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Outline

e Object detection
e the task, evaluation, datasets

e Convolutional Neural Networks (CNNs)
e overview and history

* Region-based Convolutional Networks (R-CNNs)



Image classification

e K classes
e Task: assign correct class label to the whole image

Digit classification (MNIST) Object recognition (Caltech-101)



Classification vs. Detection




Problem formulation

{ airplane, bird, motorbike, person, sofa }




Evaluating a detector

Test image (previously unseen)



First detection ...




Second detection ...

g

|| ‘person’ detector predictions



Third detection ...

g

|| ‘person’ detector predictions



Compare to ground truth

|| ‘person’ detector predictions

] ground truth ‘person’ boxes



Sort by confidence
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(high overlap)

false
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duplicate)



Evaluation metric

t
sion@t #true positives@t v
recision@t = —
P #true positives@t + #false positives@t /S +X

#true positives@t
recall@t =

#ground truth objects



Evaluation metric

Average Precision (AP)
0% is worst
100% is best

precision

AP mean AP over classes
(mAP)

0
0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall



Histograms of Oriented Gradients for Human Detection,
Dalal and Triggs, CVPR 2005

Pedestrians ...,

More sophisticated methods: AP ~90%

(g)

(a) average gradient image over training examples

(b) each “pixel” shows max positive SVM weight in the block centered on that pixel
(c) same as (b) for negative SVM weights

(d) test image

(e) its R-HOG descriptor

(f) R-HOG descriptor weighted by positive SVM weights

(g) R-HOG descriptor weighted by negative SVM weights
14



Overview of HOG Method

1. Compute gradients in the region to be described
2. Put them in bins according to orientation

3. Group the cells into large blocks

4. Normalize each block

5. Train classifiers to decide if these are parts of a human
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Details

e Gradients
[-101] and [-1 0 1]" were good enough filters.

* Cell Histograms
Each pixel within the cell casts a weighted vote for an
orientation-based histogram channel based on the values
found in the gradient computation. (9 channels worked)

* Blocks
Group the cells together into larger blocks, either R-HOG
blocks (rectangular) or C-HOG blocks (circular).



More Details

* Block Normalization

They tried 4 different kinds of normalization.
e Ll-norm

e sqgrtof L1-norm

e L2norm

e L2-norm followed by clipping

* If you think of the block as a vector v, then the
normalized block is v/norm(v)
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Example: Dalal-Triggs pedestrian
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1. Extract fixed-sized (64x128 pixel) window at each
position and scale

2. Compute HOG (histogram of gradient) features
within each window

3. Score the window with a linear SVM classifier

Perform non-maxima suppression to remove
overlapping detections with lower scores
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Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR0O5
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Slides by Pete Barnum
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Tnput Normalize Compute Weighted vote Contrast normalize Collect HOG’s
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Normalize Weighted vote Contrast normalize
inpnge | E2mma & > o ORI | into spatial & || over overlapping | —>
s colour orientation cells spatial blocks

Collect HOG s

over dete ction

window

e Histogram of gradient orientations

Orientation: 9 bins (for

Histograms in 8x8
unsigned angles)

pixel cells
90
135 45
180 0
225 315
270

e Votes weighted by magnitude
 Bilinear interpolation between cells

Person /
3= [NON—person
classification

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR0O5
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Tralning set
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Detection examples
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Deformable Parts Model

e Takes the idea a little further

* Instead of one rigid HOG model, we have multiple
HOG models in a spatial arrangement

* One root part to find first and multiple other parts
In a tree structure.
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The Idea

Articulated parts model
e Obiject is configuration of parts
e Each partis detectable

HAIR

RIGHT
EDGE

LEFT
EDGE

MOUTH

32
Images from Felzenszwalb



Deformable objects

Images from Caltech-256
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Slide Credit: Duan Tran



Deformable objects

Images from D. Ramanan’s dataset 34
Slide Credit: Duan Tran



How to model spatial relations?

e Tree-shaped model

i
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Model Overview

detection root filter part filters deformation
models

Model has a root filter plus deformable parts
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Hybrid template/parts model

Detections

Template Visualization

root filters part filters deformation

coarse resolution  finer resolution models
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Felzenszwalb et al. 2008



Pictorial Structures Model

(L|1,60) (Hp Il;, ;) H p([;.[jcfj))
el
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Appearance likelihood Geometry likelihood
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Results for person matching
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Results for person matching
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EICHNER, FERRARI: BETTER APPEARANCE MODELS FOR PICTORIAL STRUCTURES 9

e

Lan T
ErET {

i}

BMVC 2009



2012 State-of-the-art Detector:
Deformable Parts Model (DPM)

{}P* Ca

Lifetime
Achievement

Strong low-level features based on HOG

Efficient matching algorithms for deformable part-based
models (pictorial structures)

Discriminative learning with latent variables (latent SVM)

Felzenszwalb et al., 2008, 2010, 2011, 2012



Why did gradient-based models work?

Average gradient image
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Generic categories

Can we detect people, chairs, horses, cars, dogs, buses, bottles, sheep ...?
PASCAL Visual Object Categories (VOC) dataset
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Generic categories
Why doesn’t this work (as well)?

Can we detect people, chairs, horses, cars, dogs, buses, bottles, sheep ...?
PASCAL Visual Object Categories (VOC) dataset
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Quiz time
(Back to Girshick)



Warm up

This is an average image of which object class?
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Warm up

pedestrian

48



A little harder




A little harder

?
Hint: airplane, bicycle, bus, car, cat, chair, cow, dog, dining table
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A little harder

bicycle (PASCAL)
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A little harder, yet




A little harder, yet

?
Hint: white blob on a green background
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A little harder, yet

sheep (PASCAL)
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Impossible?
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Impossible?

dog (PASCAL)

56



Impossible?

dog (PASCAL)
Why does the mean look like this?
There’s no alignment between the examples!
How do we combat this?
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PASCAL VOC detection history

mean Average Precision (mAP)
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Part-based models & multiple

features (MKL)

mean Average Precision (mAP)
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Kitchen-sink approaches

mean Average Precision (mAP)
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Region-based Convolutional
Networks (R-CNNs)

mean Average Precision (mAP)
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Region-based Convolutional
Networks (R-CNNs)

mean Average Precision (mAP)
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Convolutional Neural Networks

e Overview



Standard Neural Networks




From NNs to Convolutional NNs

* Local connectivity

e Shared (“tied”) weights
 Multiple feature maps
* Pooling



Convolutional NNs

* Local connectivity

compare

e Each green unit is only connected to (3)
neighboring blue units

@O

\Z
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Convolutional NNs

e Shared (“tied”) weights

@ ° All green units share the same parameters w

@- - @ Each green unit computes the same function,
Wi - but with a different input window
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Convolutional NNs

e Convolution with 1-D filter: [w3, w,, wy |

e All green units share the same parameters w

e Each green unit computes the same function,
but with a different input window

00O



Convolutional NNs

e Convolution with 1-D filter: [w3, w,, wy |

Wy O

O W2 e All green units share the same parameters w

e Each green unit computes the same function,
but with a different input window



Convolutional NNs

e Convolution with 1-D filter: [w3, w,, wy |

O
O O
W, @ ° Allgreen units share the same parameters w
O 2 : :
W, e Each green unit computes the same function,
but with a different input window
O



Convolutional NNs

e Convolution with 1-D filter: [w3, w,, wy |

® ° All green units share the same parameters w

e Each green unit computes the same function,
but with a different input window
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Convolutional NNs

e Convolution with 1-D filter: [w3, w,, wy |

O

O O

O @ ° Allgreen units share the same parameters w

® ©® . Each green unit computes the same function,
Wy O but with a different input window

L
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Convolutional NNs

 Multiple feature maps

e All orange units compute the same function
but with a different input windows

e QOrange and green units compute
different functions

Feature map 2
(array of orange
units)

Feature map 1
(array of green
units) 73



Convolutional NNs

* Pooling (max, average)

——
0

® 9é

®9®¢

* Pooling area: 2 units
e Pooling stride: 2 units

e Subsamples feature maps
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Pooling

]

Convolution

]

Image
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10 output units  pl -——-emee--
fully connected

1989 ~ 300 links

layer H3 oooooopoo
30 hidden units fully connected
~ 6000 links
layer H2 [/
12 x 16=192 _
H2.1 H2.1 !
hidden units , ™ 40,000 links
| from 12 kernels
N 5x5x8
layer H1 = P
12 x 64 = 768 1 ) [
hidden units L
H1i.1
P ~20,000 links

1] |
»Ean

from 12 Kkernels
ax5

256 input units

Backpropagation applied to handwritten zip code recognition,
Lecun et al., 1989 /6



Historical perspective — 1980

Biological
Cybernetics

(© by Springer-Verlag 1980

Biol. Cybernetics 36, 193-202 {1980)

Neocognitron: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition
Unaffected by Shift in Position

Kunthiko Fukushima

NHK Broadcasting Science Research Laboratories, Kinuta, Setagaya, Tokyo, Japan
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Historical perspective — 1980

fe———— visual area *e-association area —
R il it _, lower-order __ higher-order _. __grandmother
retind —= LGB —simple — complex hyper ke complex | cell ?
| | IR eRiiSS R E SRRAT 4SRN s M TS SN M T TR SL A s el et U SRTRRS AR RN AN T BARRNNA TR RARATRES 1 frreT TR T Tl

Uy~ U ——>Ug; |

Hubel and Wiesel
1962

—& modifiable synapses
—> unmodifiable synapses

Fig. 2. Schematic diagram illustrating the
interconnections between layers in the
neocognitron

Included basic ingredients of ConvNets, but no supervised learning algorithm



Supervised learning — 1986

Gradient descent training with error backpropagation

Learning Internal Representations
by Error Propagation

D. E. RUMELHART, G. E. HINTON, and R. J. WILLIAMS

Early demonstration that error backpropagation can be used
for supervised training of neural nets (including ConvNets)
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Supervised learning — 1986

Output
Unit
_ _ _ \E o
- | = o Hidden
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Practical ConvNets

C3:f. maps 16@10x10
C1: feature maps S4: . maps 16@5x5

INPUT
A 6@28x28

S2: f. maps
6@14x14

Full conAection ‘ Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Gradient-Based Learning Applied to Document Recognition,
Lecun et al., 1998
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Demo

e http://cs.stanford.edu/people/karpathy/convnetijs/
demo/mnist.html

e ConvNetlJS by Andrej Karpathy (Ph.D. student at
Stanford)

Software libraries
e Caffe (C++, python, matlab)

e Torch7 (C++, lua)
e Theano (python)

82


http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

The fall of ConvNets

* The rise of Support Vector Machines (SVMs)

 Mathematical advantages (theory, convex
optimization)

e Competitive performance on tasks such as digit
classification

* Neural nets became unpopular in the mid 1990s



The key to SVMs

e [t’s all about the features

HOG features SVM weights
(+) (-)

(b) ' (8)

Histograms of Oriented Gradients for Human Detection,
Dalal and Triggs, CVPR 2005
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Core idea of “deep learning”
e Input: the “raw” signal (image, waveform, ...)

e Features: hierarchy of features is learned from the
raw input



 If SVMs killed neural nets, how did they come back
(in computer vision)?
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What’s new since the 1980s?

 More layers
e LeNet-3 and LeNet-5 had 3 and 5 learnable layers
e Current models have 8 — 20+

e “ReLU” non-linearities (Rectified Linear Unit) 96
* g(x) = max(0, x)
e Gradient doesn’t vanish X

e “Dropout” regularization
e Fast GPU implementations
 More data



What else? Object Proposals

e Sliding window based object detection

S
L A A=A

Feature
Extraction

Classificaiton

Iterate over window size, aspect
ratio, and location

* Object proposals
* Fast execution
e High recall with low # of candidate boxes

Object Feature Classificaiton

Proposal Extraction

88



. Lawrence Zitnick and Piotr Dollar

______—]Z \_:‘1 \/\‘_LL‘"«_FL \ iy
X _ | PR WLQIK "'/)
The number of contours wholly enclosed by a bounding box is indicative of
the likelihood of the box containing an object.




Ross’s Own System: Region CNNSs

R-CNN: Regions with CNN features

warped region

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classity
1mage proposals (~2k) CNN features regions




Competitive Results

VOC 2010 test | aero bike bird boat bottle bus car  cat chair cow table dog horse mbike person plant sheep sofa train  tv | mAP
DPM w3 [20]F [49.2 53.8 130 153 355 534 497 27.0 172 288 147 178 464 512 477 108 342 207 438 383|334
UVA [39] 56.2 424 153 126 218 493 368 461 129 321 300 365 435 529 329 153 411 318 470 448|351
Regionlets [£1] [63.0 45.9 259 246 245 3561 545 51.2 170 289 302 358 402 557 435 143 439 3Le 540 459|397
SepDPM [15]F [61.4 534 256 252 355 517 506 508 193 33.8 268 404 483 544 471 148 387 350 528 431|404
R-CNN 67.1 641 467 320 305 564 572 659 270 473 409 666 578 659 536 267 565 381 528 502(502
R-CNN BB TLE 658 530 368 350 507 600 60.9 270 506 414 700 620 690 581 295 504 M3 612 524|537

Table 1: Detection average precision (%) on VOC 2010 test. R-CNN is most directly comparable to UVA and Regionlets since all
methods use selective search region proposals. Bounding-box regression (BB) is described in Section C. At publication time, SegDPM
was the top-performer on the PASCAL VOC leaderboard. TDPM and SegDPM use context rescoring not used by the other methods.
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Figure 3: (Left) Mean average precision on the ILSVRC2013 detection test set. Methods preceeded by * use outside training data
(images and labels from the ILSVRC classification dataset in all cases). (Right) Box plots for the 200 average precision values per
method. A box plot for the post-competition OverFeat result is not shown because per-class APs are not yet available (per-class APs for
R-CNN are in Table % and also included in the tech report source uploaded to arXiv.org; see B—CHN-ILSVRCZ013-AF=. txt). The red
ling marks the median AP, the box bottom and top are the 25th and 75th percentiles. The whiskers extend to the min and max AP of each
method. Each AP is plotted as a green dot over the whiskers (best viewed digitally with zoomy).



Top Regions for Six Object Classes

@ L
S anasd

Figure 4: Tup regions for six pool; units. Receptive fields and activation values are drawn in white. Some units are aligned to concepts,
such as people (row 1) or text (4). Other units capture texture and material properties, such as dot arrays (2) and specular reflections (6).




Finale

e Object recognition has moved rapidly in the last 12
years to becoming very appearance based.

 The HOG descriptor lead to fast recognition of
specific views of generic objects, starting with
pedestrians and using SVMs.

e Deformable parts models extended that to allow
more objects with articulated limbs, but still
specific views.

* CNNs have become the method of choice; they
learn from huge amounts of data and can learn
multiple views of each object class.
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