Deep Object Detection

Ali Farhadi Mohammad Rastegari CSE 576

So Far

Backpropagation

Convolutional Neural Networks(CNN)

AlexNet

Deeper Architectures

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10 ResNet GoogleNet VGG AlexNet

Deep Leaning Practical Tips

- Use off-the-shelf architectures
- Verify the correctness of your network by training over a single batch.
 - Overfit : Good to go!
 - Did not converge : Something is wrong with forward/backward functions or data!
- Use a proper learning rate regime.

Object Detection

Sliding Window

Sliding Window

Sliding Window

Object Proposal

Selective Search

Uijlings, Jasper RR, et al. "Selective search for object recognition." International journal of computer vision (2013).

Object hypotheses

Region-Based CNN (R-CNN)

Input	Extract region	Compute CNN	Classify regions
image	proposals (~2k / image)	features	(linear SVM)

Grishick et al [CVPR'14]

Object Detection by R-CNN

Object Detection by R-CNN

Object Detection by R-CNN

- Depending on region proposal
- Need to apply CNN ~2K times per image

Fast R-CNN

Fast R-CNN

Bounding Box Regression

Bounding Box Regression

Bbox Regression

Faster R-CNN

Pascal 2012

Method	mAP	Sec/im
R-CNN	59.2	20
Fast R-CNN	68.4	2
Faster R-CNN	72.1	0.5

Direct Regression No Proposal

We do not know the number of objects in an image

Bounding boxes + confidence

 $S \times S$ grid on input

Bounding boxes + confidence

 $S \times S$ grid on input

Class probability map

Final detections

Pascal 2012

Method	mAP	Sec/im
R-CNN	59.2	20
Fast R-CNN	68.4	2
Faster R-CNN	72.1	0.5
YOLO	57.9	0.02

Source Code

- Fast R-CNN
 - <u>https://github.com/mahyarnajibi/fast-rcnn-torch</u>
 - <u>https://github.com/rbgirshick/fast-rcnn</u>
- YOLO
 - https://github.com/pjreddie/darknet/blob/ master/src/yolo.c