
Chapter 7

Texture

Texture is another feature that can help to segment images into regions of interest and to

classify those regions. In some images, it can be the de�ning characteristic of regions and

critical in obtaining a correct analysis. The image of Figure 7.1 has three very distinct

textures: the texture of the tiger, the texture of the jungle, and the texture of the water.

These textures can be quanti�ed and used to identify the object classes they represent.

Figure 7.1: An image containing several di�erent regions, each having a distinct texture

(licensed from Corel Stock Photos).

Texture gives us information about the spatial arrangement of the colors or intensities

in an image. Suppose that the histogram of a region tells us that it has 50% white pixels

and 50% black pixels. Figure 7.2 shows three di�erent images of regions with this intensity

distribution that would be considered three di�erent textures. The leftmost image has two

big blocks: one white and one black. The center image has 18 small white blocks and 18
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small black blocks forming a checkerboard pattern. The rightmost image has six long blocks,

three white and three black, in a striped pattern.

block pattern striped patterncheckerboard

Figure 7.2: Three di�erent textures with the same distribution of black and white.

The images of Figure 7.2 were arti�cially created and contain geometric patterns con-

structed from black and white rectangles. Texture is commonly found in natural scenes,

particularly in outdoor scenes containing both natural and man-made objects. Sand, stones,

grass, leaves, bricks, and many more objects create a textured appearance in images. Figure

7.3 illustrates some of these natural textures. Note that the two di�erent brick textures and

two di�erent leaf textures shown are quite di�erent. Thus, textures must be described by

more than just their object classi�cations. This chapter discusses what texture is, how it

can be represented and computed, and what it can be used for in image analysis.

7.1 Texture, Texels, and Statistics

The arti�cial textures of Figure 7.2 are made up of primitive rectangular regions in white

or black. In the checkerboard, the regions are small squares arranged in a 2D grid of al-

ternating colors. In the striped pattern, the regions are long stripes arranged in a vertical

sequence of alternating colors. It is easy to segment out these single-color regions and to

recognize these simple patterns.

Now, consider the two leaf textures of Figure 7.3. The �rst has a large number of small,

round leaves, while the second has a smaller number of larger, pointed leaves. It is di�-

cult to describe the spatial arrangements of the leaves in words; the arrangements are not

regular, but there is some quality of the image that would make one argue that there is a

noticeable arrangement in each image.

Part of the problem in texture analysis is de�ning exactly what texture is. There are

two main approaches:

1. structural approach: Texture is a set of primitive texels in some regular or repeated

relationship.
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leaves leaves grass

brick brick stone

Figure 7.3: Natural textures (from the MIT Media Lab VisTex database:

http://vismod.www.media.mit.edu/vismod/imagery/VisionTexture/vistex.html).

2. statistical approach: Texture is a quantitative measure of the arrangement of in-

tensities in a region.

While the �rst approach is appealing and can work well for man-made, regular patterns,

the second approach is more general and easier to compute and is used more often in practice.

7.2 Texel-Based Texture Descriptions

A texture can be thought of as a set of primitive texels in a particular spatial relationship.

A structural description of a texture would then include a description of the texels and

a speci�cation of the spatial relationship. Of course, the texels must be segmentable and

the relationship must be e�ciently computable. One very nice geometry-based description

was proposed by Tuceryan and Jain. The texels are image regions that can be extracted

through some simple procedure such as thresholding. The characterization of their spatial

relationships is obtained from a Voronoi tesselation of the texels as explained below.

Suppose that we have a set of already-extracted texels, and that we can represent each

one by a meaningful point, such as its centroid. Let S be the set of these points. For any

pair of points P and Q in S, we can construct the perpendicular bisector of the line joining

them. This perpendicular bisector divides the plane into two half planes, one of which is the
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Figure 7.4: The Voronoi tesselation of a set of circular texels.

set of points that are closer to P and the other of which is the set of points that are closer

to Q. Let HQ(P ) be the half plane that is closer to P with respect to the perpendicular

bisector of P and Q. We can repeat this process for each point Q in S. The Voronoi polygon

of P is the polygonal region consisting of all points that are closer to P than to any other

point of S and is de�ned by

V (P ) =
\

Q2S;Q 6=P

HQ(P )

Figure 7.4 illustrates the Voronoi polygons for a set of circular texels. This pattern produces

hexagonal polygons for internal texels; texels that border the image boundary have various

other shapes.

Once the texels have been extracted from an image and their Voronoi tesselation com-

puted, shape features of the polygons are calculated and used to group the polygons into

clusters that de�ne uniformly-textured regions. The type of pattern shown in Figure 7.4

extended to a large image would produce a single region of uniform texture characterized

by the shape features of the regular hexagons.

Exercise 1 Texel-Based Descriptions

Find or create a set of 5 images showing textures that have obvious texels that can be

detected via a simple procedure such as thresholding based on gray-tone or color ranges.

Try to �nd at least one texture that has more than one kind of texel. Draw the Voronoi

tesselation for a small area on this image.

7.3 Quantitative Texture Measures

For the most part, segmenting out the texels is more di�cult in real images than in arti�cially

generated patterns. Instead, numeric quantities or statistics that describe a texture can be

computed from the gray tones (or colors) themselves. This approach is less intuitive, but

is computationally e�cient and can work well for both segmentation and classi�cation of

textures.
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7.3.1 Edge Density and Direction

Since edge detection is a well-known and simple-to-apply feature detection scheme, it is nat-

ural to try to use an edge detector as the �rst step in texture analysis. The number of edge

pixels in a given �xed-size region gives some indication of the busyness of that region. The

directions of these edges, which are usually available as a biproduct of the edge-detection

process, can also be useful in characterizing the texture pattern.

Consider a region of N pixels. Suppose that a gradient-based edge detector is applied to

this region producing two outputs for each pixel p: 1) the gradient magnitude Mag(p) and

2) the gradient direction Dir(p), as de�ned in Chapter 5. One very simple texture feature

is edgeness per unit area which is de�ned by

Fedgeness =
j fp jMag(p) � Tg j

N
(7.1)

for some threshold T . Edgeness per unit area measures the busyness, but not the orientation

of the texture.

This measure can be extended to include both busyness and orientation by employing

histograms for both the gradient magnitude and the gradient direction. Let Hmag(R) denote

the normalized histogram of gradient magnitudes of region R, and let Hdir denote the

normalized histogram of gradient orientations of region R. Both of these histograms are

over a small, �xed number (such as 10) of bins representing groups of magnitudes and

groups of orientations. Both are normalized according to the size NR of region R. Then

Fmagdir = (Hmag(R);Hdir(R)) (7.2)

is a quantitative texture description of region R.

Figure 7.5: Two images with di�erent edgeness and edge-direction statistics.

Consider the two 5 � 5 images shown in Figure 7.5. The image on the left is busier

than the image on the right. It has an edge in every one of its 25 pixels, so its edgeness

per unit area is 1.0. The image on the right has 6 edges out of its 25 pixels, so its edgeness

per unit area is only 0.24. For the gradient-magnitude histograms, we will assume there are

two bins representing dark edges and light edges. For the gradient-direction histograms, we

will use three bins for horizontal, vertical, and diagonal edges. The image on the left has 6
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dark edges and 19 light edges, so its normalized gradient-magnitude histogram is (0.24,0.76),

meaning that 24% of the edges are dark and 76% are light. It also has 12 horizontal edges,

13 vertical edges, and no diagnonal edges, so its normalized gradient-direction histogram is

(0.48,0.52,0.0), meaning that 48% of the edges are horizontal, 52% are vertical and 0% are

diagonal. The image on the right has no dark edges and 6 light edges, so its normalized

gradient-magnitude histogram is (0.0,0.24). It also has no horizontal edges, no vertical edges,

and 6 diagonal edges, so its normalized gradient-direction histogram is (0.0,0.0,0.24). In the

case of these two images, the edgeness-per-unit-area measure is su�cient to distinguish them,

but the histogrammeasure provides a more powerful descriptive mechanism in general. Two

n-bin histograms H1 and H2 can be compared by computing their L1 distance

L1(H1;H2) =

nX
i=1

j H1[i]�H2[i] j (7.3)

Exercise 2 Edge-Based Texture Measures

Obtain a set of images that have lots of man-made structures with clearly de�ned edges.

Write a program to compute the texture measure Fmagdir of equation 7.2 for each of these

images, and compare them using the L1 distance of equation 7.3.

7.3.2 Local Binary Partition

Another very simple, but useful texture measure is the local binary partition measure. For

each pixel p in the image, the eight neighbors are examined to see if their intensity is greater

than that of p. The results from the eight neighbors are used to construct an eight-digit

binary number b1b2b3b4b5b6b7b8 where bi = 0 if the intensity of the ith neighbor is less than

or equal to that of p and 1 otherwise. A histogram of these numbers is used to represent the

texture of the image. Two images or regions are compared by computing the L1 distance

between their histograms as de�ned above.

Exercise 3 LPB
Using the images from the previous exercise, write another program to compute the his-

togram representing the LBP texture measure of each image. Again compute the L1 dis-

tances between pairs of images using this measure. Compare to your previous results.

7.3.3 Co-occurrence Matrices and Features

A co-occurrencematrix is a two-dimensional array C in which both the rows and the columns

represent a set of possible image values V . For example, for gray-tone images V can be the

set of possible gray tones and for color images V can be the set of possible colors. The

value of C(i; j) indicates how many times value i co-occurs with value j in some designated

spatial relationship. For example, the spatial relationship might be that value i occurs im-

mediately to the right of value j. To be more precise, we will look speci�cally at the case

where the set V is a set of gray tones and the spatial relationship is given by a vector d

that speci�es the displacement between the pixel having value i and the pixel having value j.
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Let d be a displacement vector (dr; dc) where dr is a displacement in rows (downward)

and dc is a displacement in columns (to the right). Let V be a set of gray tones. The

gray-tone co-occurrence matrix Cd for image I is de�ned by

Cd(i; j) =j f(r; c) j I(r; c) = i and I(r + dr; c+ dc) = jg j (7.4)

Figure 7.6 illustrates this concept with a 4 � 4 image I and three di�erent co-occurrence

matrices for I: C(0;1), C(1;0), and C(1;1).
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Figure 7.6: Three di�erent co-occurrence matrices for a gray-tone image.

In C(0;1) note that position (1,0) has a value of 2, indicating that j = 0 appears directly

to the right of i = 1 two times in the image. However, position (0,1) has a value of 0,

indicating that j = 1 never appears directly to the right of i = 0 in the image. The largest

co-occurence value of 4 is in position (0,0), indicating that a 0 appears directly to the right

of another 0 four times in the image.

Exercise 4 Co-occurence Matrices
Construct the gray-tone co-occurrence matrices C(1;2), C(2;2), and C(2;3) for the image of

Figure 7.6.

There are two important variations of the standard gray-tone co-occurrence matrix. The

�rst is the normalized gray-tone co-occurrence matrix Nd de�ned by

Nd(i; j) =
Cd(i; j)P

i

P
j Cd(i; j)

(7.5)

which normalizes the co-occurrence values to lie between zero and one and allows them to

be thought of as probabilities in a large matrix. The second is the symmetric gray-tone

co-occurence matrix Sd(i; j) de�ned by

Sd(i; j) = Cd(i; j) + C�d(i; j) (7.6)

which groups pairs of symmetric adjacencies.
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Figure 7.7: An image with a diagonal texture pattern.

Exercise 5 Normalized Co-occurrence
Compute the normalized co-occurrence matrix N(1;1) for the image of Figure 7.7 assuming

that the black pixels have gray tone 0, the gray pixels have gray tone 1, and the white pixels

have gray tone 2. How does it represent the texture pattern of the image?

Co-occurrence matrices capture properties of a texture, but they are not directly useful

for further analysis, such as comparing two textures. Instead, numeric features are computed

from the co-occurrence matrix that can be used to represent the texture more compactly.

The following are standard features derivable from a normalized co-occurence matrix.

Energy =
X
i

X
j

N2
d (i; j) (7.7)

Entropy = �
X
i

X
j

Nd(i; j)log2Nd(i; j) (7.8)

Contrast =
X
i

X
j

(i� j)2Nd(i; j) (7.9)

Homogeneity =
X
i

X
j

Nd(i; j)

1+ j i � j j
(7.10)

Correlation =

P
i

P
j(i� �i)(j � �j)Nd(i; j)

�i�j
(7.11)

where �i, �j are the means and �i, �j are the standard deviations of the row and column
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sums Nd(i) and Nd(j) de�ned by

Nd(i) =
X
j

Nd(i; j)

Nd(j) =
X
i

Nd(i; j)

One problem with deriving texture measures from co-occurrence matrices is how to

choose the displacement vector d. A solution suggested by Zucker and Terzopoulos is to

use a �2 statistical test to select the value(s) of d that have the most structure; that is, to

maximize the value:

�2(d) = (
X
i

X
j

N2
d (i; j)

Nd(i)Nd(j)
� 1)

7.3.4 Laws' Texture Energy Measures

Another approach to generating texture features is to use local masks to detect various

types of texture. Laws developed a texture-energy approach that measures the amount

of variation within a �xed-size window. A set of nine 5 x 5 convolution masks is used to

compute texture energy, which is then represented by a vector of nine numbers for each

pixel of the image being analyzed. The masks are computed from the following vectors,

which are similar to those studied in Chapter 5.

L5 (Level) = [ 1 4 6 4 1 ]

E5 (Edge) = [ -1 -2 0 2 1 ]

S5 (Spot) = [ -1 0 2 0 -1 ]

R5 (Ripple) = [ 1 -4 6 -4 1 ]

The names of the vectors describe their purposes. The L5 vector gives a center-weighted

local average. The E5 vector detects edges, the S5 vector detects spots, and the R5 vector

detects ripples. The 2D convolution masks are obtained by computing outer products of

pairs of vectors. For example, the mask E5L5 is computed as the product of E5 and L5 as

follows.

2
66664

�1
�2
0

2

1

3
77775

�
�
1 4 6 4 1

�
=

2
66664

�1 �4 �6 �4 �1
�2 �8 �12 �8 �1
0 0 0 0 0

2 8 12 8 2

1 4 6 4 1

3
77775

The �rst step in Laws' procedure is to remove e�ects of illumination by moving a small

window around the image, and subtracting the local average from each pixel, to produce

a preprocessed image, in which the average intensity of each neighborhood is near to zero.

The size of the window depends on the class of imagery; a 15 X 15 window was used for

natural scenes. After the preprocessing, each of the sixteen 5 X 5 masks are applied to the

preprocessed image, producing sixteen �ltered images. Let Fk[i; j] be the result of �ltering
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Table 7.1: Laws texture energy measures for the images of Figure 7.3.

Image E5E5 S5S5 R5R5 E5L5 S5L5 R5L5 S5E5 R5E5 R5S5

Leaves1 250.9 140.0 1309.2 703.6 512.2 1516.2 187.5 568.8 430.0

Leaves2 257.7 121.4 988.7 820.6 510.1 1186.4 172.9 439.6 328.0

Grass 197.8 107.2 1076.9 586.9 410.5 1208.5 144.0 444.8 338.1

Brick1 128.1 60.2 512.7 442.1 273.8 724.8 86.6 248.1 176.3

Brick2 72.4 28.6 214.2 263.6 130.9 271.5 43.2 93.3 68.5

Stone 224.6 103.2 766.8 812.8 506.4 1311.0 150.4 413.5 281.1

with the kth mask at pixel [i; j]. Then the texture energy map Ek for �lter k is de�ned by

Ek[r; c] =

c+7X
j=c�7

r+7X
i=r�7

j Fk[i; j] j (7.12)

Each texture energy map is a full image, representing the application of the kth mask to

the input image.

Once the sixteen energy maps are produced, certain symmetric pairs are combined to

produce the nine �nal maps, replacing each pair with its average. For example, E5L5

measures horizontal edge content, and L5E5 measures vertical edge content. The average

of these two maps measures total edge content. The nine resultant energy maps are

L5E5/E5L5 L5S5/S5L5

L5R5/R5L5 E5E5

E5S5/S5E5 E5R5/R5E5

S5S5 S5R5/R5S5

R5R5

The result of all the processing gives nine energy map images or, conceptually, a single

image with a vector of nine texture attributes at each pixel. Table 7.1 shows the nine texture

attributes for the main texture of each of the grass/stones/brick images of Figure 7.3. These

texture attributes can be used to cluster an image into regions of uniform texture. Figure

7.8 illustrates the segmentation of several multi-texture images into clusters.

7.3.5 Autocorrelation and Power Spectrum

The autocorrelation function of an image can be used to detect repetitive patterns of texture

elements and also describes the �neness/coarseness of the texture. The autocorrelation

function �(dr; dc) of an N + 1�N + 1 image for displacement d = (dr; dc) is given by

�(dr; dc) =
P

N

r=0

P
N

c=0
I[r;c]I(r+dr;c+dc]

P
N

r=0

P
N

c=0
I2[r;c]

(7.13)

=
I[r;c]�Id [r;c]

I[r;c]�I[r;c]
(7.14)

using the ideas of Chapter 5.
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Exercise 6 Laws Texture Energy Measures

Write a program to compute the Laws texture energy measures that inputs a gray-scale

image and outputs a set of nine images, one for each of the texture energy measures. Obtain

a set of images of both man-made and natural textures and perform a sequence of tests on

them. For each test, make one of the images the test image and call the others the database

images. Write an interactive front end that allows a user to select a pixel of the test image

and then looks for those database images that have a texture similar to that of the selected

pixel anywhere in that database image using the L1 distance on the set of nine texture energy

measures available for each pixel. The brute force way to do this is to merely compare the

nine values for the test image pixel with the nine values for each pixel of each database

image and select an image as soon as any of its pixels has similar enough texture energy

measure values. How might you do this more e�ciently?

If the texture is coarse, then the autocorrelation function drops o� slowly; otherwise, it

will drop o� very rapidly. For regular textures, the autocorrelation function will have peaks

and valleys. Since I[r + dr; c+ dc] is unde�ned at the boundaries of the image, a method

for computing these virtual image values must be de�ned.

The autocorrelation function is related to the power spectrum of the Fourier transform.

If I(r; c) is the image function and F (u; v) is its Fourier transform, the quantity j F (u; v) j2

is de�ned as the power spectrum where j � j is the modulus of a complex number. The

frequency domain can be divided into nr regions bounded by circular rings (for frequency

content) and nd wedges (for orientation content) and the total energy in each region is

computed to produce a set of texture features, as introduced in Chapter 5.

7.4 Texture Segmentation

Any texture measure that provides a value or vector of values at each pixel, describing the

texture in a neighborhood of that pixel, can be used to segment the image into regions

of similar textures. Like any other segmentation algorithm, texture segmentation algo-

rithms are of two major types: region-based approaches and boundary-based approaches.

Region-based approaches attempt to group or cluster pixels with similar texture proper-

ties. Boundary-based approaches attempt to �nd \texture edges" between pixels that come

from di�erent texture distributions. We leave the discussion of segmentation algorithms to

Chapter 10 on Image Segmentation. Figure 7.8 shows the segmentation of several images us-

ing the Laws texture energy measures and a clustering algorithm to group pixels into regions.

In Figure 7.8(a) and (b), the tiger image has been segmented into regions representing

tiger, water, and some other miscellaneous areas of the image. In Figure 7.8(c) and (d) a

multi-object image has been segmented into regions that roughly correspond to the grass,

the two ags, the black mesh fence and some background. In Figure 7.8(e) and (f), the

sunower image has been segmented into three types of texture: dark borders found at the

top and bottom of the image, small, far-away sunowers at the back of the �eld and large,

close-up sunowers at the front of the �eld. Table 7.2 shows the mean Laws texture energy

measures for the main regions of each of these images. Table 7.3 gives a comparison of the

Laws measures for tiger regions in several di�erent images.
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(a) Original image (b) Segmentation into 4 clusters

(c) Original image (d) Segmentation into 4 clusters

(e) Original image (f) Segmentation into 3 clusters

Figure 7.8: Examples of image segmentation using the Laws texture energy measures (orig-

inal images are from Corel Stock Photos and from the MIT Media Lab VisTex database).
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Table 7.2: Laws texture energy measures for major regions of the images of Figure 7.8.

Region E5E5 S5S5 R5R5 E5L5 S5L5 R5L5 S5E5 R5E5 R5S5

Tiger 168.1 84.0 807.7 553.7 354.4 910.6 116.3 339.2 257.4

Water 68.5 36.9 366.8 218.7 149.3 459.4 49.6 159.1 117.3

Flags 258.1 113.0 787.7 1057.6 702.2 2056.3 182.4 611.5 350.8

Fence 189.5 80.7 624.3 701.7 377.5 803.1 120.6 297.5 215.0

Grass 206.5 103.6 1031.7 625.2 428.3 1153.6 146.0 427.5 323.6

Small owers 114.9 48.6 289.1 402.6 241.3 484.3 73.6 158.2 109.3

Big owers 76.7 28.8 177.1 301.5 158.4 270.0 45.6 89.7 62.9

Borders 15.3 6.4 64.4 92.3 36.3 74.5 9.3 26.1 19.5

Table 7.3: Laws texture energy measures for tiger regions of several di�erent images.

Image E5E5 S5S5 R5R5 E5L5 S5L5 R5L5 S5E5 R5E5 R5S5

Tiger1 171.2 96.8 1156.8 599.4 378.9 1162.6 124.5 423.8 332.3

Tiger2a 146.3 79.4 801.1 441.8 302.8 996.9 106.5 345.6 256.7

Tiger2b 177.8 96.8 1177.8 531.6 358.1 1080.3 128.2 421.3 334.2

Tiger3 168.8 92.2 966.3 527.2 354.1 1072.3 124.0 389.0 289.8

Tiger4 168.1 84.0 807.7 553.7 354.4 910.6 116.3 339.2 257.4

Tiger5 146.9 80.7 868.7 474.8 326.2 1011.3 108.2 355.5 266.7

Tiger6 170.1 86.8 913.4 551.1 351.3 1180.0 119.5 412.5 295.2

Tiger7 156.3 84.8 954.0 461.8 323.8 1017.7 114.0 372.3 278.6

In the sunower image, some of the larger owers, some of the dark ower centers are

grouped with the dark border textures, because the mask used to compute the texture is

smaller than some of the larger owers. In general, these segmentation results are imperfect;

they can do no better than the operators that de�ne them. Segmentation based on both

color and texture can do better, but segmentation of natural scenes is an unsolved problem.

See Chapter 10 for a more comprehensive treatment of segmentation in general.
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