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Color Spaces 

• RGB 
• HSI/HSV 
• CIE L*a*b 
• YIQ 
• and more 
 

standard for cameras 
hue, saturation, intensity 
intensity plus 2 color channels 
color TVs, Y is intensity 



RGB Color Space 
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Normalized red      r = R/(R+G+B) 
 
Normalized green  g = G/(R+G+B) 
 
Normalized blue    b = B/(R+G+B) 
 

Absolute                                       Normalized 



Color hexagon for HSI (HSV) 
• Hue is encoded as an angle (0 to 2π). 

• Saturation is the distance to the vertical axis (0 to 1). 

• Intensity is the height along the vertical axis (0 to 1). 

intensity 
saturation 

hue 
H=0 is red H=180 is cyan 

H=120 is green 

H=240 is blue 

I=0 

I=1 
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Conversion from RGB to YIQ  

 
 
 

We often use this for color to gray-tone conversion. 

An approximate linear transformation from RGB to YIQ: 
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CIELAB, Lab, L*a*b 
• One luminance channel (L) 
      and two color channels (a and b). 
 
• In this model, the color 

differences which you perceive 
correspond to Euclidian distances 
in CIELab.  
 

• The a axis extends from green (-a) 
to red (+a) and the b axis from 
blue (-b) to yellow (+b). The 
brightness (L) increases from the 
bottom to the top of the three-
dimensional model. 
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Histograms 

• A histogram of a gray-tone image is an array 
H[*] of bins, one for each gray tone. 
 

• H[i] gives the count of how many pixels of an 
image have gray tone i. 
 

• P[i] (the normalized histogram) gives the 
percentage of pixels that have gray tone i. 



Color histograms can represent an 
image 

• Histogram is fast and easy to compute. 
 

• Size can easily be normalized so that different 
image histograms can be compared. 
 

• Can match color histograms for database query 
or classification. 
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Histograms of two color images 
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How to make a color histogram 

• Make a single 3D histogram. 
 

• Make 3 histograms and concatenate them 
 

• Create a single pseudo color between 0 and 255 by 
using 3 bits of R, 3 bits of G and 2 bits of B (which 
bits?) 

 
• Use normalized color space and 2D histograms. 
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Apples versus Oranges  

Separate HSI histograms for apples (left) and oranges 
(right) used by IBM’s VeggieVision for recognizing produce 
at the grocery store checkout station (see Ch 16). 

H 
 
S 
 
I 
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Skin color in RGB space (shown as normalized 
red vs normalized green) 

Purple region 
shows skin color 
samples from 
several people. 
Blue and yellow 
regions show 
skin in shadow 
or behind a 
beard.  
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Finding a face in video frame 

• (left) input video frame 
• (center) pixels classified according to RGB space 
• (right) largest connected component with aspect 

similar to a face (all work contributed by Vera Bakic) 
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Swain and Ballard’s Histogram Matching 
for Color Object Recognition  

(IJCV Vol 7, No. 1, 1991) 

Opponent Encoding: 
 
 
Histograms: 8 x 16 x 16 = 2048 bins 
 
Intersection of image histogram and model histogram: 
 
 
 
Match score is the normalized intersection: 

• wb = R + G + B 
• rg = R - G 
• by = 2B - R - G 

intersection(h(I),h(M)) = ∑ min{h(I)[j],h(M)[j]} 

match(h(I),h(M)) = intersection(h(I),h(M)) / ∑ h(M)[j] 

j=1 

numbins 

j=1 

numbins 
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(from Swain and Ballard) 

cereal box image 3D color histogram 

15 



Four views of Snoopy          Histograms 
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The 66 models objects          Some test objects 
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Swain and Ballard Results 

Results were surprisingly good.  
 
At their highest resolution (128 x 90), average match 
percentile (with and without occlusion) was 99.9. 
 
This translates to 29 objects matching best with 
their true models and 3 others matching second best 
with their true models. 
 
At resolution 16 X 11, they still got decent results 
(15 6 4) in one experiment; (23 5 3) in another. 
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Uses 

• Although this is an extremely simple 
technique, it became the basis for many 
content-based image retrieval systems and 
works surprisingly well, both alone, and in 
conjunction with other techniques. 



Texture 

• Color is well defined. 
• But what is texture? 
 



Structural Texture 

Texture is a description of the spatial arrangement of color or 
intensities in an image or a selected region of an image. 

Structural approach: a set of texels in some regular or repeated pattern 
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Natural Textures from VisTex 

grass leaves 

What/Where are the texels? 
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The Case for Statistical Texture 

• Segmenting out texels is difficult or impossible in real images. 
 
• Numeric quantities or statistics that describe a texture can be 
   computed from the gray tones (or colors) alone. 
 
• This approach is less intuitive, but is computationally efficient. 
 

• It can be used for both classification and segmentation. 
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Some Simple Statistical Texture Measures 

1.  Edge Density and Direction 

• Use an edge detector as the first step in texture analysis. 
 

• The number of edge pixels in a fixed-size region tells us 
   how busy that region is. 
 
• The directions of the edges also help characterize the texture 
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Two Edge-based Texture Measures 

1.  edgeness per unit area 
 
 
 
 
2. edge magnitude and direction histograms 

Fedgeness =  |{ p |  gradient_magnitude(p) ≥ threshold}| / N 

where N is the size of the unit area 

Fmagdir = ( Hmagnitude, Hdirection ) 

where these are the normalized histograms of gradient 
magnitudes and gradient directions, respectively. 
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     Original Image             Frei-Chen                 Thresholded 
                                         Edge Image                Edge Image 

Example 
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Local Binary Pattern Measure 

100 101 103 
 40    50   80 
 50    60   90 

• For each pixel p, create an 8-bit number b1 b2 b3 b4 b5 b6 b7 b8, 
   where bi = 0 if neighbor i has value less than or equal to p’s 
   value and  1 otherwise. 
 
• Represent the texture in the image (or a region) by the 
   histogram of these numbers. 

1 1 1 1 1 1 0 0 

  1       2        3 

 
4 
 
5 

 7        6 
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Fids (Flexible Image Database 
System) is retrieving images 
similar to the query image 
using LBP texture as the 
texture measure and comparing 
their LBP histograms 

Example 

28 



Low-level 
measures don’t 
always find 
semantically 
similar images. 

Example 
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What else is LBP good for? 

• We found it in a paper for classifying 
deciduous trees. 

• We used it in a real system for finding cancer 
in Pap smears. 

• We are using it to look for regions of interest 
in breast and melanoma biopsy slides. 



Co-occurrence Matrix Features 

A co-occurrence matrix is a 2D array C in which 

• Both the rows and columns represent a set of possible 
   image values. 
 
• C  (i,j) indicates how many times value i co-occurs with 
   value j in a particular spatial relationship d. 
 
• The spatial relationship is specified by a vector d = (dr,dc). 

d 
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From Cd  we can compute Nd, the normalized co-occurrence matrix, 
where each value is divided by the sum of all the values. 

Co-occurrence Example 
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Co-occurrence Features 

sums. 

What do these measure? 

Energy measures uniformity of the normalized matrix. 
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But how do you choose d? 

• This is actually a critical question with all the 
   statistical texture methods. 
 
• Are the “texels” tiny, medium, large, all three …? 
 
• Not really a solved problem. 

Zucker and Terzopoulos suggested using a χ2  statistical 
test to select the value(s) of d that have the most structure 
for a given class of images.   
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Example 
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What are Co-occurrence Features used 
for? 

• They were designed for recognizing different 
kinds of land uses in satellite images. 

• They are still used heavily in geospatial 
domains, but they can be added on to any 
other calculated features. 



Laws’ Texture Energy Features 

• Signal-processing-based algorithms use texture filters 
   applied to the image to create filtered images from which 
   texture features are computed. 
 
• The Laws Algorithm 

• Filter the input image using texture filters. 
• Compute texture energy by summing the absolute 
   value of filtering results in local neighborhoods  
    around each pixel. 
• Combine features to achieve rotational invariance. 
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Law’s texture masks (1) 
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Law’s texture masks (2) 

Creation of 2D Masks 

E5 
L5 

E5L5 
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9D feature vector for pixel  

• Subtract mean neighborhood intensity from (center) pixel 
• Apply 16  5x5 masks to get 16 filtered images Fk , k=1 to 16 

• Produce 16 texture energy maps using 15x15 windows 
          Ek[r,c] = ∑ |Fk[i,j]| 
• Replace each distinct pair with its average map: 
• 9 features (9 filtered images) defined as follows: 
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Laws Filters 
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Laws Process 
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water 
 
tiger 

fence 
 
flag 
 
grass 

small flowers 
 
big flowers 

Is there a 
neighborhood 
size problem 
with Laws? 

Example: Using Laws Features to Cluster 
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Features from sample images 
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Gabor Filters 

• Similar approach to Laws 
• Wavelets at different frequencies and different 

orientations 
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Gabor Filters 
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Gabor Filters 
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Segmentation with Color and Gabor-Filter 
Texture (Smeulders) 
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Use of Texture 

• Texture is important, but usually not as 
discriminative alone as color. 

• The use of color and texture together can 
work well for both recognition and 
segmentation. 



Region Segmentation by Color 
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Main Methods of Region 
Segmentation 

1.  Region Growing 
 
2.  Split and Merge 

 
3.  Clustering  
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Clustering 

• There are K clusters C1,…, CK with means m1,…, mK. 
 

• The least-squares error is defined as 
 
 
 

• Out of all possible partitions into K clusters,  
  choose the one that minimizes D. 

Why don’t we just do this? 
If we could, would we get meaningful objects? 

D = ∑    ∑  || xi - mk ||   . 
k=1 xi ∈ Ck 

K 2 
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K-Means Clustering 

Form K-means clusters from a set of n-dimensional vectors 
 
1. Set ic (iteration count) to 1 
 
2. Choose randomly a set of K means m1(1), …, mK(1). 
 
3. For each vector xi compute D(xi , mk(ic)), k=1,…K 
    and assign xi to the cluster Cj with nearest mean. 
 
4.  Increment ic by 1, update the means to get m1(ic),…,mK(ic). 
 
5. Repeat steps 3 and 4 until Ck(ic) = Ck(ic+1) for all k. 
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Simple Example  
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Space for K-Means 

• The example was in some arbitrary 2D space 

• We don’t want to cluster in that space. 

• We will be clustering in color space (ie. RGB) 

• K-means can be used to cluster in any n-
dimensional space. 



K-Means Example 1 
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K-Means Example 2 
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K-Means Example 3 
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K-means Variants 

• Different ways to initialize the means 
• Different stopping criteria 
• Dynamic methods for determining the right 

number of clusters (K) for a given image 
 

• The EM Algorithm: a probabilistic formulation 
of K-means  

59 



Blobworld: Sample Results 
using color, texture, and EM 
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Graph-Partitioning Clustering 

• An image is represented by a graph whose nodes 
  are pixels or small groups of pixels. 
 
• The goal is to partition the vertices into disjoint sets so 
   that the similarity within each set is high and 
   across different sets is low. 
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Minimal Cuts 

• Let G = (V,E) be a graph. Each edge (u,v) has a weight w(u,v) 
  that represents the similarity between u and v. 
 
• Graph G can be broken into 2 disjoint graphs with node sets 
  A and B by removing edges that connect these sets. 
 
• Let cut(A,B) = ∑     w(u,v). 
 

• One way to segment G is to find the minimal cut. 
uεA, vεB 
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Cut(A,B) 

cut(A,B) = ∑     w(u,v) 
 uεA, vεB 

A 
B 

w1 

w2 
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Normalized Cut 

Minimal cut favors cutting off small node groups, 
so Shi proposed the normalized cut. 

                       cut(A, B)         cut(A,B) 
Ncut(A,B) =  -------------  +  ------------- 
                       asso(A,V)       asso(B,V) 

asso(A,V) = ∑ w(u,t) 
                 u∈A, t∈V 

How much is A connected 
to the graph as a whole. 

normalized 
cut 
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Example Normalized Cut 
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                          3             3 
Ncut(A,B) =  -------  +  ------ 
                         21           16 

A B 
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Shi turned graph cuts into an 
eigenvector/eigenvalue problem. 

• Set up a weighted graph G=(V,E) 
– V is the set of (N) pixels 

 
– E is a set of weighted edges (weight wij gives the similarity 

between nodes i and j) 
 

– Length N vector d: di  is the sum of the weights from node i 
to all other nodes  
 

– N x N matrix D: D is a diagonal matrix with d on its diagonal 
 

– N x N symmetric matrix W: Wij = wij 
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• Let x be a characteristic vector of a set A of nodes  
–  xi = 1 if node i is in a set A 
–  xi = -1 otherwise 

• Let y be a continuous approximation to x 
 
 
• Solve the system of equations 

   (D – W) y = λ D y 
for the eigenvectors y and eigenvalues λ 

• Use the eigenvector y with second smallest eigenvalue 
to bipartition the graph (y => x => A) 

• If further subdivision is merited, repeat recursively 
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How to define the weights 

Jianbo Shi defined the edge weights w(i,j) by 
 
w(i,j) = e                    *   e                        if ||X(i)-X(j)||2  < r 

0                       otherwise 
-||F(i)-F(j)||2 / σI 

-||X(i)-X(j)||2 / σX 

where X(i) is the spatial location of node i 
           F(i) is the feature vector for node I 
           which can be intensity, color, texture, motion… 

The formula is set up so that w(i,j) is 0 for nodes that 
are too far apart. 
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Examples of  
Shi Clustering 
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