Interest points

CSE 576 Ali Farhadi

Many slides from Steve Seitz, Larry Zitnick

How can we find corresponding points?

Not always easy

NASA Mars Rover images

Answer below (look for tiny colored squares...)

NASA Mars Rover images with SIFT feature matches Figure by Noah Snavely

Human eye movements

Yarbus eye tracking

Interest points

- Suppose you have to click on some point, go away and come back after I deform the image, and click on the same points again.
 - Which points would you choose?

Intuition

Corners

- We should easily recognize the point by looking through a small window
- Shifting a window in *any direction* should give *a large change* in intensity

"flat" region: no change in all directions Source: A. Efros

"edge": no change along the edge direction "corner": significant change in all directions

Let's look at the gradient distributions

Principle Component Analysis

Principal component is the direction of highest variance.

Next, highest component is the direction with highest variance *orthogonal* to the previous components.

How to compute PCA components:

- 1. Subtract off the mean for each data point.
- 2. Compute the covariance matrix.
- 3. Compute eigenvectors and eigenvalues.
- 4. The components are the eigenvectors ranked by the eigenvalues.

Corners have ...

Second Moment Matrix

$$M = \sum_{x,y} W(x,y) \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix}$$

2 x 2 matrix of image derivatives (averaged in neighborhood of a point).

The math

To compute the eigenvalues:

1. Compute the covariance matrix.

$$H = \sum_{(u,v)} w(u,v) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \qquad I_x = \frac{\partial f}{\partial x}, I_y = \frac{\partial f}{\partial y}$$
Typically Gaussian weights

2. Compute eigenvalues.

$$H = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \lambda_{\pm} = \frac{1}{2} \left((a+d) \pm \sqrt{4bc + (a-d)^2} \right)$$

Corner Response Function

- Computing eigenvalues are expensive
- Harris corner detector uses the following alternative

$$R = det(M) - \alpha \cdot trace(M)^2$$

Reminder:

$$det\left(\begin{bmatrix}a & b\\c & d\end{bmatrix}\right) = ad - bc \qquad trace\left(\begin{bmatrix}a & b\\c & d\end{bmatrix}\right) = a + d$$

- 1. Compute Gaussian derivatives at each pixel
- 2. Compute second moment matrix *M* in a Gaussian window around each pixel
- 3. Compute corner response function *R*
- 4. Threshold *R*
- 5. Find local maxima of response function (nonmaximum suppression)

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

Compute corner response R

Find points with large corner response: R>threshold

Take only the points of local maxima of R

Simpler Response Function

$$R = det(M) - \alpha \cdot trace(M)^2$$

Properties of the Harris corner detector

Yes

No

- Rotation invariant?
- Scale invariant?

Corner!

All points will be classified as edges

Let's look at scale first:

What is the "best" scale?

Scale Invariance

How can we independently select interest points in each image, such that the detections are repeatable across different scales?

K. Grauman, B. Leibe

Differences between Inside and Outside

ρ

Why Gaussian?

It is invariant to scale change, i.e., $f * \mathcal{G}_{\sigma} * \mathcal{G}_{\sigma'} = f * \mathcal{G}_{\sigma''}$ and has several other nice properties. Lindeberg, 1994

In practice, the Laplacian is approximated using a Difference of Gaussian (DoG).

Difference-of-Gaussian (DoG)

K. Grauman, B. Leibe

DoG example

Scale invariant interest points

Interest points are local maxima in both position and scale.

In practice the image is downsampled for larger sigmas.

Lowe, 2004.

Results: Difference-of-Gaussian

K. Grauman, B. Leibe

How can we find correspondences?

Similarity transform

1

Rotation invariance

- Rotate patch according to its dominant gradient orientation
- This puts the patches into a canonical orientation.

Orientation Normalization

- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation

[Lowe, SIFT, 1999]

