Descriptors II

CSE 576
Ali Farhadi

Many slides from Larry Zitnick, Steve Seitz
How can we find corresponding points?
How can we find correspondences?
SIFT descriptor

Full version

- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe
Local Descriptors: Shape Context

Count the number of points inside each bin, e.g.:

- Count = 4
- Count = 10

Log-polar binning: more precision for nearby points, more flexibility for farther points.

Belongie & Malik, ICCV 2001
Texture

- Texture is characterized by the repetition of basic elements or *textons*
- For stochastic textures, it is the identity of the textons, not their spatial arrangement, that matters
Bag-of-words models

Bag-of-words models

Bag-of-words models

- Orderless document representation: frequencies of words from a dictionary
 Salton & McGill (1983)
Bag-of-words models

- Orderless document representation: frequencies of words from a dictionary
 Salton & McGill (1983)
Bags of features for image classification

1. Extract features
Bags of features for image classification

1. Extract features
2. Learn “visual vocabulary”
Bags of features for image classification

1. Extract features
2. Learn “visual vocabulary”
3. Quantize features using visual vocabulary
Bags of features for image classification

1. Extract features
2. Learn “visual vocabulary”
3. Quantize features using visual vocabulary
4. Represent images by frequencies of “visual words”
Texture representation

[Diagram showing different textures and their corresponding histograms]
1. Feature extraction

- **Regular grid**
 - Vogel & Schiele, 2003
 - Fei-Fei & Perona, 2005

- **Interest point detector**
 - Csurka et al. 2004
 - Fei-Fei & Perona, 2005
 - Sivic et al. 2005
1. Feature extraction

- Regular grid
 - Vogel & Schiele, 2003
 - Fei-Fei & Perona, 2005

- Interest point detector
 - Csurka et al. 2004
 - Fei-Fei & Perona, 2005
 - Sivic et al. 2005

- Other methods
 - Random sampling (Vidal-Naquet & Ullman, 2002)
 - Segmentation-based patches (Barnard et al. 2003)
1. Feature extraction

Compute SIFT descriptor
[Lowe'99]

Normalize patch

Detect patches

[Mikojaczyk and Schmid '02]
[Mata, Chum, Urban & Pajdla, '02]
[Sivic & Zisserman, '03]
1. Feature extraction
2. Discovering the visual vocabulary
2. Discovering the visual vocabulary

Clustering

Slide credit: Josef Sivic
2. Discovering the visual vocabulary

Slide credit: Josef Sivic
Clustering and vector quantization

- Clustering is a common method for learning a visual vocabulary or codebook
 - Unsupervised learning process
 - Each cluster center produced by k-means becomes a codevector
 - Codebook can be learned on separate training set
 - Provided the training set is sufficiently representative, the codebook will be “universal”

- The codebook is used for quantizing features
 - A vector quantizer takes a feature vector and maps it to the index of the nearest codevector in a codebook
 - Codebook = visual vocabulary
 - Codevector = visual word
Example visual vocabulary
Example codebook

Source: B. Leibe
Another codebook

Source: B. Leibe
Visual vocabularies: Issues

- How to choose vocabulary size?
 - Too small: visual words not representative of all patches
 - Too large: quantization artifacts, overfitting

- Computational efficiency
 - Vocabulary trees
 (Nister & Stewenius, 2006)
3. Image representation
Image classification

- Given the bag-of-features representations of images from different classes, learn a classifier using machine learning
Another Representation: Filter bank
Showing magnitude of responses
Kristen Grauman
How can we represent texture?

• Measure responses of various filters at different orientations and scales

• Idea 1: Record simple statistics (e.g., mean, std.) of absolute filter responses
Can you match the texture to the response?

Filters

A

B

C

Mean abs responses
Representing texture by mean abs response

Filters

Mean abs responses
Representing texture

- Idea 2: take vectors of filter responses at each pixel and cluster them, then take histograms
Representing texture

clustering
But what about layout?

All of these images have the same color histogram
Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution

Lazebnik, Schmid & Ponce (CVPR 2006)
Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution
Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution

Lazebnik, Schmid & Ponce (CVPR 2006)
What about Scenes?