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So	  Far	  

•  Backpropaga*on	  

•  Convolu*onal	  Neural	  Networks(CNN)	  

•  AlexNet	  

•  Deeper	  Architectures	  
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Deep	  Leaning	  Prac*cal	  Tips	  

•  Use	  off-‐the-‐shelf	  architectures	  	  
•  Verify	  the	  correctness	  of	  your	  network	  by	  
training	  over	  a	  single	  batch.	  	  
– Overfit	  :	  Good	  to	  go!	  	  
– Did	  not	  converge	  :	  Something	  is	  wrong	  with	  
forward/backward	  func*ons	  or	  data!	  	  

•  Use	  a	  proper	  learning	  rate	  regime.	  	  	  	  
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Selec*ve	  Search	  
Uijlings,	  Jasper	  RR,	  et	  al.	  "Selec*ve	  search	  for	  object	  recogni*on."	  
Interna*onal	  journal	  of	  computer	  vision	  	  (2013).	  

Figure 3: The training procedure of our object recognition pipeline. As positive learning examples we use the ground truth. As negatives
we use examples that have a 20-50% overlap with the positive examples. We iteratively add hard negatives using a retraining phase.

by our selective search that have an overlap of 20% to 50% with
a positive example. To avoid near-duplicate negative examples,
a negative example is excluded if it has more than 70% overlap
with another negative. To keep the number of initial negatives per
class below 20,000, we randomly drop half of the negatives for the
classes car, cat, dog and person. Intuitively, this set of examples
can be seen as difficult negatives which are close to the positive ex-
amples. This means they are close to the decision boundary and are
therefore likely to become support vectors even when the complete
set of negatives would be considered. Indeed, we found that this
selection of training examples gives reasonably good initial classi-
fication models.

Then we enter a retraining phase to iteratively add hard negative
examples (e.g. [12]): We apply the learned models to the training
set using the locations generated by our selective search. For each
negative image we add the highest scoring location. As our initial
training set already yields good models, our models converge in
only two iterations.

For the test set, the final model is applied to all locations gener-
ated by our selective search. The windows are sorted by classifier
score while windows which have more than 30% overlap with a
higher scoring window are considered near-duplicates and are re-
moved.

5 Evaluation

In this section we evaluate the quality of our selective search. We
divide our experiments in four parts, each spanning a separate sub-
section:

Diversification Strategies. We experiment with a variety of
colour spaces, similarity measures, and thresholds of the ini-
tial regions, all which were detailed in Section 3.2. We seek a
trade-off between the number of generated object hypotheses,
computation time, and the quality of object locations. We do
this in terms of bounding boxes. This results in a selection of
complementary techniques which together serve as our final
selective search method.

Quality of Locations. We test the quality of the object location
hypotheses resulting from the selective search.

Object Recognition. We use the locations of our selective search
in the Object Recognition framework detailed in Section 4.
We evaluate performance on the Pascal VOC detection chal-
lenge.

An upper bound of location quality. We investigate how well
our object recognition framework performs when using an ob-
ject hypothesis set of “perfect” quality. How does this com-
pare to the locations that our selective search generates?

To evaluate the quality of our object hypotheses we define
the Average Best Overlap (ABO) and Mean Average Best Over-
lap (MABO) scores, which slightly generalises the measure used
in [9]. To calculate the Average Best Overlap for a specific class c,
we calculate the best overlap between each ground truth annotation
gci ∈ Gc and the object hypotheses L generated for the correspond-
ing image, and average:

ABO =
1

|Gc| ∑
gci ∈G

c

max
l j∈L

Overlap(gci , l j). (7)

The Overlap score is taken from [11] and measures the area of the
intersection of two regions divided by its union:

Overlap(gci , l j) =
area(gci )∩ area(lj)

area(gci )∪ area(lj)
. (8)

Analogously to Average Precision and Mean Average Precision,
Mean Average Best Overlap is now defined as the mean ABO over
all classes.

Other work often uses the recall derived from the Pascal Overlap
Criterion to measure the quality of the boxes [1, 16, 34]. This crite-
rion considers an object to be found when the Overlap of Equation
8 is larger than 0.5. However, in many of our experiments we ob-
tain a recall between 95% and 100% for most classes, making this
measure too insensitive for this paper. However, we do report this
measure when comparing with other work.

To avoid overfitting, we perform the diversification strategies ex-
periments on the Pascal VOC 2007 TRAIN+VAL set. Other exper-
iments are done on the Pascal VOC 2007 TEST set. Additionally,
our object recognition system is benchmarked on the Pascal VOC
2010 detection challenge, using the independent evaluation server.

5.1 Diversification Strategies

In this section we evaluate a variety of strategies to obtain good
quality object location hypotheses using a reasonable number of
boxes computed within a reasonable amount of time.

5.1.1 Flat versus Hierarchy

In the description of our method we claim that using a full hierar-
chy is more natural than using multiple flat partitionings by chang-

6

Figure 2: Two examples of our selective search showing the necessity of different scales. On the left we find many objects at different
scales. On the right we necessarily find the objects at different scales as the girl is contained by the tv.

whose power of discovering parts or objects is left unevaluated. In
this work, we use multiple complementary strategies to deal with
as many image conditions as possible. We include the locations
generated using [3] in our evaluation.

2.3 Other Sampling Strategies

Alexe et al. [2] address the problem of the large sampling space
of an exhaustive search by proposing to search for any object, in-
dependent of its class. In their method they train a classifier on the
object windows of those objects which have a well-defined shape
(as opposed to stuff like “grass” and “sand”). Then instead of a full
exhaustive search they randomly sample boxes to which they apply
their classifier. The boxes with the highest “objectness” measure
serve as a set of object hypotheses. This set is then used to greatly
reduce the number of windows evaluated by class-specific object
detectors. We compare our method with their work.

Another strategy is to use visual words of the Bag-of-Words
model to predict the object location. Vedaldi et al. [34] use jumping
windows [5], in which the relation between individual visual words
and the object location is learned to predict the object location in
new images. Maji and Malik [23] combine multiple of these rela-
tions to predict the object location using a Hough-transform, after
which they randomly sample windows close to the Hough maxi-
mum. In contrast to learning, we use the image structure to sample
a set of class-independent object hypotheses.

To summarize, our novelty is as follows. Instead of an exhaus-
tive search [8, 12, 16, 36] we use segmentation as selective search
yielding a small set of class independent object locations. In con-
trast to the segmentation of [4, 9], instead of focusing on the best
segmentation algorithm [3], we use a variety of strategies to deal
with as many image conditions as possible, thereby severely reduc-
ing computational costs while potentially capturing more objects
accurately. Instead of learning an objectness measure on randomly
sampled boxes [2], we use a bottom-up grouping procedure to gen-
erate good object locations.

3 Selective Search

In this section we detail our selective search algorithm for object
recognition and present a variety of diversification strategies to deal
with as many image conditions as possible. A selective search al-
gorithm is subject to the following design considerations:

Capture All Scales. Objects can occur at any scale within the im-
age. Furthermore, some objects have less clear boundaries
then other objects. Therefore, in selective search all object
scales have to be taken into account, as illustrated in Figure
2. This is most naturally achieved by using an hierarchical
algorithm.

Diversification. There is no single optimal strategy to group re-
gions together. As observed earlier in Figure 1, regions may
form an object because of only colour, only texture, or because
parts are enclosed. Furthermore, lighting conditions such as
shading and the colour of the light may influence how regions
form an object. Therefore instead of a single strategy which
works well in most cases, we want to have a diverse set of
strategies to deal with all cases.

Fast to Compute. The goal of selective search is to yield a set of
possible object locations for use in a practical object recogni-
tion framework. The creation of this set should not become a
computational bottleneck, hence our algorithm should be rea-
sonably fast.

3.1 Selective Search by Hierarchical Grouping

We take a hierarchical grouping algorithm to form the basis of our
selective search. Bottom-up grouping is a popular approach to seg-
mentation [6, 13], hence we adapt it for selective search. Because
the process of grouping itself is hierarchical, we can naturally gen-
erate locations at all scales by continuing the grouping process until
the whole image becomes a single region. This satisfies the condi-
tion of capturing all scales.

As regions can yield richer information than pixels, we want to
use region-based features whenever possible. To get a set of small
starting regions which ideally do not span multiple objects, we use

3



11	  
Grishick	  et	  al	  [CVPR’14]	  

Region-‐Based	  CNN	  	  (R-‐CNN)	  



12	  

.	  

.	  

.	  

.	  

.	  

.	  

.	  

.	  

.	  

.	  

.	  

.	  

Re
sh
ap
e	  

Object	  Detec*on	  by	  R-‐CNN	  
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Object	  Detec*on	  by	  R-‐CNN	  

•  Depending	  on	  region	  proposal	  	  
•  Need	  to	  apply	  CNN	  ~2K	  *mes	  per	  image	  	  
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Fast	  R-‐CNN	  
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Bounding	  Box	  Regression	  



Bounding	  Box	  Regression	  
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….	  

Less	  number	  of	  proposals	  	  
compared	  to	  Selec*ve	  Search	  

300	  vs.	  2000	  



Method mAP Sec/im

R-CNN 59.2	   20	  

Fast R-CNN 68.4 2	  

Faster R-CNN 72.1	   0.5

Pascal 2012
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Direct	  Regression	  
No	  Proposal	  

We	  do	  not	  know	  the	  number	  of	  objects	  in	  an	  image	  
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YOLO	  

x,y,w,h,c	   c1,c2,…,cN	  



Method mAP Sec/im

R-CNN 59.2	   20	  

Fast R-CNN 68.4 2	  

Faster R-CNN 72.1	   0.5

YOLO 57.9	   0.02

Pascal 2012



Source	  Code	  

•  Fast	  R-‐CNN	  
– hkps://github.com/mahyarnajibi/fast-‐rcnn-‐torch	  
– hkps://github.com/rbgirshick/fast-‐rcnn	  

•  YOLO	  
– hkps://github.com/pjreddie/darknet/blob/
master/src/yolo.c	  

	  


