

Ramin Zabih Computer Science Department Cornell University

Joint work with Yuri Boykov, Vladimir Kolmogorov and Olga Veksler

Outline

Philosophy and motivation

- 1. Graph cut algorithms
- 2. Using graph cuts for energy minimization in vision
- 3. What energy functions can be minimized via graph cuts?

How fast do you want the wrong answer?

Right answers

SloGr**(spinscati**sng)

Everything you never wanted to know about cuts and flows (but were afraid to ask)

Swap move algorithm Start with an arbitrary labeling Cycle through every label pair (α,β) in some order I find the lowest *E* labeling within a single α,β-swap 2.2 Go there if this has lower *E* than the current labeling If *E* did not decrease in the cycle, we're done. Otherwise, go to step 2

In a cycle the energy E doesn't increase

- These are greedy methods
- Convergence guaranteed in O(n) cycles
 In practice, termination occurs in a few cycles
- When the algorithms converge, the resulting labeling is a local minimum
 - Even when allowing an arbitrary swap move or expansion move

Strong local minima

- A local minimum with respect to these moves is the best answer in a very large neighborhood
 - For example, there are $O(k 2^n)$ labelings within a single expansion move
 - Starting at an arbitrary labeling, you can get to the global minimum in k expansion moves
- The expansion move algorithm yields a 2approximation for Potts model V

Binary sub-problem The input problem involves *k* labels, but the key sub-problem involves only 2 Minimize *E* over all *O*(2ⁿ) labelings within a single α-expansion move from *f* Each pixel *p* either keeps its old label *f_p*, or acquire the new label α Classical problem reduction

To min cut problem

Part C: What energy functions can graph cuts minimize?

Or, what else can we do with this?

- For what energy functions E can we construct a graph G that represents E?
 - I.e., what energy functions can we efficiently minimize using graph cuts?
- How can we easily construct the graph *G* that represents *E*?
 - I.e., given an arbitrary *E* that we know to be graph-representable, how do we find *G*?

$$\sum_{i} E^{i}(v_i) + \sum_{i < j} E^{i,j}(v_i, v_j)$$

Functions in F3 can be written as

$$\sum_{i} E^{i}(v_{i}) + \sum_{i < j} E^{i,j}(v_{i}, v_{j}) + \sum_{i < j < k} E^{i,j,k}(v_{i}, v_{j}, v_{k})$$

Regularity

- All functions *E* of 1 binary variable are defined to be <u>regular</u>
- A function *E* of 2 binary variables is regular if

 $E(0,0) + E(1,1) \le E(1,0) + E(0,1)$

 A function *E* of more than 2 binary variables is regular if all its projections are regular

Regularity theorem

- A graph-representable function of binary variables must be regular
- In fact, minimizing an arbitrary nonregular functions in F2 is NP-hard
 - Reduction from independent set problem

F3 Theorem

- Any regular function in F3 is graphrepresentable
- With the regularity theorem, this completely characterizes the energy functions *E* that can be efficiently minimized with graph cuts
 - Assuming *E* has no terms with >3 variables

Desired construction

- Input: an arbitrary regular $E \in F3$
- Output: the graph that represents *E*

Regrouping theorem

- Any regular function in F3 can be rewritten as the sum of terms, where each term is regular and involves 3 or fewer variables
 - Combined with the additivity theorem, we need only build a graph for an arbitrary regular term involving 3 or fewer variables

- Consider an arbitrary regular *E* in F2
- We only need to look at a single term, whose form is like $D(v_p)$ or $V(v_p, v_q)$
 - Example: expansion moves for stereo
 - We will show how the construction works for both types of terms
 - Each term is known to be regular!

- Partial characterization of the energy functions of binary variables that can be minimized with graph cuts
- General-purpose construction for an arbitrary regular function in F3
- It is no longer necessary to explicitly build the graph (do the problem reduction)
 - Instead, simply check the regularity condition and apply our construction

Conclusions

- Problem reductions are powerful
 - Beware of general-purpose solutions!
 - Special-purpose ones are fragile
- Graph cuts have both theoretical and practical interest
- They are now (relatively) easy to use