves one pixel, 

background is stationary 

Cuts are binary labelings
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Recent progress
Over the last 4 years several such problem 
reductions have been done 

Graph constructions have been specialized to a 
particular E, and quite complex
You can’t tell by looking at E whether such a 
construction is possible, let alone how to do it

We now have a much more general result for 
energy functions of binary-valued variables

Graph cuts invariably use binary variables
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Energy functions and graphs
Consider E which assigns to any cut 
(binary labeling) the cost of that cut

Computing the min cut on G is a fast way 
to find the labeling that minimizes E
We will say that G represents E
Every weighted graph with two terminals 
represents some energy function
What we really want is to go in the 
opposite direction!

Basic questions
For what energy functions E can we 
construct a graph G that represents E?

I.e., what energy functions can we efficiently 
minimize using graph cuts?

How can we easily construct the graph 
G that represents E?

I.e., given an arbitrary E that we know to be 
graph-representable, how do we find G?

Question #1

What class of energy functions 
can we efficiently minimize 

using graph cuts?

The classes F2 and F3
Consider functions of n binary variables
Functions in F2 can be written as
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Functions in F3 can be written as
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Regularity
All functions E of 1 binary variable are 
defined to be regular
A function E of 2 binary variables is 
regular if

A function E of more than 2 binary 
variables is regular if all its projections 
are regular

)1,0()0,1()1,1()0,0( EEEE +≤+

Regularity theorem
A graph-representable function of 
binary variables must be regular
In fact, minimizing an arbitrary non-
regular functions in F2 is NP-hard

Reduction from independent set problem

F3 Theorem
Any regular function in F3 is graph-
representable
With the regularity theorem, this 
completely characterizes the energy 
functions E that can be efficiently 
minimized with graph cuts

Assuming E has no terms with >3 variables

Question #2

Given: an arbitrary graph-
representable E

Question: How do we find G ? 
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Desired construction
Input: an arbitrary regular E∈F3
Output: the graph that represents E

Additivity theorem
The sum of two graph-representable 
energy functions is itself graph-
representable

Assume that the two graphs are defined on 
the same sets of vertices, i.e. they differ 
only in the edge weights
We simply add the edge weights together

If there is no edge, we can pretend there is 
one with weight 0

Regrouping theorem
Any regular function in F3 can be re-
written as the sum of terms, where 
each term is regular and involves 3 or 
fewer variables

Combined with the additivity theorem, we 
need only build a graph for an arbitrary 
regular term involving 3 or fewer variables

Construction for F2
Consider an arbitrary regular E in F2 
We only need to look at a single term, 
whose form is like D(vp) or V(vp,vq)

Example: expansion moves for stereo
We will show how the construction works 
for both types of terms
Each term is known to be regular!
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Data terms
We need a graph construction that 
imposes one “penalty” if vp = 0, but 
another if vp = 1

The “penalty” can be positive or negative!
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Rewriting the penalty

The penalty Z = E(0) – E(1), imposed iff
vp = 0, can be positive or negative

But graph has non-negative edge weights!
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We will assume A>0, C>0, D-C>0 and 
construct the appropriate graph

The other cases are very similar

Smoothness terms
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Rewriting the term

All the entries are non-negative by 
assumption except the last

Which is non-negative by regularity!
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Not cut iff vq = 1
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Putting it all together
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What energy functions?
Partial characterization of the energy 
functions of binary variables that can be 
minimized with graph cuts
General-purpose construction for an arbitrary 
regular function in F3
It is no longer necessary to explicitly build the 
graph (do the problem reduction)

Instead, simply check the regularity condition and 
apply our construction

Conclusions
Problem reductions are powerful

Beware of general-purpose solutions!
Special-purpose ones are fragile

Graph cuts have both theoretical and 
practical interest
They are now (relatively) easy to use


