

Skin and Face Detection

Linda Shapiro

EE/CSE 576

1

What’s Coming

1. Review of Bakic flesh detector
2. Fleck and Forsyth flesh detector
3. Details of Rowley face detector
4. Review of the basic AdaBoost algorithm
5. The Viola Jones face detector features
6. The modified AdaBoost algorithm that is

used in Viola-Jones face detection

2

Object Detection
• Example: Face Detection

• Example: Skin Detection

(Rowley, Baluja &
Kanade, 1998)

(Jones & Rehg, 1999)

http://vasc.ri.cmu.edu/NNFaceDetector/
http://vasc.ri.cmu.edu/NNFaceDetector/
http://www.hpl.hp.com/techreports/Compaq-DEC/CRL-98-11.pdf

Review: Bakic Flesh Finder

• Convert pixels to normalized (r,g) space
• Train a binary classifier to recognize pixels in

this space as skin or not skin by giving it lots of
examples of both classes.

• On test images, have the classifier label the
skin pixels.

• Find large connected components.

Finding a face in a video frame

5

(all work contributed by Vera Bakic)

input video frame pixels classified in largest connected
 normalized r-g space component with aspect
 similar to a face

6

Fleck and Forsyth’s
Flesh Detector

• Convert RGB to HSI
• Use the intensity component to compute a texture map
 texture = med2 (| I - med1(I) |)
• If a pixel falls into either of the following ranges,
 it’s a potential skin pixel

 texture < 5, 110 < hue < 150, 20 < saturation < 60
 texture < 5, 130 < hue < 170, 30 < saturation < 130

median filters of
radii 4 and 6

* Margaret Fleck, David Forsyth, and Chris Bregler (1996)
 “Finding Naked People,” 1996 European Conference on
 Computer Vision , Volume II, pp. 592-602.

Algorithm
1. Skin Filter: The algorithm first locates images containing large areas
 whose color and texture is appropriate for skin.

2. Grouper: Within these areas, the algorithm finds elongated regions
 and groups them into possible human limbs and connected groups
 of limbs, using specialized groupers which incorporate substantial
 amounts of information about object structure.

3. Images containing sufficiently large skin-colored groups of
 possible limbs are reported as potentially containing naked people.

This algorithm was tested on a database of 4854 images: 565 images
of naked people and 4289 control images from a variety of sources.
The skin filter identified 448 test images and 485 control images as
containing substantial areas of skin. Of these, the grouper identified
241 test images and 182 control images as containing people-like shapes.

Grouping

Some True Positives

False Negatives True Negative

Results

10

 Object Detection:
 Rowley’s Face Finder

1. convert to gray scale
2. normalize for lighting
3. histogram equalization
4. apply neural net(s)
 trained on 16K images

What data is fed to
the classifier?

20 x 20 windows in
a pyramid structure

Preprocessing

Image Pyramid Idea

original image (full size)

lower resolution image (1/4 of original)

even lower resolution (1/16 of original)

 Training the Neural Network

• Nearly 1051 face examples collected from
 face databases at CMU, Harvard, and WWW

• Faces of various sizes, positions, orientations, intensities

• Eyes, tip of nose, corners and center of mouth labeled
 manually and used to normalize each face to the same
 scale, orientation, and position

Result: set of 20 X 20 face training samples

Positive Face Examples

Training the Neural Network
Negative Face Examples

• Generate 1000 random nonface images and
 apply the preprocessing

• Train a neural network on these plus the face images

• Run the system on real scenes that contain no faces

• Collect the false positives

• Randomly select 250 of these and apply preprocessing

• Label them as negative and add to the training set

Overall Algorithm

More Pictures

Even More

And More

Accuracy: detected
80-90% on different
image sets with an
“acceptable number” of
false positives

Fast Version: 2-4 seconds
per image (in 1998)

Learning from weighted data

Consider a weighted dataset
• Wi – weight of i th training example (xi,yi)
• Interpretations:

– i th training example counts as if it occurred Wi % times
– If I were to “resample” data, I would get more samples of

“heavier” data points

Now, always do weighted calculations:

19

sample class weight
1.5 2.6 I 1/4
2.3 8.9 II 3/4

sample class
1.5 2.6 I
2.3 8.9 II
2.3 8.9 II
2.3 8.9 II

Basic AdaBoost Overview

• Input is a set of training examples (Xi, yi) i = 1 to m.
• We train a sequence of weak classifiers, such as decision

trees, neural nets or SVMs. Weak because not as strong as the
final classifier.

• The training examples will have weights, initially all equal.
• At each step, we use the current weights, train a new

classifier, and use its performance on the training data to
produce new weights for the next step (normalized).

• But we keep ALL the weak classifiers.
• When it’s time for testing on a new feature vector, we will

combine the results from all of the weak classifiers.

20

Idea of Boosting
(from AI text)

21

But Viola Jones
will make the
weights of the
correct samples
smaller instead
of making the
weights of the
incorrect ones
bigger.

Face detection

State-of-the-art face detection demo
(Courtesy Boris Babenko)

23

http://vision.ucsd.edu/~bbabenko/

Face detection and recognition

Detection Recognition “Sally”

24

Face detection

Where are the faces?

25

Face Detection

What kind of features?

• Rowley: 32 x 32 subimages at different levels of a

pyramid
• Viola/Jones: rectangular features

What kind of classifiers?

• Rowley: neural nets
• Viola/Jones: Adaboost over simple one-node

decision trees (stumps)

26

Image Features

“Rectangle filters”

Value =

∑ (pixels in white area) –
∑ (pixels in black area)

+1 -1

27

People call them Haar-like features,
since similar to 2D Haar wavelets.

Feature extraction

K. Grauman, B. Leibe

• Filters can be different sizes.
• Filters can be anywhere in the
 box being analyzed.
• Feature output is very simple
 convolution.
• Requires sums of large boxes.

Viola & Jones, CVPR 2001

Efficiently computable
with integral image: any
sum can be computed
in constant time

Avoid scaling images
scale features directly
for same cost

“Rectangular” filters

28

Recall: Sums of rectangular regions

243 239 240 225 206 185 188 218 211 206 216 225

242 239 218 110 67 31 34 152 213 206 208 221

243 242 123 58 94 82 132 77 108 208 208 215

235 217 115 212 243 236 247 139 91 209 208 211

233 208 131 222 219 226 196 114 74 208 213 214

232 217 131 116 77 150 69 56 52 201 228 223

232 232 182 186 184 179 159 123 93 232 235 235

232 236 201 154 216 133 129 81 175 252 241 240

235 238 230 128 172 138 65 63 234 249 241 245

237 236 247 143 59 78 10 94 255 248 247 251

234 237 245 193 55 33 115 144 213 255 253 251

248 245 161 128 149 109 138 65 47 156 239 255

190 107 39 102 94 73 114 58 17 7 51 137

23 32 33 148 168 203 179 43 27 17 12 8

17 26 12 160 255 255 109 22 26 19 35 24

How do we compute the sum of
the pixels in the red box?

After some pre-computation, this
can be done in constant time for
any box.

This “trick” is commonly used for computing
Haar wavelets (a fundemental building block of
many object recognition approaches.)

Sums of rectangular regions

The trick is to compute an
“integral image.” Every pixel is
the sum of its neighbors to the
upper left.

Sequentially compute using:

Sums of rectangular regions

A B

C D

Solution is found using:

A + D – B - C

What if the position of the box lies
between pixels?

Use bilinear interpolation.

Large library of filters

Considering all
possible filter
parameters:
position, scale,
and type:

160,000+
possible features
associated with
each 24 x 24
window

Use AdaBoost both to select the informative
features and to form the classifier

Viola & Jones, CVPR 2001 32

Feature selection
• For a 24x24 detection region, the number of

possible rectangle features is ~160,000!

• At test time, it is impractical to evaluate the
entire feature set

• Can we create a good classifier using just a
small subset of all possible features?

• How to select such a subset?

33

AdaBoost for feature+classifier selection
• Want to select the single rectangle feature and threshold that best

separates positive (faces) and negative (non-faces) training examples, in
terms of weighted error.

Outputs of a possible
rectangle feature on
training examples x

(faces and non faces)

…

Resulting weak classifier:

For next round, reweight the
examples according to errors,
choose another filter/threshold
combo.

Viola & Jones, CVPR 2001 34

θt is a threshold for classifier ht

0

Weak Classifiers

• Each weak classifier works on exactly one rectangle
feature.

• Each weak classifier has 3 associated variables
1. its threshold θ
2. its polarity p
3. its weight α

• The polarity can be 0 or 1 (in our code)
• The weak classifier computes its one feature f

• When the polarity is 1, we want f > θ for face
• When the polarity is 0, we want f < θ for face

• The weight will be used in the final classification by
AdaBoost.

35

• Final classifier is combination of the weak ones, weighted
according to error they had.

• The code computes a SCORE based on the difference of the two
above summations.

36

βt = εt / (1- εt): the training error of the classifier ht

AdaBoost Algorithm modified by Viola Jones

Find the best threshold and
polarity for each feature, and
return error ε.

Re-weight the examples:
Incorrectly classified -> more weight
Correctly classified -> less weight

{x1,…xn}
For T rounds:

37

NOTE: Our code
uses equal weights
for all samples

sum over training samples

meaning we will
construct T weak
classifiers

Normalize weights

Updating the Weights

Suppose a weak classifier i has error ei.
The weight alpha for this classifier is
 α = ln((1-ei)/ei)
The updating formula for the weight wi for classifier i is

given as
 wt+1,i = wt,i βt

1-ei

where ei = 0 if example xi is classified correctly else 1.
And βt = exp(-αt) which is ei/(1-ei)

After the weights are updated, they are normalized by the

sum of all of them.

Recall

• Classification
• Decision Trees and Forests
• Neural Nets
• SVMs
• Boosting
•

• Face Detection
• Simple Features
• Integral Images
• Boosting

A B

C D

39

Picking the threshold for the best
classifier: the idea
Efficient single pass approach:

At each sample compute:

Find the minimum value of , and use the value of the
corresponding sample as the threshold.

 = min (S + (T – S), S + (T – S))

S = sum of weights of samples with feature value below the current
sample
T = total sum of all samples
S and T are for faces; S and T are for background. 40

The features are actually sorted
in the code according to numeric
value!

Picking the threshold for the best
classifier: the details for coding

At each sample, add weight to FS or BG and compute:

Find the minimum value of e, and use the feature value of the
corresponding sample as the threshold.

41

The features for the training samples are actually sorted in the code
according to numeric value!

Algorithm:
1. find AFS, the sum of the weights of all the face samples
2. find ABG, the sum of the weights of all the background samples
3. set to zero FS, the sum of the weights of face samples so far
4. set to zero BG, the sum of the weights of background samples so far
5. go through each sample s in a loop IN THE SORTED ORDER

= min (BG + (AFS – FS), FS + (ABG – BG))

What’s going on?

42

error = min (BG + (AFS – FS), FS + (ABG –BG))
 left right
• Let’s pretend the weights on the samples are all 1’s.
• The samples are arranged in ascending order by feature value
 and we know which ones are faces (f) and background (b).

• Left is the number of background patches so far plus the number
 of faces yet to be encountered.

• Right is the number of faces so far plus the number of background
 patches yet to be encountered.

 b b b f b f f b f f
(6,4) (7,3) (8,2) (7,3) (8,2) (7,3) (4,4) (7,3) (6,4) (5,5)

min 4 3 2 3 2 3 4 3 4 5

1+5-0 0+5-1

Setting the Polarity

error = min (BG + (AFS – FS), FS + (ABG –BG))
 left right

• When left < right, set polarity to 0
• Else set polarity to 1

• left is the number of background patches so far plus the number
 of faces yet to be encountered.

• right is the number of faces so far plus the number of background
 patches yet to be encountered.

Threshold and Polarity Example

samples
labels
features
weight
index

0 1 2 3 4
F B F B B
6 3 10 2 1
1/5 1/5 1/5 1/5 1/5
4 3 1 0 2

initialize
AFS = 0
ABG = 0
besterr = 999999

AFS becomes sum of face sample weights = 2/5; ABG = 3/5

step 0: idx = 4; FS stays 0; BG = 1/5
error = min(1/5 + (2/5-0), 0 + (3/5-1/5))= 2/5
besterr = 2/5; bestpolarity = 1; bestthreshold=1

step 1: idx = 3; FS stays 0; BG = 2/5
error = min(2/5 + (2/5-0), 0 + (3/5-2/5))= 1/5
besterr = 1/5; bestpolarity = 1; bestthreshold=2

Threshold and Polarity Example

samples
labels
features
weight
index

0 1 2 3 4
F B F B B
6 3 10 2 1
1/5 1/5 1/5 1/5 1/5
4 3 1 0 2

initialize
AFS = 0
ABG = 0
besterr = 999999

step 2: idx = 1; FS stays 0; BG = 3/5
error = min(3/5 + (2/5-0), 0 + (3/5-3/5))= 0
besterr = 0; bestpolarity = 1; bestthreshold=3

step 3: idx = 0; FS = 1/5; BG = 3/5
error = min(3/5 + (2/5-1/5), 1/5 + (3/5-3/5))=
1/5
NO CHANGE
step 4: idx = 2; FS = 2/5; BG = 3/5
error = min(3/5 + (2/5-2/5), 2/5+ (3/5-3/5))= 2/5
NO CHANGE

RESULT

1 2 3 6 10

θ > 3

Measuring classification performance
• Confusion matrix

• Accuracy

– (TP+TN)/
(TP+TN+FP+FN)

• True Positive Rate=Recall

– TP/(TP+FN)
• False Positive Rate

– FP/(FP+TN)
• Precision

– TP/(TP+FP)
• F1 Score

– 2*Recall*Precision/
(Recall+Precision)

Predicted class
Class1 Class2 Class3

Actual
class

Class1 40 1 6

Class2 3 25 7

Class3 4 9 10

Predicted
Positive Negative

Actual Positive True
Positive

False
Negative

Negative False
Positive

True
Negative

46

Boosting for face detection
• First two features selected by boosting:

This feature combination can yield 100%
detection rate and 50% false positive rate 47

Boosting for face detection
• A 200-feature classifier can yield 95% detection

rate and a false positive rate of 1 in 14084

Is this good enough?

Receiver operating characteristic (ROC) curve
48

Attentional cascade (from Viola-Jones)

• We start with simple classifiers which reject
many of the negative sub-windows while
detecting almost all positive sub-windows

• Positive response from the first classifier
triggers the evaluation of a second (more
complex) classifier, and so on

• A negative outcome at any point leads to the
immediate rejection of the sub-window

FACE IMAGE
SUB-WINDOW

Classifier 1
T

Classifier 3
T

F

NON-FACE

T
Classifier 2

T

F

NON-FACE

F

NON-FACE 49

Attentional cascade

• Chain of classifiers that are
progressively more complex
and have lower false positive
rates:

vs false neg determined by

% False Pos

%
 D

et
ec

tio
n

0 50

0

10
0

FACE IMAGE
SUB-WINDOW

Classifier 1
T

Classifier 3
T

F

NON-FACE

T
Classifier 2

T

F

NON-FACE

F

NON-FACE

Receiver operating
characteristic

50

Attentional cascade
• The detection rate and the false positive rate of

the cascade are found by multiplying the
respective rates of the individual stages

• A detection rate of 0.9 and a false positive rate
on the order of 10-6 can be achieved by a
10-stage cascade if each stage has a detection
rate of 0.99 (0.9910 ≈ 0.9) and a false positive
rate of about 0.30 (0.310 ≈ 6×10-6)

FACE IMAGE
SUB-WINDOW

Classifier 1
T

Classifier 3
T

F

NON-FACE

T
Classifier 2

T

F

NON-FACE

F

NON-FACE 51

Training the cascade
• Set target detection and false positive rates for

each stage
• Keep adding features to the current stage until

its target rates have been met
• Need to lower AdaBoost threshold to maximize detection

(as opposed to minimizing total classification error)
• Test on a validation set

• If the overall false positive rate is not low
enough, then add another stage

• Use false positives from current stage as the
negative training examples for the next stage

52

Viola-Jones Face Detector: Summary

Train with 5K positives, 350M negatives
Real-time detector using 38 layer cascade
6061 features in final layer
[Implementation available in OpenCV:

http://www.intel.com/technology/computing/opencv/]

Faces

Non-faces

Train cascade of
classifiers with

AdaBoost

Selected features,
thresholds, and weights

New image

53

The implemented system

• Training Data
• 5000 faces

– All frontal, rescaled to
24x24 pixels

• 300 million non-faces
– 9500 non-face images

• Faces are normalized
– Scale, translation

• Many variations
• Across individuals
• Illumination
• Pose

54

System performance
• Training time: “weeks” on 466 MHz Sun

workstation
• 38 layers, total of 6061 features
• Average of 10 features evaluated per window

on test set
• “On a 700 Mhz Pentium III processor, the

face detector can process a 384 by 288 pixel
image in about .067 seconds”
• 15 Hz
• 15 times faster than previous detector of comparable

accuracy (Rowley et al., 1998)

55

Non-maximal suppression (NMS)

Many detections above threshold.

56

Non-maximal suppression (NMS)

57

Similar accuracy, but 10x faster

Is this good?

58

Viola-Jones Face Detector: Results

59

Viola-Jones Face Detector: Results

60

Viola-Jones Face Detector: Results

61

Detecting profile faces?
Detecting profile faces requires training separate
detector with profile examples.

62

Paul Viola, ICCV tutorial

Viola-Jones Face Detector: Results

63

Summary: Viola/Jones detector

• Rectangle features
• Integral images for fast computation
• Boosting for feature selection
• Attentional cascade for fast rejection of negative

windows

64

	�Skin and Face Detection
	What’s Coming
	Object Detection
	Review: Bakic Flesh Finder
	Finding a face in a video frame
	Fleck and Forsyth’s �Flesh Detector
	Algorithm
	Grouping
	Slide Number 9
	 Object Detection:� Rowley’s Face Finder
	Preprocessing
	Image Pyramid Idea
	 Training the Neural Network
	Training the Neural Network
	Overall Algorithm
	More Pictures
	Even More
	And More
	Learning from weighted data
	Basic AdaBoost Overview
	Idea of Boosting�(from AI text)
	Face detection
	Face detection and recognition
	Face detection
	Face Detection
	Image Features
	Feature extraction
	Recall: Sums of rectangular regions
	Sums of rectangular regions
	Sums of rectangular regions
	Large library of filters
	Feature selection
	AdaBoost for feature+classifier selection
	Weak Classifiers
	Slide Number 36
	AdaBoost Algorithm modified by Viola Jones
	Updating the Weights
	Slide Number 39
	Slide Number 40
	Slide Number 41
	What’s going on?
	Setting the Polarity
	Threshold and Polarity Example�
	Threshold and Polarity Example�
	Measuring classification performance
	Boosting for face detection
	Boosting for face detection
	Attentional cascade (from Viola-Jones)�
	Attentional cascade
	Attentional cascade
	Training the cascade
	Viola-Jones Face Detector: Summary
	The implemented system
	System performance
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Detecting profile faces?
	Slide Number 63
	Summary: Viola/Jones detector

