A Selective Overview of Graph Cut
* Energy Minimization Algorithms

Ramin Zabih
Computer Science Department
Cornell University

Joint work with Yuri Boykov, Vladimir Kolmogorov and Olga Veksler

i Outline

Philosophy and motivation

1. Graph cut algorithms

2. Using graph cuts for energy
minimization in vision

3. What energy functions can be
minimized via graph cuts?

i Problem reductions

= Suppose you're given a problem you
don‘t know how to solve
= Turn it into one that you can solve

= If any instance of a hard problem can
be turned into your problem, then your
problem is at least as hard

Pixel labeling problem

Given
S={,-,m} Nc SxS§
@ ®

O
O

@
L:{llr"'rlA} I:' . I:'

Assignment cost for giving a
particular label to a particular
node. Written as D.

Separatfon cost for assigning a
particular pair of labels to
neighboring nodes. Written as 7.

Find
Labeling f =(f,,---, f,)
@
@
© @

Such that the sum of the
assignment costs and separation
costs (the energy E) is small

Solving pixel labeling problems

= We want to minimize the energy E())

argmin Y D(p. f,)+ V(1)

P-qeN

assignment costs separation costs

= Problem show up constantly in vision
= And in other fields as well
= Bayesian justification (MRF’s)

A
-
= Labels are shifts (disparities, hence depths)
= At the right disparity, I,(p) = I,(p+d)
= Assignment cost is D(p,d) = (I,(p) — L(p+d))*

= Neighboring pixels should be at similar depths
= Except at the borders of objects!

* Classical solutions

= No good solutions until recently

= General purpose optimization methods
= Simulated annealing, or some such
= Bad answers, slowly

= Local methods
= Each pixel chooses a label independently
= Bad answers, fast

How fast do you want the
wrong answer?

Right answers

SloGr @ierating)

i What do graph cuts provide?

= For less interesting ¥, polynomial
algorithm for global minimum!

= For a particularly interesting 7,
approximation algorithm
= Proof of NP hardness

= For many choices of 7, algorithms that
find a strong local minimum

= Very strong experimental results

* Part A: Graph Cuts

Everything you never wanted to
know about cuts and flows

(but were afraid to ask)

Maximum flow problem
aflow F = Max flow problem:
« Each edge is a “pipe”

“source” Sink” = Find the largest flow F

» . » of “water” that can be

i e
O=0O=0

to the “sink” along the
pipes

= Edge weights give the
pipe’s capacity

A graph with two terminals

sent from the “source”

Minimum cut problem

uul C

= Min cut problem:

= Find the cheapest way
to cut the edges so that
the “source” is
completely separated
from the “sink”

= Edge weights now
represent cutting

A graph with two terminals “costs”

i Max flow/Min cut theorem

P loo

A graph with two terminals

= Max Flow = Min Cut:

= Maximum flow saturates the

edges along the minimum
cut.

= Ford and Fulkerson, 1962
= Problem reduction!

Ford and Fulkerson gave

first polynomial time
algorithm for globally
optimal solution

i Fast algorithms for min cut

= Max flow problem can be solved fast
= Many algorithms, we'll sketch one
= This is not at all obvious
= Variants of min cut are NP-hard
= Multiway cut problem
= More than 2 terminals
= Find lowest cost edges separating them all

i “Augmenting Path” algorithms
= Find a path from S

A graph with two terminals

to T along non-
saturated edges

Increase flow along
this path until some
edge saturates

‘Augmenting Path” algorithms

;L‘_

A graph with two terminals

= Find a path from S
to T along non-
saturated edges

Increase flow along
this path until some
edge saturates

Find next path...
Increase flow...

i “Augmenting Path” algorithms
= Find a path from S

to T along non-
&L o 0N

saturated edges

Increase flow along
this path until some
edge saturates

Iterate until ...
all paths from S to T have
at least one saturated edge

A graph with two terminals

i Implementation notes

= There are many fast flow algorithms

= Augmenting paths depends on ordering
= Breadth first = Edmonds-Karp
= Vision problems have many short paths
= Subtleties needed due to directed edges

= [BK '04] gives an algorithm especially
for vision problems
= Software is freely available

* Part B: Graph cuts in vision

How you can turn vision problems
into min cut problems

for fun and profit (or, not)

i A surprising result

= Minimizing £ in vision is difficult
= Huge search space
= Many local minima

= With 2 labels, can find the global min!
= [Greig, Porteus, Shehult, 1986]

= Problem reduction to min cut

i Construction

= Exactly 1 green link is
cut, for every pixel
= Cuts are labelings
= Two obvious
encodings
= If two adjacent pixels
- - end up linked to
different terminals, the
black link between
them must be cut
= Cost of cut is energy
of labeling

i Smoothness term matters

= J determines what the solution prefers
= Consider uniform D
= Comes from the MRF's prior

= Convex V over-penalizes discontinuities
|dI — d2|

= Non-convex V is important
Td, '=d,), called the Potts model
min(|dl - d2|,K)

i Why is the problem hard?

= Minimizing the energy for the
interesting choices of V' is NP-hard
= Problem reduction from multiway cut
= Result is somewhat recent [BV&Z '01]
= Requires exponential search
= Dimension = number of pixels

i Convex V' is easy

= Graph cuts can rapidly compute the
global minimum
= Convex ¥, contiguous integer labels
= [Ishikawa '04]
= Another amazing result
= Not of practical interest (IMHO)
= You can really see the over-smoothing

* Local minima and moves

= A local minimum is all we can hope for
= For the important class of V

= Minimum relative to a set of moves
= Better than any “nearby” solution

= We will compute a local minimum with
respect to very powerful moves

Green-yellow swap move

Starting point / m O
Al

Red expansion move

e

* Swap move algorithm

= 1. Start with an arbitrary labeling
= 2. Cycle through every label pair (o,B) in
some order
= 2.1 Find the lowest E labeling within a single
a,B-swap
= 2.2 Go there if this has lower E than the
current labeling
= 3. If E did not decrease in the cycle, we're
done. Otherwise, go to step 2

i Expansion move algorithm

= 1. Start with an arbitrary labeling
= 2. For each label o in some order
= 2.1 Find the lowest E labeling within a single a-
expansion
= 2.2 Go there if this has lower E than the
current labeling
= 3. If E did not decrease in the cycle, we're
done. Otherwise, go to step 2

i Algorithm properties

= In a cycle the energy E doesn't increase
= These are greedy methods
= Convergence guaranteed in O(n) cycles
= In practice, termination occurs in a few cycles
= When the algorithms converge, the
resulting labeling is a local minimum

= Even when allowing an arbitrary swap
move or expansion move

i Strong local minima

= A local minimum with respect to these moves
is the best answer in a very large
neighborhood

= For example, there are O¢k 27) labelings within a
single expansion move

= Starting at an arbitrary labeling, you can get to
the global minimum in k expansion moves
= The expansion move algorithm yields a 2-
approximation for Potts model

i Binary sub-problem

= The input problem involves 4 labels, but
the key sub-problem involves only 2

= Minimize E over all O(2”) labelings within a
single a-expansion move from f

= Each pixel p either keeps its old label f,, or
acquire the new label o

= Classical problem reduction
= To min cut problem

Part C: What energy functions
* can graph cuts minimize?

Or, what else can we do with this?

* Different D example

plaet p porel g
s 175

= Birchfield-Tomasi method

= Compute an intensity interval
= Use this as basis for D(p,d)

= Handles sampling error

Different 7 example

Stereo Image: White rectangle moves one pixel,
background is stationary

* Cuts are binary labelings

on, S={0v,}
T={Lv,,v,}
labeling ={v, <~ O;v, <~ Lv, <1}
cost=A+B+D+E

i Recent progress

= Over the last 4 years several such problem
reductions have been done

= Graph constructions have been specialized to a
particular £, and quite complex

= You can't tell by looking at £ whether such a
construction is possible, let alone how to do it
= We now have a much more general result for
energy functions of binary-valued variables
= Graph cuts invariably use binary variables

i Energy functions and graphs

= Consider E which assigns to any cut
(binary labeling) the cost of that cut

= Computing the min cut on G is a fast way
to find the labeling that minimizes £

= We will say that G represents £

= Every weighted graph with two terminals
represents some energy function

= What we really want is to go in the
opposite direction!

i Basic questions

= For what energy functions E can we
construct a graph G that represents £?
= L.e., what energy functions can we efficiently
minimize using graph cuts?
= How can we easily construct the graph
G that represents E?

= I.e., given an arbitrary £ that we know to be
graph-representable, how do we find G?

* Question #1

What class of energy functions
can we efficiently minimize
using graph cuts?

:_L The classes F2 and F3

= Consider functions of » binary variables
= Functions in F2 can be written as
D EW)+D EY(v,v)
i i<j
= Functions in F3 can be written as

ZEf(vi)+ZEi"j(vi,v_/.)+ ZEi”j”k (vi,vj,vk)

i<j i<j<k

Regularity

= All functions E of 1 binary variable are
defined to be regular

= A function E of 2 binary variables is
regular if

E(0,0)+ E(1,1) < E(1,0)+ E(0,1)

= A function E of more than 2 binary
variables is regular if all its projections
are regular

i Regularity theorem

= A graph-representable function of
binary variables must be regular

= In fact, minimizing an arbitrary non-
regular functions in F2 is NP-hard
= Reduction from independent set problem

:_h F3 Theorem

= Any regular function in F3 is graph-
representable

= With the regularity theorem, this
completely characterizes the energy
functions E that can be efficiently
minimized with graph cuts
= Assuming E has no terms with >3 variables

* Question #2

Given: an arbitrary graph-
representable £

Question: How do we find G ?

i Desired construction

= Input: an arbitrary regular E<cF3
= Output: the graph that represents £

i Additivity theorem

= The sum of two graph-representable
energy functions is itself graph-
representable
= Assume that the two graphs are defined on
the same sets of vertices, i.e. they differ
only in the edge weights
= We simply add the edge weights together

= If there is no edge, we can pretend there is
one with weight 0

i Regrouping theorem

= Any regular function in F3 can be re-
written as the sum of terms, where
each term is regular and involves 3 or
fewer variables
= Combined with the additivity theorem, we
need only build a graph for an arbitrary
regular term involving 3 or fewer variables

:_L Construction for F2

= Consider an arbitrary regular £ in F2

= We only need to look at a single term,
whose form is like D®,) or V(v,v,)
= Example: expansion moves for stereo

= We will show how the construction works
for both types of terms

= Each term is known to be regular!

i Data terms

= We need a graph construction that
imposes one “penalty” if v, = 0, but
another if v, =1
= The “penalty” can be positive or negative!
[D(p.f,) | [E©)

| D(p,a) | | E(1)

i Rewriting the penalty

v E©)] TE®]| [EW©)-EQ)

+
vl EQ) | [EQ) 0

= The penalty Z = E(0) - E(1), imposed iff
v, =0, can be positive or negative
= But graph has non-negative edge weights!

Casel1l:Z>0

Not cut iff v,= 0

(source)

Case2: 7<0
0 . (source)

(sink)

i Smoothness terms

v,=0

v, =1

v,=0

V(f,: 1)

Vif,a)

vp=1

Ve, f,)

V(a,a)

A

B

C

D

= We will assume 4>0, C>0, D-C>0 and
construct the appropriate graph
= The other cases are very similar

i Rewriting the term

Al B Al A 010 D-C
= + +
C|D 00 c D-C
0|B+C-A4-D
+
0 0

= All the entries are non-negative by

assumption except the last

= Which is non-negative by regularity!

Not cut iff v,= 0

(oA

v, =0 v, =1

v, =0 v, =1 Non-negative
ol B+C—4—-D by regulari

Putting it all together

v, =0 v,=1
v,=0 A B G D-C
wt €| D
' , & BHCAD

D-C>0 A

One of the other cases

v,=0 v,=1
v,,:O A B C
v,=1
b B+C-A-D

VI’ V‘I
A>0,C>0
[b-c<aq] A C-D

i What energy functions? i Conclusions

s Partial characterization of the energy = Problem reductions are powerful
functions of binary variables that can be = Beware of general-purpose solutions!
minimized with graph cuts . .

)) = Special-purpose ones are fragile

= General-purpose construction for an arbitrary .
regular function in F3 = Graph cuts have both theoretical and

= It is no longer necessary to explicitly build the practical interest
graph (do the problem reduction) = They are now (relatively) easy to use

=« Instead, simply check the regularity condition and
apply our construction

