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What’s Coming 

1. Review of Bakic flesh detector 
2. Fleck and Forsyth flesh detector 
3. Details of Rowley face detector 
4. Review of the basic AdaBoost algorithm  
5. The Viola Jones face detector features 
6. The modified AdaBoost algorithm that is 

used in Viola-Jones face detection 
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Object Detection 
• Example: Face Detection 

 
 
 

 
• Example: Skin Detection 

(Rowley, Baluja & 
Kanade, 1998) 

(Jones & Rehg, 1999) 

http://vasc.ri.cmu.edu/NNFaceDetector/
http://vasc.ri.cmu.edu/NNFaceDetector/
http://www.hpl.hp.com/techreports/Compaq-DEC/CRL-98-11.pdf


Review:  Bakic Flesh Finder 

• Convert pixels to normalized (r,g) space 
• Train a binary classifier to recognize pixels in 

this space as skin or not skin by giving it lots of 
examples of both classes. 

• On test images, have the classifier label the 
skin pixels. 

• Find large connected components. 



Finding a face in a video frame 
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(all work contributed by Vera Bakic) 
 

input video frame                pixels classified in               largest connected 
                                        normalized r-g space        component with aspect 
                                                                                        similar to a face 
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Fleck and Forsyth’s  
Flesh Detector 

• Convert RGB to HSI 
• Use the intensity component to compute a texture map 
   texture = med2 ( | I - med1(I) | ) 
• If a pixel falls into either of the following ranges, 
   it’s a potential skin pixel 
 
   texture < 5, 110 < hue < 150, 20 < saturation < 60 
   texture < 5, 130 < hue < 170, 30 < saturation < 130 

median filters of  
radii 4 and 6 

* Margaret Fleck, David Forsyth, and Chris Bregler (1996)  
 “Finding Naked People,” 1996 European Conference on  
  Computer Vision , Volume II, pp. 592-602. 



Algorithm  
1. Skin Filter: The algorithm first locates images containing large areas  
     whose color and texture is appropriate for skin. 
 
2.  Grouper: Within these areas, the algorithm finds elongated regions 
     and groups them into possible human limbs and connected groups 
     of limbs, using specialized groupers which incorporate substantial  
     amounts of information about object structure.  
 
3.   Images containing sufficiently large skin-colored groups of  
      possible limbs are reported as potentially containing naked people.  
 
This algorithm was tested on a database of 4854 images: 565 images  
of naked people and 4289 control images from a variety of sources.  
The skin filter identified 448 test images and 485 control images as  
containing substantial areas of skin. Of these, the grouper identified  
241 test images and 182 control images as containing people-like shapes.  
 



Grouping 



Some True Positives 

False Negatives                                         True Negative 

Results 
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 Object Detection: 
 Rowley’s Face Finder 

  

  

1. convert to gray scale 
2. normalize for lighting 
3. histogram equalization 
4. apply neural net(s) 
    trained on 16K images 

What data is fed to 
the classifier? 
 
20 x 20 windows in 
a pyramid structure 



Preprocessing 



Image Pyramid Idea 

original image (full size) 

lower resolution image (1/4 of original) 

even lower resolution (1/16 of original) 



 Training the Neural Network 

• Nearly 1051 face examples collected from 
   face databases at CMU, Harvard, and WWW 
 
•  Faces of various sizes, positions, orientations, intensities 
 

•  Eyes, tip of nose, corners and center of mouth labeled 
    manually and used to normalize each face to the same 
    scale, orientation, and position 
 
Result: set of 20 X 20 face training samples 
 

Positive Face Examples 



Training the Neural Network 
Negative Face Examples 

•  Generate 1000 random nonface images and  
  apply the preprocessing 
 
•  Train a neural network on these plus the face images 
 

•  Run the system on real scenes that contain no faces 
 

•  Collect the false positives 
 

•  Randomly select 250 of these and apply preprocessing 
 

•  Label them as negative and add to the training set 



Overall Algorithm 



More Pictures 



Even More 



And More 

Accuracy: detected 
80-90% on different 
image sets with an 
“acceptable number” of 
false positives 
 
Fast Version: 2-4 seconds 
per image (in 1998) 



Learning from weighted data 

Consider a weighted dataset 
• Wi – weight of i th training example (xi,yi) 
• Interpretations: 

– i th training example counts as if it occurred Wi % times 
– If I were to “resample” data, I would get more samples of 

“heavier” data points 

Now, always do weighted calculations: 
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sample class weight 
1.5 2.6     I      1/4 
2.3 8.9     II     3/4 

sample class  
1.5 2.6     I       
2.3 8.9     II   
2.3 8.9     II    
2.3 8.9     II    



Basic AdaBoost Overview 

• Input is a set of training examples (Xi, yi) i = 1 to m. 
• We train a sequence of weak classifiers, such as decision 

trees, neural nets or SVMs. Weak because not as strong as the 
final classifier. 

• The training examples will have weights, initially all equal. 
• At each step, we use the current weights, train a new 

classifier, and use its performance on the training data to 
produce new weights for the next step (normalized). 

• But we keep ALL the weak classifiers. 
• When it’s time for testing on a new feature vector, we will 

combine the results from all of the weak classifiers. 
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Idea of Boosting 
(from AI text) 

21 

But Viola Jones 
will make the 
weights of the 
correct samples 
smaller instead 
of making the 
weights of the 
incorrect ones 
bigger. 



Face detection 

State-of-the-art face detection demo 
(Courtesy Boris Babenko) 
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http://vision.ucsd.edu/~bbabenko/


Face detection and recognition 

Detection Recognition “Sally” 
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Face detection 

Where are the faces?  
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Face Detection 

What kind of features? 
 
• Rowley: 32 x 32 subimages at different levels of a 

pyramid 
• Viola/Jones: rectangular features 
 
What kind of classifiers? 
 
• Rowley: neural nets 
• Viola/Jones: Adaboost over simple one-node 

decision trees (stumps) 
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Image Features 

“Rectangle filters” 
 

Value =   

∑ (pixels in white area) –  
∑ (pixels in black area) 

 

+1 -1 
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People call them Haar-like features, 
since similar to 2D Haar wavelets. 



Feature extraction 

K. Grauman, B. Leibe 

• Filters can be different sizes. 
• Filters can be anywhere in the 
     box being analyzed. 
• Feature output is very simple  
     convolution. 
• Requires sums of large boxes. 

Viola & Jones, CVPR 2001 

Efficiently computable 
with integral image: any 
sum can be computed 
in constant time 

Avoid scaling images 
scale features directly 
for same cost 

“Rectangular” filters 
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Recall: Sums of rectangular regions 

243 239 240 225 206 185 188 218 211 206 216 225 

242 239 218 110 67 31 34 152 213 206 208 221 

243 242 123 58 94 82 132 77 108 208 208 215 

235 217 115 212 243 236 247 139 91 209 208 211 

233 208 131 222 219 226 196 114 74 208 213 214 

232 217 131 116 77 150 69 56 52 201 228 223 

232 232 182 186 184 179 159 123 93 232 235 235 

232 236 201 154 216 133 129 81 175 252 241 240 

235 238 230 128 172 138 65 63 234 249 241 245 

237 236 247 143 59 78 10 94 255 248 247 251 

234 237 245 193 55 33 115 144 213 255 253 251 

248 245 161 128 149 109 138 65 47 156 239 255 

190 107 39 102 94 73 114 58 17 7 51 137 

23 32 33 148 168 203 179 43 27 17 12 8 

17 26 12 160 255 255 109 22 26 19 35 24 

How do we compute the sum of 
the pixels in the red box? 

After some pre-computation, this 
can be done in constant time for 
any box. 

This “trick” is commonly used for computing 
Haar wavelets (a fundemental building block of 
many object recognition approaches.) 



Sums of rectangular regions 

The trick is to compute an 
“integral image.”  Every pixel is 
the sum of its neighbors to the 
upper left. 
 
Sequentially compute using: 



Sums of rectangular regions 

A B 

C D 

Solution is found using: 
 

A + D – B - C 

What if the position of the box lies 
between pixels? 

Use bilinear interpolation. 



Large library of filters 

Considering all 
possible filter 
parameters: 
position, scale, 
and type:  

160,000+ 
possible features 
associated with 
each 24 x 24 
window 

 
Use AdaBoost both to select the informative 
features and to form the classifier 

Viola & Jones, CVPR 2001 32 



Feature selection 
• For a 24x24 detection region, the number of 

possible rectangle features is ~160,000!  
 

• At test time, it is impractical to evaluate the 
entire feature set  
 

• Can we create a good classifier using just a 
small subset of all possible features? 
 

• How to select such a subset? 
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AdaBoost for feature+classifier selection 
• Want to select the single rectangle feature and threshold that best 

separates positive (faces) and negative (non-faces) training examples, in 
terms of weighted error. 

Outputs of a possible 
rectangle feature on 
training examples x 

(faces and non faces) 

…
 

Resulting weak classifier: 

For next round, reweight the 
examples according to errors, 
choose another filter/threshold 
combo. 

Viola & Jones, CVPR 2001 34 

θt is a threshold for classifier ht 

0 



Weak Classifiers 

• Each weak classifier works on exactly one rectangle 
feature. 

• Each weak classifier has 3 associated variables 
1. its threshold θ 
2. its polarity p  
3. its weight α 

• The polarity can be 0 or 1 (in our code) 
• The weak classifier computes its one feature f 

• When the polarity is 1, we want f > θ for face 
• When the polarity is 0, we want f < θ for face 

• The weight will be used in the final classification by 
AdaBoost. 

35 



• Final classifier is combination of the weak ones, weighted 
according to error they had. 

• The code computes a SCORE based on the difference of the two 
above summations. 
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βt = εt / (1- εt): the training error of the classifier ht  



AdaBoost Algorithm modified by Viola Jones 

Find the best threshold and 
polarity for each feature, and 
return error ε. 

Re-weight the examples: 
Incorrectly classified -> more weight 
Correctly classified -> less weight 

{x1,…xn} 
For T rounds: 
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NOTE: Our code  
uses equal weights 
for all samples 

sum over training samples 

meaning we will  
construct T weak  
classifiers 

Normalize weights 



Updating the Weights 

Suppose a weak classifier i has error ei. 
The weight alpha for this classifier is 
     α = ln((1-ei)/ei) 
The updating formula for the weight wi for classifier i is 

given as  
     wt+1,i = wt,i βt

1-ei 

where ei = 0 if example xi is classified correctly else 1.  
And βt = exp(-αt) which is ei/(1-ei) 
 
After the weights are updated, they are normalized by the 

sum of all of them. 
 
 
 



Recall 

• Classification 
• Decision Trees and Forests 
• Neural Nets 
• SVMs 
• Boosting 
• .... 
 

•  Face Detection 
• Simple Features 
• Integral Images 
• Boosting 

 
 

 

A B 

C D 
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Picking the threshold for the best 
classifier: the idea 
Efficient single pass approach: 

At each sample compute: 

Find the minimum value of   , and use the value of the 
corresponding sample as the threshold.   

 = min ( S + (T – S), S + (T – S) ) 

S = sum of weights of samples with feature value below the current 
sample 
T = total sum of all samples 
S and T are for faces; S and T are for background. 40 

The features are actually sorted 
in the code according to numeric 
value! 



Picking the threshold for the best 
classifier: the details for coding 

At each sample, add weight to FS or BG and compute: 

Find the minimum value of e, and use the feature value of the 
corresponding sample as the threshold.   

41 

The features for the training samples are actually sorted in the code 
according to numeric value! 

Algorithm: 
1. find AFS, the sum of the weights of all the face samples 
2. find ABG, the sum of the weights of all the background samples 
3. set to zero FS, the sum of the weights of face samples so far 
4. set to zero BG, the sum of the weights of background samples so far 
5. go through each sample s in a loop IN THE SORTED ORDER 

= min (BG + (AFS – FS), FS + (ABG – BG)) 



What’s going on? 
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error = min (BG + (AFS – FS), FS + (ABG –BG)) 
                             left                         right 
• Let’s pretend the weights on the samples are all 1’s. 
• The samples are arranged in ascending order by feature value 
     and we know which ones are faces (f) and background (b). 
 
• Left is the number of background patches so far plus the number 
     of faces yet to be encountered. 
 
• Right is the number of faces so far plus the number of background 
     patches yet to be encountered. 

 
  b          b          b          f          b          f          f          b         f          f 
(6,4)    (7,3)     (8,2)    (7,3)    (8,2)     (7,3)   (4,4)    (7,3)   (6,4)   (5,5) 
    

min 4          3          2         3         2           3        4          3        4         5 

1+5-0 0+5-1 



Setting the Polarity 

error = min (BG + (AFS – FS), FS + (ABG –BG)) 
                            left                         right 

• When left < right, set polarity to 0 
• Else set polarity to 1 

• left is the number of background patches so far plus the number 
     of faces yet to be encountered. 
 
• right is the number of faces so far plus the number of background 
     patches yet to be encountered. 



Threshold and Polarity Example 
 

samples 
labels 
features 
weight 
index 
 
 

0        1         2         3         4 
F        B         F         B         B 
6     3        10       2        1 
1/5   1/5    1/5     1/5      1/5 
4        3          1        0          2  

initialize 
AFS = 0 
ABG = 0 
besterr = 999999 

AFS becomes sum of face sample weights = 2/5; ABG = 3/5 

step 0:  idx = 4; FS stays 0; BG = 1/5 
error = min(1/5 + (2/5-0), 0 + (3/5-1/5))= 2/5 
besterr = 2/5; bestpolarity = 1; bestthreshold=1 

step 1:  idx = 3; FS stays 0; BG = 2/5 
error = min(2/5 + (2/5-0), 0 + (3/5-2/5))= 1/5 
besterr = 1/5; bestpolarity = 1; bestthreshold=2 



Threshold and Polarity Example 
 

samples 
labels 
features 
weight 
index 
 
 

0        1         2         3         4 
F        B         F         B         B 
6     3        10        2         1 
1/5   1/5       1/5     1/5      1/5 
4        3          1        0          2  

initialize 
AFS = 0 
ABG = 0 
besterr = 999999 

step 2:  idx = 1; FS stays 0; BG = 3/5 
error = min(3/5 + (2/5-0), 0 + (3/5-3/5))= 0 
besterr = 0; bestpolarity = 1; bestthreshold=3 

step 3:  idx = 0; FS = 1/5; BG = 3/5 
error = min(3/5 + (2/5-1/5), 1/5 + (3/5-3/5))= 
1/5 
NO CHANGE 
step 4:  idx = 2; FS = 2/5; BG = 3/5 
error = min(3/5 + (2/5-2/5), 2/5+ (3/5-3/5))= 2/5 
NO CHANGE 

RESULT 

1   2   3   6   10 

θ  >  3 



Measuring classification performance 
• Confusion matrix 

 
• Accuracy 

– (TP+TN)/ 
(TP+TN+FP+FN) 

 
• True Positive Rate=Recall 

– TP/(TP+FN) 
• False Positive Rate 

– FP/(FP+TN) 
• Precision 

– TP/(TP+FP) 
• F1 Score 

– 2*Recall*Precision/ 
(Recall+Precision) 

Predicted class 
Class1 Class2 Class3 

Actual 
class 

Class1 40 1 6 

Class2 3 25 7 

Class3 4 9 10 

Predicted 
Positive Negative 

Actual Positive True 
Positive 

False 
Negative 

Negative False 
Positive 

True 
Negative 
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Boosting for face detection 
• First two features selected by boosting: 

 
 
 
 
 
 
 
 
 
 
This feature combination can yield 100% 
detection rate and 50% false positive rate 47 



Boosting for face detection 
• A 200-feature classifier can yield 95% detection 

rate and a false positive rate of 1 in 14084 

Is this good enough? 

Receiver operating characteristic (ROC) curve 
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Attentional cascade (from Viola-Jones) 
 

• We start with simple classifiers which reject 
many of the negative sub-windows while 
detecting almost all positive sub-windows 

• Positive response from the first classifier 
triggers the evaluation of a second (more 
complex) classifier, and so on 

• A negative outcome at any point leads to the 
immediate rejection of the sub-window 

FACE IMAGE 
SUB-WINDOW 

Classifier 1 
T 

Classifier 3 
T 

F 

NON-FACE 

T 
Classifier 2 

T 

F 

NON-FACE 

F 

NON-FACE 49 



Attentional cascade 

• Chain of classifiers that are 
progressively more complex 
and have lower false positive 
rates: 
 
 

vs  false  neg  determined by 

% False Pos 

%
 D

et
ec

tio
n 

0                                               50 

0 
   

   
   

   
   

   
   

   
   

   
   

   
   

10
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FACE IMAGE 
SUB-WINDOW 

Classifier 1 
T 

Classifier 3 
T 

F 

NON-FACE 

T 
Classifier 2 

T 

F 

NON-FACE 

F 

NON-FACE 

Receiver operating 
characteristic 
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Attentional cascade 
• The detection rate and the false positive rate of 

the cascade are found by multiplying the 
respective rates of the individual stages 

• A detection rate of 0.9 and a false positive rate 
on the order of 10-6 can be achieved by a  
10-stage cascade if each stage has a detection 
rate of 0.99 (0.9910 ≈ 0.9) and a false positive 
rate of about 0.30 (0.310 ≈ 6×10-6)  

 

FACE IMAGE 
SUB-WINDOW 

Classifier 1 
T 

Classifier 3 
T 

F 

NON-FACE 

T 
Classifier 2 

T 

F 

NON-FACE 

F 

NON-FACE 51 



Training the cascade 
• Set target detection and false positive rates for 

each stage 
• Keep adding features to the current stage until 

its target rates have been met  
• Need to lower AdaBoost threshold to maximize detection  

(as opposed to minimizing total classification error) 
• Test on a validation set 

• If the overall false positive rate is not low 
enough, then add another stage 

• Use false positives from current stage as the 
negative training examples for the next stage 
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Viola-Jones Face Detector: Summary 

Train with 5K positives, 350M negatives 
Real-time detector using 38 layer cascade 
6061 features in final layer 
[Implementation available in OpenCV: 

http://www.intel.com/technology/computing/opencv/] 
 
 
 
 
 
 
 
 

Faces 

Non-faces 

Train cascade of 
classifiers with 

AdaBoost 

Selected features, 
thresholds, and weights 

New image 
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The implemented system 

• Training Data 
• 5000 faces 

– All frontal, rescaled to  
24x24 pixels 

• 300 million non-faces 
– 9500 non-face images 

• Faces are normalized 
– Scale, translation 

• Many variations 
• Across individuals 
• Illumination 
• Pose 
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System performance 
• Training time: “weeks” on 466 MHz Sun 

workstation 
• 38 layers, total of 6061 features 
• Average of 10 features evaluated per window 

on test set 
• “On a 700 Mhz Pentium III processor, the 

face detector can process a 384 by 288 pixel 
image in about .067 seconds”  
• 15 Hz 
• 15 times faster than previous detector of comparable 

accuracy (Rowley et al., 1998) 
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Non-maximal suppression (NMS) 

Many detections above threshold. 
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Non-maximal suppression (NMS) 
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Similar accuracy, but 10x faster 

Is this good? 
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Viola-Jones Face Detector: Results 
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Viola-Jones Face Detector: Results 
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Viola-Jones Face Detector: Results 
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Detecting profile faces? 
Detecting profile faces requires training separate 
detector with profile examples. 
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Paul Viola, ICCV tutorial 

Viola-Jones Face Detector: Results 
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Summary: Viola/Jones detector 

• Rectangle features 
• Integral images for fast computation 
• Boosting for feature selection 
• Attentional cascade for fast rejection of negative 

windows 
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