Learning II

Linda Shapiro
 EE/CSE 576

More on Learning

- Neural Nets
- Support Vectors Machines
- Unsupervised Learning (Clustering)
- K-Means
- Expectation-Maximization

Neural Net Learning

- Motivated by studies of the brain.
- A network of "artificial neurons" that learns a function.
- Doesn't have clear decision rules like decision trees, but highly successful in many different applications. (e.g. face detection)
- We use them frequently in our research.
- I'll be using algorithms from http://www.cs.mtu.edu/~nilufer/classes/cs4811/2016-spring/lecture-slides/cs4811-neural-net-algorithms.pdf

Brains

10^{11} neurons of >20 types, 10^{14} synapses, $1 \mathrm{~ms}-10 \mathrm{~ms}$ cycle time Signals are noisy "spike trains" of electrical potential

Output is a "squashed" linear function of the inputs:

$$
a_{i} \leftarrow g\left(i n_{i}\right)=g\left(\sum_{j} W_{j, i} a_{j}\right)
$$

A gross oversimplification of real neurons, but its purpose is to develop understanding of what networks of simple units can do

Activation functions

(a)

(b)
(a) is a step function or threshold function
(b) is a sigmoid function $1 /\left(1+e^{-x}\right)$

Changing the bias weight $W_{0, i}$ moves the threshold location

Simple Feed-Forward Perceptrons

in $=\left(\sum W_{j} x_{j}\right)+\theta$ out $=g[$ in $]$
g is the activation function
It can be a step function:
$g(x)=1$ if $x>=0$ and $0($ or -1$)$ else.
It can be a sigmoid function:

$$
g(x)=1 /(1+\exp (-x))
$$

The sigmoid function is differentiable and can be used in a gradient descent algorithm to update the weights.

Gradient Descent

takes steps proportional to the negative of the gradient of a function to find its local minimum

- Let \mathbf{X} be the inputs, y the class, \mathbf{W} the weights
- in $=\sum W_{j} x_{j}$
- $E r r=y-g(i n)$
- $\mathrm{E}=1 / 2 \mathrm{Err}^{2}$ is the squared error to minimize
- $\partial \mathrm{E} / \partial \mathrm{W}_{\mathrm{j}}=\mathrm{Err} * \partial \mathrm{Err} / \partial \mathrm{W}_{\mathrm{j}}=\mathrm{Err} * \partial / \partial \mathrm{W}_{\mathrm{j}}(\mathrm{g}(\mathrm{in}))(-1)$
- $=-E r r^{*} \mathrm{~g}^{\prime}(\mathrm{in})^{*} \mathrm{x}_{\mathrm{j}}$
- The update is $W_{j}<-W_{j}+\alpha^{*}$ Err * $g^{\prime}(i n)^{*} x_{j}$
- α is called the learning rate.

Simple Feed-Forward Perceptrons

$$
\begin{aligned}
& \text { repeat } \\
& \text { for each e in examples do } \\
& \qquad \text { in }=\left(\sum W_{j} x_{j}\right)+\theta \\
& \quad E r r=y[e]-g[\text { in }] \\
& W_{j}=W_{j}+\alpha E r r g^{\prime}(i n) x_{j}[e] \\
& \text { until done }
\end{aligned}
$$

Examples: $\mathrm{A}=[(.5,1.5),+1], \mathrm{B}=[(-.5, .5),-1], \mathrm{C}=[(.5, .5),+1]$
Initialization: $W_{1}=1, W_{2}=2, \theta=-2$

Note1: when g is a step function, the $g^{\prime}(\mathrm{in})$ is removed. Note2: later in back propagation, Err ${ }^{*} \mathrm{~g}^{\prime}(\mathrm{in})$ will be called Δ We'll let $\mathrm{g}(\mathrm{x})=1$ if $\mathrm{x}>=0$ else -1

Graphically

Examples: $\mathrm{A}=[(.5,1.5),+1], \mathrm{B}=[(-.5, .5),-1], \mathrm{C}=[(.5, .5),+1]$ Initialization: $W_{1}=1, W_{2}=2, \theta=-2$

Examples:

$$
\begin{aligned}
& \mathrm{A}=[(.5,1.5),+1], \\
& \mathrm{B}=[(-.5, .5),-1], \\
& \mathrm{C}=[(.5, .5),+1]
\end{aligned}
$$

Initialization: $W_{1}=1, W_{2}=2, \theta=-2$

repeat

for each e in examples do

$$
\begin{aligned}
& \text { in }=\left(\sum W_{j} x_{j}\right)+\theta \\
& \text { Err }=y[e]-g[i n]
\end{aligned}
$$

$$
W_{j}=W_{j}+\alpha \operatorname{Err}^{\prime} g^{\prime}(\mathrm{in}) \mathrm{x}_{\mathrm{j}}[\mathrm{e}]
$$

until done

```
A=[(.5,1.5),+1]
in = .5(1) + (1.5)(2) -2 = 1.5
g(in) = 1; Err = 0; NO CHANGE
B=[(-.5,.5),-1]
In = (-.5)(1) + (.5)(2)-2 = -1.5
g(in) = -1; Err = 0; NO CHANGE
```

$C=[(.5, .5),+1]$
in $=(.5)(1)+(.5)(2)-2=-.5$
$g($ in $)=-1 ;$ Err $=1-(-1)=2$

$$
\begin{aligned}
& \text { Let } \alpha=.5 \\
& \begin{aligned}
W 1 & <-W 1+.5(2)(.5) \quad \text { leaving out } g^{\prime} \\
& <-1+1(.5)=1.5 \\
W 2 & <-W 2+.5(2)(.5) \\
& <-2+1(.5)=2.5 \\
\theta & <-\theta+.5(+1-(-1)) \\
\theta & <--2+.5(2)=-1
\end{aligned}
\end{aligned}
$$

Graphically

Examples: $\mathrm{A}=[(.5,1.5),+1], \mathrm{B}=[(-.5, .5),-1], \mathrm{C}=[(.5, .5),+1]$ Initialization: $W_{1}=1, W_{2}=2, \theta=-2$

Apple/banana example

Training set:

$$
\left\{p_{1}=\left(\begin{array}{r}
-1 \\
1 \\
-1
\end{array}\right), t_{1}=(1)\right\} \quad\left\{p_{2}=\left(\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right), t_{2}=(0)\right\}
$$

Initial weights:

$$
W=(0.5-1-0.5) \quad b=0.5
$$

$$
\begin{aligned}
& \text { First iteration: } \\
& \quad a=\operatorname{hardlim}\left(W p_{1}+b\right)=\operatorname{hardlim}\binom{\text { vector } W}{(0.5-1-0.5) \times\left(\begin{array}{r}
p_{1} \\
1 \\
1 \\
-1
\end{array}\right)+0.5} \\
& \quad a=\operatorname{hardlim}(-0.5)=0 \quad e=t_{1}-a=1-0=1 \quad \text { error } \quad \text { new } W \\
& W^{n e w}=W^{\text {old }}+e p^{T}=(0.5-1-0.5)+(1)(-1+1-1)=(-0.5+0-1.5) \\
& \eta=1 \text { in this example }
\end{aligned}
$$

Second iteration

$$
\begin{gathered}
a=\operatorname{hardlim}\left(W p_{2}+b\right)=\text { hardlim }\left((-0.50-1.5) \times\left(\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right)+1.5\right) \\
a=\operatorname{hardlim}(2.5)=1 \quad e=t_{2}-a=0-1=-1 \\
W^{n e w}=W^{\text {old }}+e p^{T} \\
W^{n e w}=(0.50-1.5)+(-1)(11-1) \\
W^{n e w}=(-1.5-1-0.5) \\
b^{n \epsilon w}=b^{\text {old }}+e=1.5+(-1)=0.5
\end{gathered}
$$

Checking the solution (test vectors)

$$
\begin{aligned}
& a=\operatorname{hardlim}\left(W p_{1}+b\right)=\text { hardlim }\left((-1.5-1-0.5) \times\left(\begin{array}{r}
-1 \\
1 \\
-1
\end{array}\right)+0.5\right) \\
& a=\operatorname{hardlim}(1.5)=1=t_{1} \\
& a=\operatorname{hardlim}\left(W p_{2}+b\right)=\text { hardlim }\left((-1.5-1-0.5) \times\left(\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right)+0.5\right) \\
& a=\operatorname{hardlim}(-1.5)=0=t_{2}
\end{aligned}
$$

Checking the solution (testing the network)

$$
\begin{gathered}
a=\operatorname{hardlim}\left((-1.5-1-0.5) \times\left(\begin{array}{r}
-1 \\
1 \\
-1
\end{array}\right)+0.5\right) \\
a=\operatorname{hardlim}(1)=1(\text { banana }) \\
a=\operatorname{hardlim}\left((-1.5-1-0.5) \times\left(\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right)+0.5\right) \\
a=\operatorname{hardlim}(-2)=-1(\text { apple })
\end{gathered}
$$

The net recovers the correct answer from noisy information:

$$
\begin{gathered}
a=\text { hardlim }\left((-1.5-1-0.5) \times\left(\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right)+0.5\right) \\
a=\operatorname{hardlim}(3)=1(\text { banana })
\end{gathered}
$$

Back Propagation

- Simple single layer networks with feed forward learning were not powerful enough.
- Could only produce simple linear classifiers.
- More powerful networks have multiple hidden layers.
- The learning algorithm is called back propagation, because it computes the error at the end and propagates it back through the weights of the network to the beginning.

The backpropagation algorithm

The following is the backpropagation algorithm for learning in multilayer networks.
function BACK-PROP-LEARNING(examples, network)
returns a neural network

inputs:

examples, a set of examples, each with input vector \mathbf{x} and output vector \mathbf{y}.
network, a multilayer network with L layers, weights $W_{j, i}$, activation function g
local variables: Δ, a vector of errors, indexed by network node
for each weight $w_{i, j}$ in network do
$w_{i, j} \leftarrow$ a small random number
repeat
for each example (\mathbf{x}, \mathbf{y}) in examples do

Let's break it into steps.

/* Propagate the inputs forward to compute the outputs. */
for each node i in the input layer do // Simply copy the input values.
$a_{i} \leftarrow x_{i}$
for $l=2$ to L do $\quad / /$ Feed the values forward.
for each node j in layer l do

$$
\begin{aligned}
& i n_{j} \leftarrow \sum_{i} w_{i, j} a_{i} \\
& a_{j} \leftarrow g\left(i n_{j}\right)
\end{aligned}
$$

for each node j in the output layer do // Compute the error at the output.
$\Delta[j] \leftarrow g^{\prime}\left(i n_{j}\right) \times\left(y_{j}-a_{j}\right)$
/* Propagate the deltas backward from output layer to input layer */
for $l=L-1$ to 1 do
for each node i in layer l do

$$
\Delta[i] \leftarrow g^{\prime}\left(i n_{i}\right) \sum_{j} w_{i, j} \Delta[j] \quad / / \text { "Blame" a node as much as its weiç }
$$

/* Update every weight in network using deltas. */
for each weight $w_{i, j}$ in network do

$$
w_{i, j} \leftarrow w_{i, j}+\alpha \times a_{i} \times \Delta[j] \quad \text { // Adjust the weights. }
$$

until some stopping criterion is satisfied
return network

The backpropagation algorithm

The following is the backpropagation algorithm for learning in multilayer networks.
function BACK-Prop-LEARNING(examples, network) returns a neural network
inputs:
examples, a set of examples, each with input vector \mathbf{x} and output vector \mathbf{y}.
network, a multilayer network with L layers, weights $W_{j, i}$, activation function g
local variables: Δ, a vector of errors, indexed by network node
for each weight $w_{i, j}$ in network do
$w_{i, j} \leftarrow$ a small random number

Forward Computation

repeat
for each example (\mathbf{x}, \mathbf{y}) in examples do
/* Propagate the inputs forward to compute the outputs. */

$$
\text { for each node } i \text { in the input layer do // Simply copy the input values. }
$$

$a_{i} \leftarrow x_{i}$
for $l=2$ to L do
// Feed the values forward.
for each node j in layer l do

$$
\begin{aligned}
& i n_{j} \leftarrow \sum_{i} w_{i, j} a_{i} \\
& a_{j} \leftarrow g\left(i n_{j}\right)
\end{aligned}
$$

Backward Propagation 1

for each node j in the output layer do

$$
\Delta[j] \leftarrow g^{\prime}\left(i n_{j}\right) \times\left(y_{j}-a_{j}\right)
$$

- Node nf is the only node in our output layer.
- Compute the error at that node and multiply by the derivative of the weighted input sum to get the change delta.

Backward Propagation 2

/* Propagate the deltas backward from output layer to input layer */ for $l=L-1$ to 1 do
for each node i in layer l do

$$
\Delta[i] \leftarrow g^{\prime}\left(i n_{i}\right) \sum_{j} w_{i, j} \Delta[j] \quad / / \text { "Blame" a node as much as its wei } \S
$$

- At each of the other layers, the deltas use
- the derivative of its input sum
- the sum of its output weights
- the delta computed for the output error

Backward Propagation 3

/* Update every weight in network using deltas. */
for each weight $w_{i, j}$ in network do

$$
w_{i, j} \leftarrow w_{i, j}+\alpha \times a_{i} \times \Delta[j] \quad \text { // Adjust the weights. }
$$

Now that all the deltas are defined, the weight updates just use them.

Back Propagation Summary

- Compute delta values for the output units using observed errors.
- Starting at the output-1 layer
- repeat
- propagate delta values back to previous layer
- update weights between the two layers
- till done with all layers
- This is done for all examples and multiple epochs, till convergence or enough iterations.

Time taken to build model: 16.2 seconds

Correctly Classified Instances	307	80.3665 \% (did not boost)
Incorrectly Classified Instances	75	19.6335%
Kappa statistic	0.6056	
Mean absolute error	0.1982	
Root mean squared error	0.41	
Relative absolute error	39.7113%	
Root relative squared error	81.9006%	
Total Number of Instances	382	

| | TP Rate | FP Rate | Precision | Recall | F-Measure | ROC Area Class | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 0.706 | 0.103 | 0.868 | 0.706 | 0.779 | 0.872 | cal |
| 0.897 | 0.294 | 0.761 | 0.897 | 0.824 | 0.872 | dor | |
| W Avg. | 0.804 | 0.2 | 0.814 | 0.804 | 0.802 | 0.872 | |
| | | | | | | | |
| == Confusion Matrix $===$ | | | | | | | |

a b <-- classified as
13255 | a = cal
20175 | b = dor

Handwritten digit recognition

3-nearest-neighbor $=2.4 \%$ error
400-300-10 unit MLP $=1.6 \%$ error
LeNet: 768-192-30-10 unit MLP $=0.9 \%$ error
Current best (kernel machines, vision algorithms) $\approx 0.6 \%$ error

Kernel Machines

- A relatively new learning methodology (1992) derived from statistical learning theory.
- Became famous when it gave accuracy comparable to neural nets in a handwriting recognition class.
- Was introduced to computer vision researchers by Tomaso Poggio at MIT who started using it for face detection and got better results than neural nets.
- Has become very popular and widely used with packages available.

Support Vector Machines (SVM)

- Support vector machines are learning algorithms that try to find a hyperplane that separates the different classes of data the most.
- They are a specific kind of kernel machines based on two key ideas:
- maximum margin hyperplanes
- a kernel 'trick’

The SVM Equation

- $\mathrm{y}_{\mathrm{SVM}}\left(\mathrm{x}_{\mathrm{q}}\right)=\operatorname{argmax} \sum \mathrm{a}_{\mathrm{i}, \mathrm{c}} \mathrm{K}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{q}}\right)$

$$
\text { c } \quad i=1, m
$$

- x_{q} is a query or unknown object
- c indexes the classes
- there are m support vectors x_{i} with weights $\alpha_{i, c}, i=1$ to m for class c
- K is the kernel function that compares x_{i} to X_{q}
*** This is for multiple class SVMs with support vectors for every class; we'll see a simpler equation for 2 class.

Maximal Margin (2 class problem)

In 2D space,
a hyperplane is
a line.
In 3D space,
it is a plane.

Find the hyperplane with maximal margin for all the points. This originates an optimization problem which has a unique solution.

Support Vectors

- The weights α_{i} associated with data points are zero, except for those points closest to the separator.
- The points with nonzero weights are called the support vectors (because they hold up the separating plane).
- Because there are many fewer support vectors than total data points, the number of parameters defining the optimal separator is small.

A Geometric Interpretation

Kernels

- A kernel is just a similarity function. It takes 2 inputs and decides how similar they are.
- Kernels offer an alternative to standard feature vectors. Instead of using a bunch of features, you define a single kernel to decide the similarity between two objects.

Kernels and SVMs

- Under some conditions, every kernel function can be expressed as a dot product in a (possibly infinite dimensional) feature space (Mercer's theorem)
- SVM machine learning can be expressed in terms of dot products.
- So SVM machines can use kernels instead of feature vectors.

The Kernel Trick

The SVM algorithm implicitly maps the original data to a feature space of possibly infinite dimension in which data (which is not separable in the original space) becomes separable in the feature space.

Feature space R^{n}

Kernel Functions

- The kernel function is designed by the developer of the SVM.
- It is applied to pairs of input data to evaluate dot products in some corresponding feature space.
- Kernels can be all sorts of functions including polynomials and exponentials.

Kernel Function used in our 3D Computer Vision Work

- $\mathrm{k}(\mathrm{A}, \mathrm{B})=\exp \left(-\theta_{\mathrm{AB}}^{2} / \sigma^{2}\right)$
- A and B are shape descriptors (big vectors).
- θ is the angle between these vectors.
- σ^{2} is the "width" of the kernel.

What does SVM learning solve?

- The SVM is looking for the best separating plane in its alternate space.
- It solves a quadratic programming optimization problem

$$
\underset{\alpha}{\operatorname{argmax}} \sum_{j} \alpha_{j}-1 / 2 \sum_{j, k} \alpha_{j} \alpha_{k} y_{j} y_{k}\left(\mathbf{x}_{j} \bullet \mathbf{x}_{k}\right)
$$

subject to $\alpha_{j}>0$ and $\sum \alpha_{j} y_{j}=0$.

- The equation for the separator for these optimal α_{j} is

$$
h(x)=\operatorname{sign}\left(\sum_{j} \alpha_{j} y_{j}\left(x \cdot x_{j}\right)-b\right)
$$

Simple Example of Classification

- $K(A, B)=A \bullet B$
- known positive class points $\{(3,1),(3,-1),(6,1),(6,-1)\}$
- known negative class points $\{(1,0),(0,1),(0,-1),(-1,0)\}$
- support vectors: $s=\{(1,0),(3,1), 3,-1)\}$ with weights α
= 3.5, .75, . 75
- classifier equation: $f(x)=\operatorname{sign}\left(\Sigma_{i}\left[\alpha_{i}{ }^{*} K\left(S_{i}, x\right)\right]-b\right) \quad b=2$

$$
\begin{aligned}
& f(1,1)=\operatorname{sign}\left(\sum_{i} \alpha_{i} s_{i} \bullet(1,1) \quad-2\right) \\
= & \operatorname{sign}\left(.75^{*}(3,1) \bullet(1,1)+.75^{*}(3,-1) \bullet(1,1)+(-3.5)^{*}(1,0) \bullet(1,1)-2\right) \\
= & \operatorname{sign}(1-2)=\operatorname{sign}(-1)=- \text { negative class }
\end{aligned}
$$

Time taken to build model: 0.15 seconds

Unsupervised Learning

- Find patterns in the data.
- Group the data into clusters.
- Many clustering algorithms.
- K means clustering
- EM clustering
- Graph-Theoretic Clustering
- Clustering by Graph Cuts
- etc

Clustering by K-means Algorithm

Form K-means clusters from a set of n-dimensional feature vectors

1. Set ic (iteration count) to 1
2. Choose randomly a set of K means $m_{1}(1), \ldots, m_{K}(1)$.
3. For each vector x_{i}, compute $D\left(x_{i}, m_{k}(i c)\right), k=1, \ldots K$ and assign x_{i} to the cluster C_{j} with nearest mean.
4. Increment ic by 1 , update the means to get $m_{1}(i c), . ., m_{K}(i c)$.
5. Repeat steps 3 and 4 until $C_{k}(i c)=C_{k}(i c+1)$ for all k.

K-Means Classifier (shown on RGB color data)

original data one RGB per pixel

color clusters

K-Means \rightarrow EM

The clusters are usually Gaussian distributions.

- Boot Step:
- Initialize K clusters: $\mathrm{C}_{1}, \ldots, C_{K}$

$$
\left(\mu_{j}, \Sigma_{j}\right) \text { and } P\left(C_{j}\right) \text { for each cluster } j .
$$

- Iteration Step:
- Estimate the cluster of each datum

$$
p\left(C_{j} \mid x_{i}\right)
$$

\Rightarrow Expectation

- Re-estimate the cluster parameters
$\left(\mu_{j}, \Sigma_{j}\right), p\left(C_{j}\right) \quad$ For each cluster j
\Rightarrow Maximization

The resultant set of clusters is called a mixture model; if the distributions are Gaussian, it's a Gaussian mixture.

EMA Alorithn Sun

- Boot Step:
- Initialize K clusters: $\mathrm{C}_{1}, \ldots, C_{K}$

$$
\left(\mu_{j}, \Sigma_{j}\right) \text { and } p\left(C_{j}\right) \text { for each cluster } j .
$$

- Iteration Step:
- Expectation Step

$$
\begin{aligned}
& \quad p\left(C_{j} \mid x_{i}\right)=\frac{p\left(x_{i} \mid C_{j}\right) \cdot p\left(C_{j}\right)}{p\left(x_{i}\right)}=\frac{p\left(x_{i} \mid C_{j}\right) \cdot p\left(C_{j}\right)}{\sum_{j} p\left(x_{i} \mid C_{j}\right) \cdot p\left(C_{j}\right)} \\
& - \text { Maximization Step }
\end{aligned}
$$

$$
\mu_{j}=\frac{\sum_{i} p\left(C_{j} \mid x_{i}\right) \cdot x_{i}}{\sum_{i} p\left(C_{j} \mid x_{i}\right)} \quad \Sigma_{j}=\frac{\sum_{i} p\left(C_{j} \mid x_{i}\right) \cdot\left(x_{i}-\mu_{j}\right) \cdot\left(x_{i}-\mu_{j}\right)^{T}}{\sum_{i} p\left(C_{j} \mid x_{i}\right)}
$$

$$
p\left(C_{j}\right)=\frac{\sum_{i} p\left(C_{j} \mid x_{i}\right)}{N}
$$

EM Clustering using color and texture information at each pixel

(from Blobworld)

EM for Classification of Images in Terms of their Color Regions

Initial Model for "trees"

Initial Model for "sky"

Final Model for "trees"

Final Model for "sky"

Sample Results

cheetah

Sample Results (Cont.)

grass

Sample Results (Cont.)

lion

Haar Random Forest Features Combined with a Spatial Matching Kernel for Stonefly Species Identification

Natalia Larios*
Bilge Soran*
Linda Shapiro*
Gonzalo Martinez-Munoz^
Jeffrey Lin+
Tom Dietterich+
*University of Washington
+Oregon State University
^Universidad Autónoma de Madrid

Goal: to identify the species of insect specimens rapidly and accurately

Overview of our Classification Method

RESULTS:

Stonefly Identification: Classification Error [\%]

Task	SET	CIELAB color	CIELAB+G
Cal vs Dor	6.26	10.16	$4.60 \quad 96.4 \%$ accuracy
Hes vs Iso	3.74	9.05	3.55
Pte vs Swe	2.71	8.75	2.80
Dor vs Hes	2.25	8.09	2.20
Mos vs Pte	2.06	7.95	1.92
Yor vs Zap	1.52	6.89	1.60
Zap vs Cal	1.52	7.02	1.76
Swe vs Yor	1.44	6.85	1.50
Iso vs Mos	1.29	6.90	1.30
Average	$\mathbf{2 . 5 3}$	$\mathbf{7 . 9 6}$	2.25

Finale

- We have looked at
- decision trees
- random decision forests
- boosting (and other metaclassifiers)
- neural nets
- SVMs
- unsupervised learning
- We will now go into object recognition of different types, ending with deep neural nets called Convolutional Neural Networks.

