Object Recognition by Parts

- Object recognition started with line segments.
 - Roberts recognized objects from line segments and junctions.
 - This led to systems that extracted linear features.
 - CAD-model-based vision works well for industrial.
- An "appearance-based approach" was first developed for face recognition and later generalized up to a point.
- The new interest operators have led to a new kind of recognition by "parts" that can handle a variety of objects that were previously difficult or impossible.

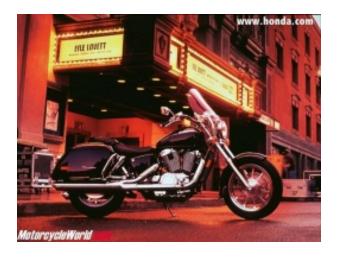
Object Class Recognition by Unsupervised Scale-Invariant Learning

R. Fergus, P. Perona, and A. Zisserman Oxford University and Caltech

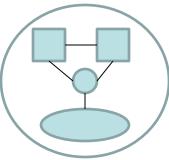
CVPR 2003 won the best student paper award CVPR 2013 won the best 10-year award

Goal:

 Enable Computers to Recognize Different Categories of Objects in Images.



Approach



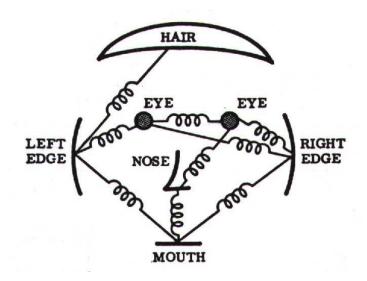
- An object is a constellation of parts (from Burl, Weber and Perona, 1998).
- The parts are detected by an interest operator (Kadir's).
- The parts can be recognized by appearance.
- Objects may vary greatly in scale.
- The constellation of parts for a given object is learned from training images

Components

- Model
 - Generative Probabilistic Model including
 Location, Scale, and Appearance of Parts
- Learning
 - Estimate Parameters Via EM Algorithm
- Recognition

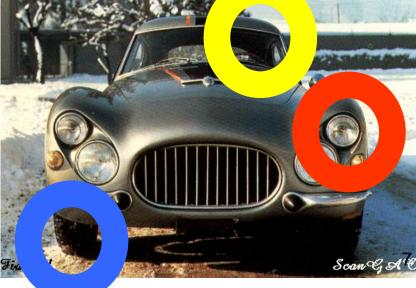
- Evaluate Image Using Model and Threshold

Model: Constellation Of Parts



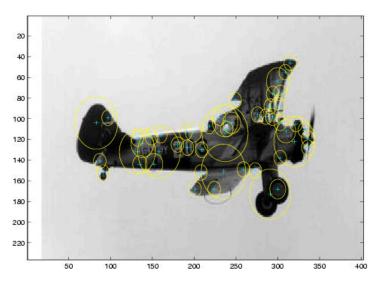
Fischler & Elschlager, 1973

Yuille, 91 Brunelli & Poggio, 93 Lades, v.d. Malsburg et al. 93 Cootes, Lanitis, Taylor et al. 95 Amit & Geman, 95, 99 Perona et al. 95, 96, 98, 00

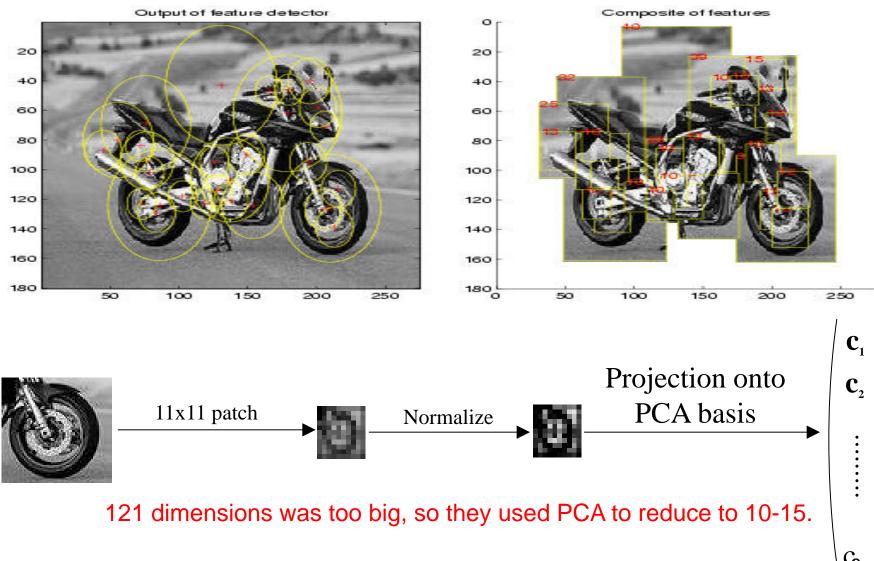


Parts Selected by Interest Operator

Kadir and Brady's Interest Operator. Finds Maxima in Entropy Over Scale and Location



Representation of Appearance



с₉₁₅

Learning a Model

- An object class is represented by a generative model with P parts and a set of parameters θ.
- Once the model has been learned, a decision procedure must determine if a new image contains an instance of the object class or not.
- Suppose the new image has N interesting features with locations X, scales S and appearances A.

Probabilistic Model

$$\begin{split} p(\mathbf{X},\mathbf{S},\mathbf{A}|\,\theta) &= \sum_{\mathbf{h}\in H} p(\mathbf{X},\mathbf{S},\mathbf{A},\mathbf{h}|\,\theta) = \\ \sum_{\mathbf{h}\in H} \underbrace{p(\mathbf{A}|\mathbf{X},\mathbf{S},\mathbf{h},\theta)}_{Appearance} \underbrace{p(\mathbf{X}|\mathbf{S},\mathbf{h},\theta)}_{Shape} \underbrace{p(\mathbf{S}|\mathbf{h},\theta)}_{Rel.\ Scale\ Other} \underbrace{p(\mathbf{h}|\theta)}_{Other} \end{split}$$

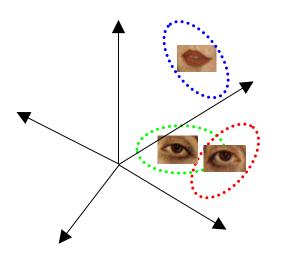
- X is a description of the shape of the object (in terms of locations of parts)
- S is a description of the scale of the object
- A is a description of the appearance of the object
- θ is the (maximum likelihood value of) the parameters of the object
- h is a hypothesis: a set of parts in the image that might be the parts of the object
- H is the set of all possible hypotheses for that object in that image.
- For N features in the image and P parts in the object, its size is O(N^P)

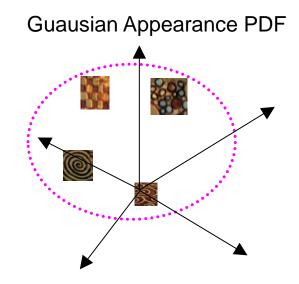
Appearance

The appearance (A) of each part p has a Gaussian density with mean c_p and covariance V_P.

Background model has mean $c_{\rm bg}$ and covariance $V_{\rm bg}.$

Gaussian Part Appearance PDF

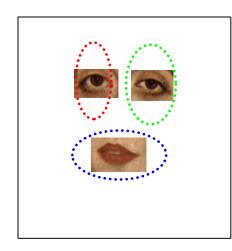




Shape as Location

Object shape is represented by a joint Gaussian density of the locations (X) of features within a hypothesis transformed into a scale-invariant space.

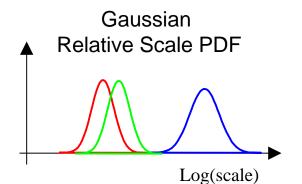
Gaussian Shape PDF



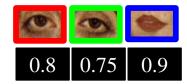
Uniform Shape PDF

Scale

The relative scale of each part is modeled by a Gaussian density with mean $t_{\rm p}$ and covariance $U_{\rm p}.$



Prob. of detection



Occlusion and Part Statistics

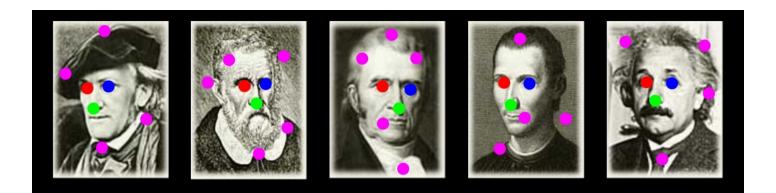
This was very complicated and turned out to not work well and not be necessary, in both Fergus's work and other subsequent works.

Learning

- Train Model Parameters Using EM:
 - Optimize Parameters
 - Optimize Assignments
 - Repeat Until Convergence

$$\begin{aligned} \theta &= \{ \underbrace{\mu, \Sigma, \mathbf{c}, V}_{}, \underbrace{M, p(\mathbf{d}|\theta)}_{}, \underbrace{t, U}_{} \} \\ \text{location} & \text{occlusion} \\ \text{appearance} & \text{scale} \end{aligned}$$

$$\hat{\theta}_{ML} = \mathop{arg\,max}_{\theta} \, p(\mathbf{X}, \mathbf{S}, \mathbf{A} | \, \theta)$$



Recognition

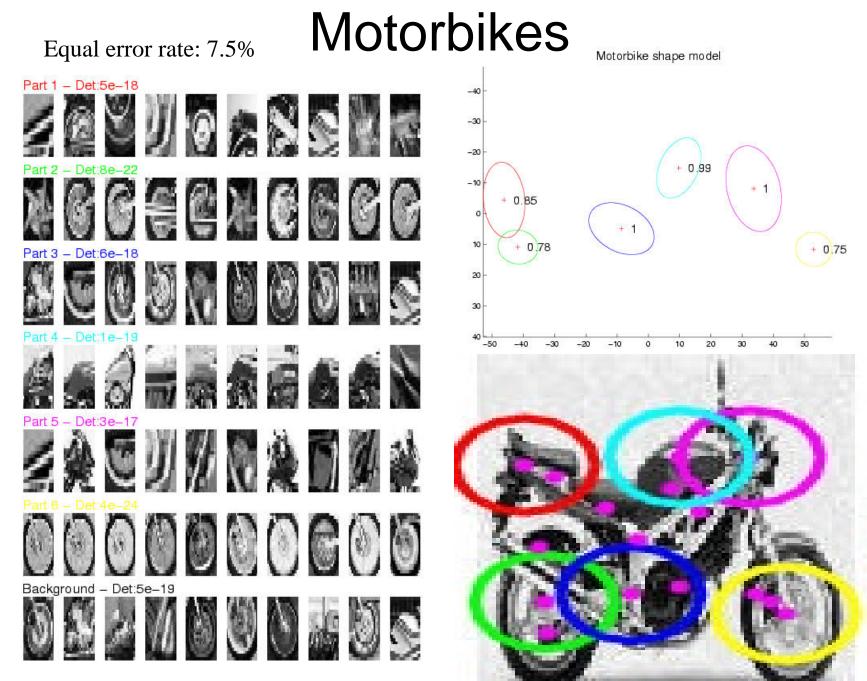
Make this likelihood ratio:

$$R = \frac{p(\text{Object}|\mathbf{X}, \mathbf{S}, \mathbf{A})}{p(\text{No object}|\mathbf{X}, \mathbf{S}, \mathbf{A})}$$
$$= \frac{p(\mathbf{X}, \mathbf{S}, \mathbf{A}|\text{Object}) p(\text{Object})}{p(\mathbf{X}, \mathbf{S}, \mathbf{A}|\text{No object}) p(\text{No object})}$$
$$\approx \frac{p(\mathbf{X}, \mathbf{S}, \mathbf{A}|\boldsymbol{\theta}) p(\text{Object})}{p(\mathbf{X}, \mathbf{S}, \mathbf{A}|\boldsymbol{\theta}_{bg}) p(\text{No object})}$$

greater than a threshold.

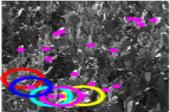
RESULTS

- Initially tested on the Caltech-4 data set
 - motorbikes
 - faces
 - airplanes
 - cars
- Now there is a much bigger data set: the Caltech-101 http://www.vision.caltech.edu/archive.html



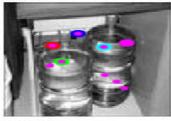
Background Images

It learns that these are NOT motorbikes. INCORRECT

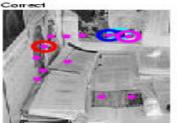


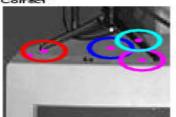
Cou

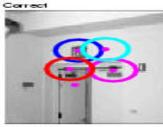
Correct



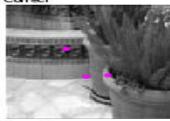
Correct

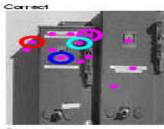


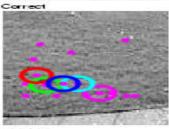




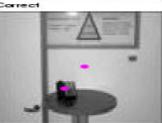
Correct

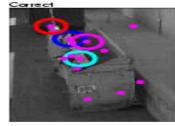


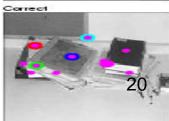


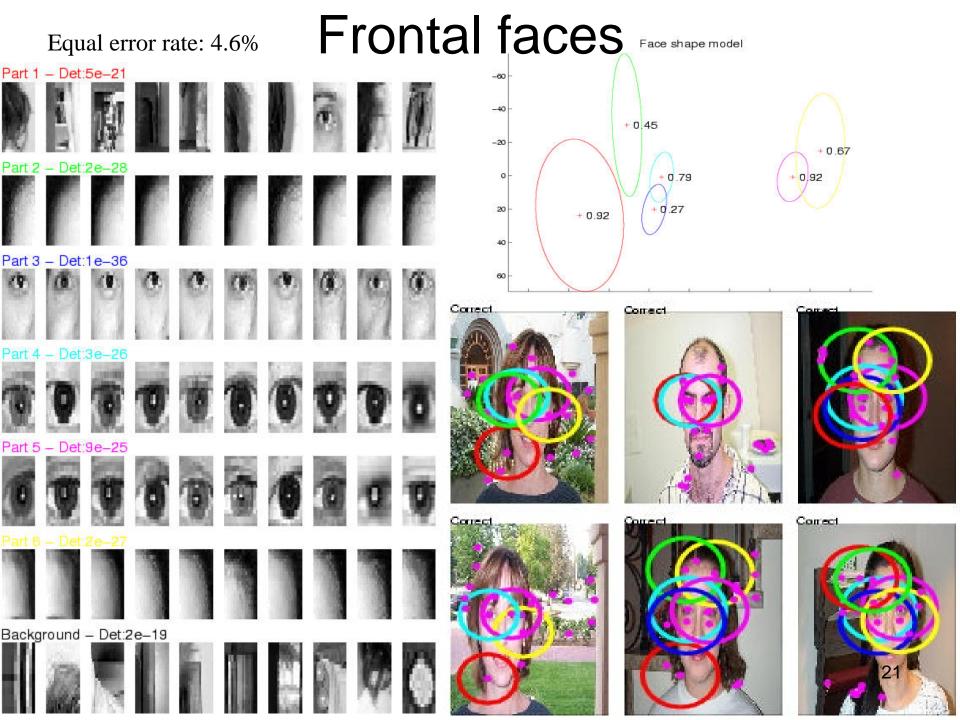


Correct



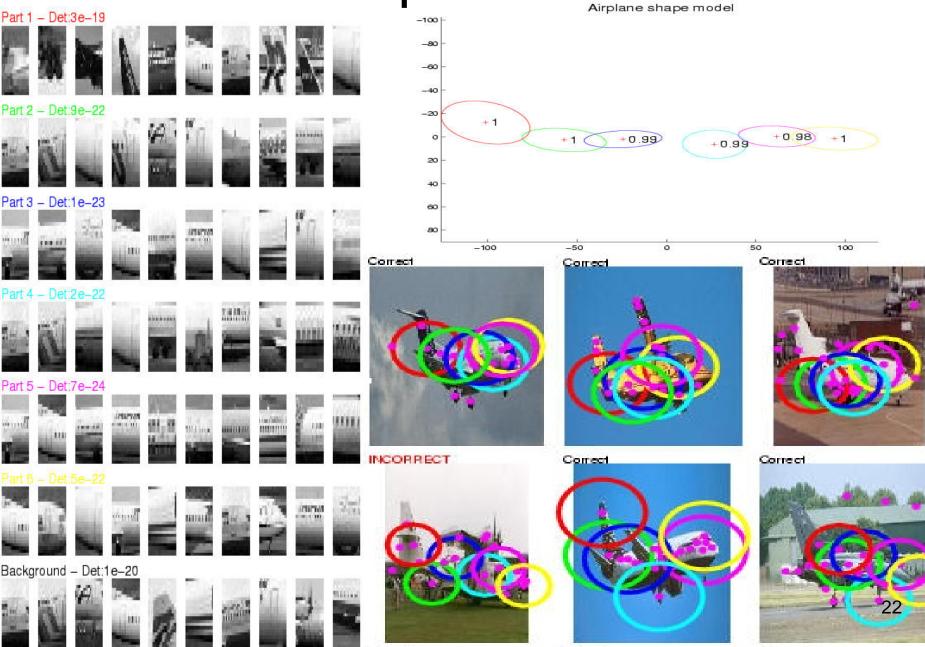






Equal error rate: 9.8%

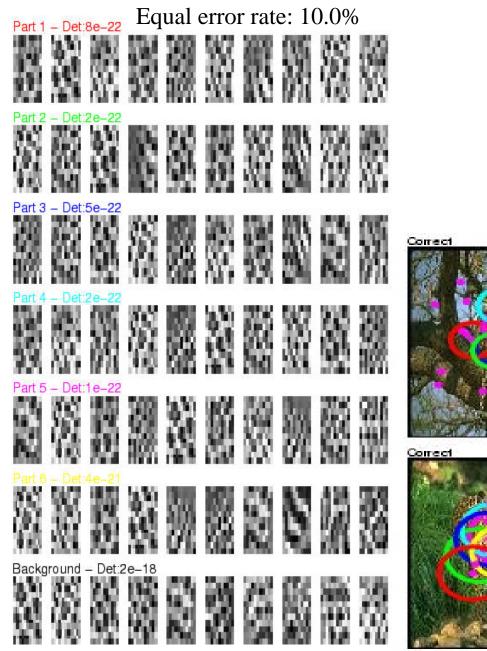
Airplanes

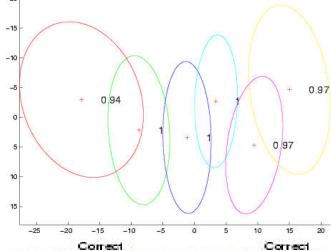


-

Scale-Invariant Cats

Spotted cat shape model

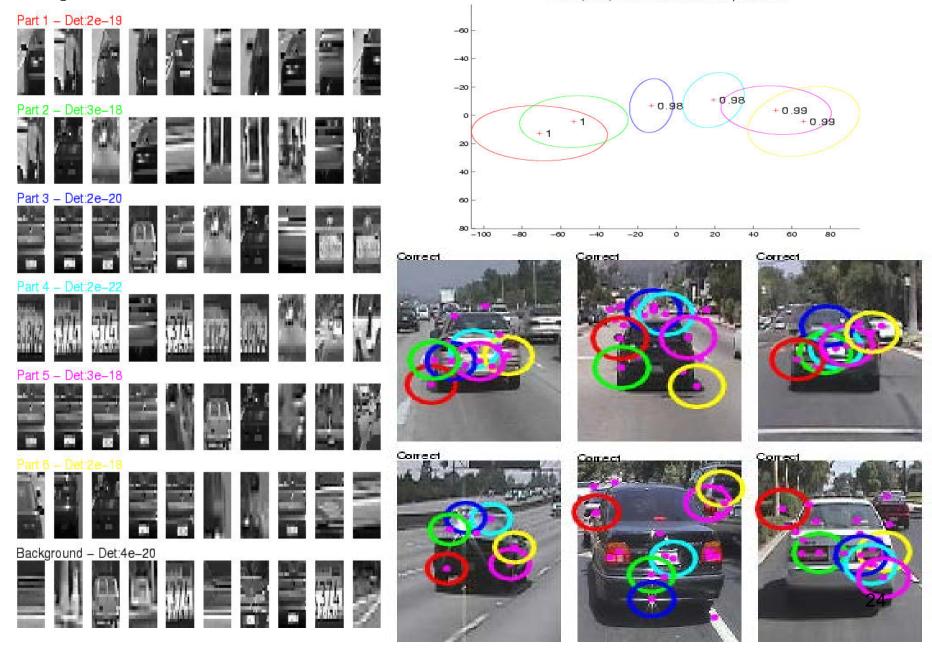




Conter

-

Equal error rate: S. Sale-Invariant Cars Cars (rear) scale-invariant shape model



Accuracy

Initial Pre-Scaled Experiments

Dataset	Ours	Others	Ref.
Motorbikes	92.5	84	[17]
Faces	96.4	94	[19]
Airplanes	90.2	68	[17]
Cars(Side)	88.5	79	[1]