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Outline 

• Object detection 
• the task, evaluation, datasets 

 

• Convolutional Neural Networks (CNNs) 
• overview and history 

 

• Region-based Convolutional Networks (R-CNNs) 
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Image classification 

• 𝐾 classes 
• Task: assign correct class label to the whole image 

Digit classification (MNIST) Object recognition (Caltech-101) 
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Classification vs. Detection 

 Dog 

Dog 
Dog 

4 



Problem formulation 

person 

motorbike 

Input Desired output 

{  airplane,  bird,  motorbike,  person,  sofa  } 
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Evaluating a detector 

Test image (previously unseen) 



First detection ... 

‘person’ detector predictions 

0.9 



Second detection ... 

0.9 

0.6 

‘person’ detector predictions 



Third detection ... 

0.9 

0.6 

0.2 

‘person’ detector predictions 



Compare to ground truth 

ground truth ‘person’ boxes 

0.9 

0.6 

0.2 

‘person’ detector predictions 



Sort by confidence 

... ... ... ... ... 

✓ ✓ ✓ 

0.9 0.8 0.6 0.5 0.2 0.1 

true 
positive 
(high overlap) 

false 
positive 
(no overlap, 
low overlap, or  
duplicate) 

X X X 



Evaluation metric 

... ... ... ... ... 

0.9 0.8 0.6 0.5 0.2 0.1 

✓ ✓ ✓ X X X 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
#𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

#𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + #𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
#𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

#𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜𝑜𝑜𝑜
 

𝑡 

✓ 
✓ + X 



Evaluation metric 

Average Precision (AP) 
    0%  is worst 
    100%  is best 
 
mean AP over classes 
(mAP) 

... ... ... ... ... 

0.9 0.8 0.6 0.5 0.2 0.1 

✓ ✓ ✓ X X X 



Pedestrians 
Histograms of Oriented Gradients for Human Detection, 
Dalal and Triggs, CVPR 2005 
 
AP ~77% 
More sophisticated methods: AP ~90%                     

(a) average gradient image over training examples 
(b) each “pixel” shows max positive SVM weight in the block centered on that pixel 
(c) same as (b) for negative SVM weights 
(d) test image 
(e) its R-HOG descriptor 
(f) R-HOG descriptor weighted by positive SVM weights 
(g) R-HOG descriptor weighted by negative SVM weights 
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Overview of HOG Method  

1. Compute gradients in the region to be described 

2. Put them in bins according to orientation 

3. Group the cells into large blocks 

4. Normalize each block 

5. Train classifiers to decide if these are parts of a human 
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Details 

• Gradients 
   [-1 0 1] and [-1 0 1]T  were good enough filters. 
 

• Cell Histograms 
   Each pixel within the cell casts a weighted vote for an  
   orientation-based histogram channel based on the values  
   found in the gradient computation. (9 channels worked) 
 
• Blocks 
   Group the cells together into larger blocks, either R-HOG 
   blocks (rectangular) or C-HOG blocks (circular). 
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More Details 
• Block Normalization 
 
 
 
 
 
 
 

• If you think of the block as a vector v, then the  
   normalized block is v/norm(v) 

They tried 4 different kinds of normalization. 
 
• L1-norm 

 
• sqrt of L1-norm 

 
• L2 norm 

 
• L2-norm followed by clipping 

 

17 



Example: Dalal-Triggs pedestrian 
detector 

1. Extract fixed-sized (64x128 pixel) window at each 
position and scale 

2. Compute HOG (histogram of gradient) features 
within each window 

3. Score the window with a linear SVM classifier 
4. Perform non-maxima suppression to remove 

overlapping detections with lower scores 

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05 
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Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05 
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uncentered 

centered 

cubic-corrected 

diagonal 

Sobel 

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05 

Outperforms 
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• Histogram of gradient orientations 
 
 
 
 
 
 
 
 

• Votes weighted by magnitude 
• Bilinear interpolation between cells 

Orientation: 9 bins (for 
unsigned angles) 

Histograms in 8x8 
pixel cells 

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05 
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Normalize with respect to 
surrounding cells 

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05 
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X= 

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05 

# features = 15 x 7 x 9 x 4 = 3780  

# cells 

# orientations 

# normalizations by 
neighboring cells 
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Training set 
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Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05 

pos w neg w 
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pedestrian 

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05 
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Detection examples 
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Deformable Parts Model 

• Takes the idea a little further 
• Instead of one rigid HOG model, we have multiple 

HOG models in a spatial arrangement 
• One root part to find first and multiple other parts 

in a tree structure. 
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The Idea 

Articulated parts model 
• Object is configuration of parts 
• Each part is detectable 

Images from Felzenszwalb 
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Deformable objects 

 

Images from Caltech-256 

Slide Credit: Duan Tran   
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Deformable objects 

 

Images from D. Ramanan’s dataset 
 Slide Credit: Duan Tran   
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How to model spatial relations? 
• Tree-shaped model 

35 



36 



Hybrid template/parts model 
 

Detections 

Template Visualization 

Felzenszwalb et al. 2008 
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Pictorial Structures Model 

Appearance likelihood Geometry likelihood 
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Results for person matching 
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Results for person matching 
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BMVC 2009 
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2012 State-of-the-art Detector: 
Deformable Parts Model (DPM) 

42 Felzenszwalb et al., 2008, 2010, 2011, 2012 

Lifetime 
Achievement 

1. Strong low-level features based on HOG 
2. Efficient matching algorithms for deformable part-based 

models (pictorial structures) 
3. Discriminative learning with latent variables (latent SVM) 



Why did gradient-based models work? 

Average gradient image 

43 



Generic categories 

Can we detect people, chairs, horses, cars, dogs, buses, bottles, sheep …? 
PASCAL Visual Object Categories (VOC) dataset 
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Generic categories 
Why doesn’t this work (as well)? 

Can we detect people, chairs, horses, cars, dogs, buses, bottles, sheep …? 
PASCAL Visual Object Categories (VOC) dataset 
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Quiz time 
(Back to Girshick) 
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Warm up 

This is an average image of which object class? 
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Warm up 

pedestrian 
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A little harder 

? 
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A little harder 

? 
Hint: airplane, bicycle, bus, car, cat, chair, cow, dog, dining table  
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A little harder 

bicycle (PASCAL) 
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A little harder, yet 

? 
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A little harder, yet 

? 
Hint: white blob on a green background 
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A little harder, yet 

sheep (PASCAL) 
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Impossible? 

? 
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Impossible? 

dog (PASCAL) 
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Impossible? 

dog (PASCAL) 
Why does the mean look like this? 

There’s no alignment between the examples! 
How do we combat this? 
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PASCAL VOC detection history 
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Part-based models & multiple 
features (MKL) 
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Kitchen-sink approaches 
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Region-based Convolutional 
Networks (R-CNNs) 
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[R-CNN. Girshick et al. CVPR 2014] 
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Convolutional Neural Networks 

• Overview 
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Standard Neural Networks 

𝒙 = 𝑥1, … , 𝑥784 𝑇 𝑧𝑗 = 𝑔(𝒘𝑗 
𝑇𝒙) 𝑔 𝑡 =

1
1 + 𝑒−𝑡

 

“Fully connected” 
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From NNs to Convolutional NNs 

• Local connectivity 
• Shared (“tied”) weights 
• Multiple feature maps 
• Pooling 
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Convolutional NNs 

• Local connectivity 

• Each green unit is only connected to (3) 
neighboring blue units 

compare 
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Convolutional NNs 

• Shared (“tied”) weights 

• All green units share the same parameters 𝒘 
 

• Each green unit computes the same function,  
but with a different input window 

𝑤1 

𝑤2 
𝑤3 

𝑤1 

𝑤2 
𝑤3 
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Convolutional NNs 

• Convolution with 1-D filter: [𝑤3, 𝑤2, 𝑤1] 

• All green units share the same parameters 𝒘 
 

• Each green unit computes the same function,  
but with a different input window 

𝑤1 

𝑤2 
𝑤3 
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Convolutional NNs 

• Convolution with 1-D filter: [𝑤3, 𝑤2, 𝑤1] 
 

• All green units share the same parameters 𝒘 
 

• Each green unit computes the same function,  
but with a different input window 

𝑤1 

𝑤2 
𝑤3 
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Convolutional NNs 

• Convolution with 1-D filter: [𝑤3, 𝑤2, 𝑤1] 
 

• All green units share the same parameters 𝒘 
 

• Each green unit computes the same function,  
but with a different input window 

𝑤1 

𝑤2 
𝑤3 
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Convolutional NNs 

• Convolution with 1-D filter: [𝑤3, 𝑤2, 𝑤1] 

• All green units share the same parameters 𝒘 
 

• Each green unit computes the same function,  
but with a different input window 

𝑤1 

𝑤2 
𝑤3 
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Convolutional NNs 

• Convolution with 1-D filter: [𝑤3, 𝑤2, 𝑤1] 
 

• All green units share the same parameters 𝒘 
 

• Each green unit computes the same function,  
but with a different input window 𝑤1 

𝑤2 
𝑤3 
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Convolutional NNs 

• Multiple feature maps 

• All orange units compute the same function 
but with a different input windows 
 

• Orange and green units compute  
different functions 

𝑤1 

𝑤2 
𝑤3 

𝑤𝑤1 
𝑤𝑤2 
𝑤𝑤3 

Feature map 1 
(array of green 
 units) 

Feature map 2 
(array of orange 
 units) 
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Convolutional NNs 

• Pooling (max, average) 

1 

4 

0 

3 

4 

3 

• Pooling area: 2 units 
 

• Pooling stride: 2 units 
 

• Subsamples feature maps 
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Image 

Pooling 

Convolution 

2D input 
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1989 

Backpropagation applied to handwritten zip code recognition, 
Lecun et al., 1989 76 



Historical perspective – 1980 
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Historical perspective – 1980 
Hubel and Wiesel 
1962 

Included basic ingredients of ConvNets, but no supervised learning algorithm 78 



Supervised learning – 1986 

Early demonstration that error backpropagation can be used 
for supervised training of neural nets (including ConvNets) 

Gradient descent training with error backpropagation 

79 



Supervised learning – 1986  

“T” vs. “C” problem Simple ConvNet 
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Practical ConvNets 

Gradient-Based Learning Applied to Document Recognition,  
Lecun et al., 1998 
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Demo 

• http://cs.stanford.edu/people/karpathy/convnetjs/
demo/mnist.html 

• ConvNetJS by Andrej Karpathy (Ph.D. student at 
Stanford) 

 
Software libraries 
• Caffe (C++, python, matlab) 
• Torch7 (C++, lua) 
• Theano (python) 
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The fall of ConvNets 

• The rise of Support Vector Machines (SVMs) 
• Mathematical advantages (theory, convex 

optimization) 
• Competitive performance on tasks such as digit 

classification 
• Neural nets became unpopular in the mid 1990s 
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The key to SVMs 

• It’s all about the features 

Histograms of Oriented Gradients for Human Detection, 
Dalal and Triggs, CVPR 2005 

SVM weights 
(+)                    (-) 

HOG features 
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Core idea of “deep learning” 

• Input: the “raw” signal (image, waveform, …) 
 

• Features: hierarchy of features is learned from the 
raw input 
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• If SVMs killed neural nets, how did they come back 
(in computer vision)? 
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What’s new since the 1980s? 

• More layers 
• LeNet-3 and LeNet-5 had 3 and 5 learnable layers 
• Current models have 8 – 20+ 

• “ReLU” non-linearities (Rectified Linear Unit) 
• 𝑔 𝑥 = max 0, 𝑥  
• Gradient doesn’t vanish 

• “Dropout” regularization 
• Fast GPU implementations 
• More data 

𝑥 

𝑔(𝑥) 
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What else? Object Proposals 
• Sliding window based object detection 

 
 
 
 

• Object proposals 
• Fast execution 
• High recall with low # of candidate boxes 

 
 

 
 
 
 

Image Feature 
Extraction Classificaiton

Iterate over window size, aspect 
ratio, and location 

Image Feature 
Extraction ClassificaitonObject 

Proposal
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The number of contours wholly enclosed by a bounding box is indicative of  
the likelihood of the box containing an object. 
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Ross’s Own System: Region CNNs 



           Competitive Results 



Top Regions for Six Object Classes 



Finale 

• Object recognition has moved rapidly in the last 12 
years to becoming very appearance based. 

• The HOG descriptor lead to fast recognition of 
specific views of generic objects, starting with 
pedestrians and using SVMs. 

• Deformable parts models extended that to allow 
more objects with articulated limbs, but still 
specific views. 

• CNNs have become the method of choice; they 
learn from huge amounts of data and can learn 
multiple views of each object class. 
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