### **Object Detection**

Ali Farhadi Mohammad Rastegari CSE 576

# **Object Recognition**



Person

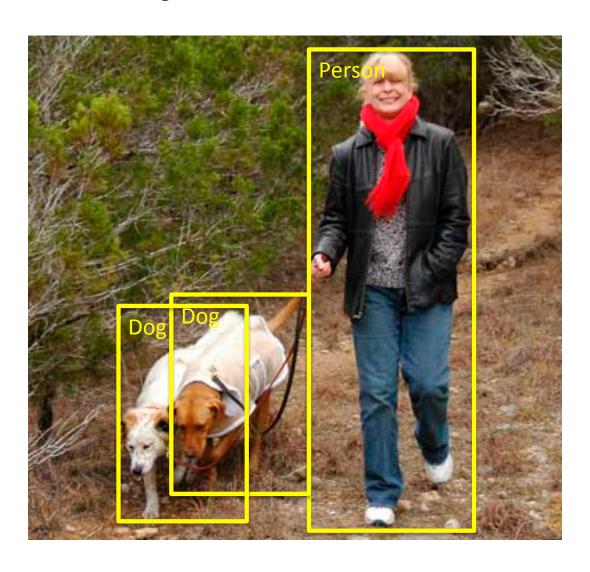


Dog



Chair

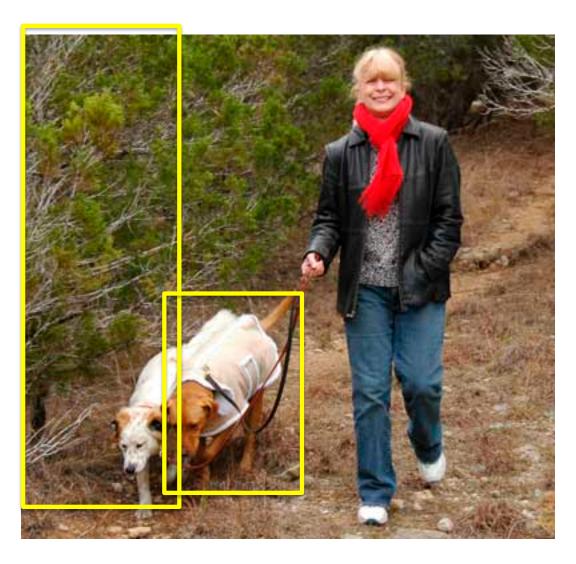
# **Object Detection**



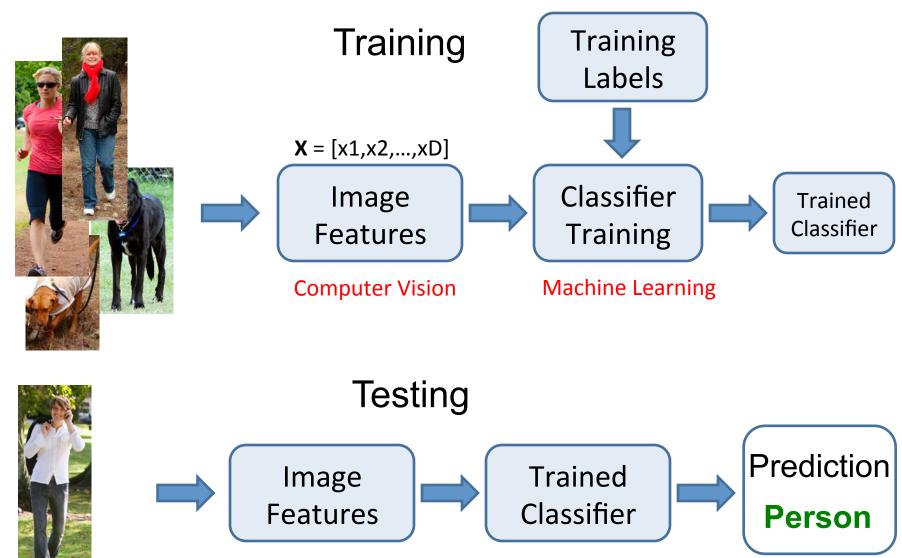
# Sliding Window



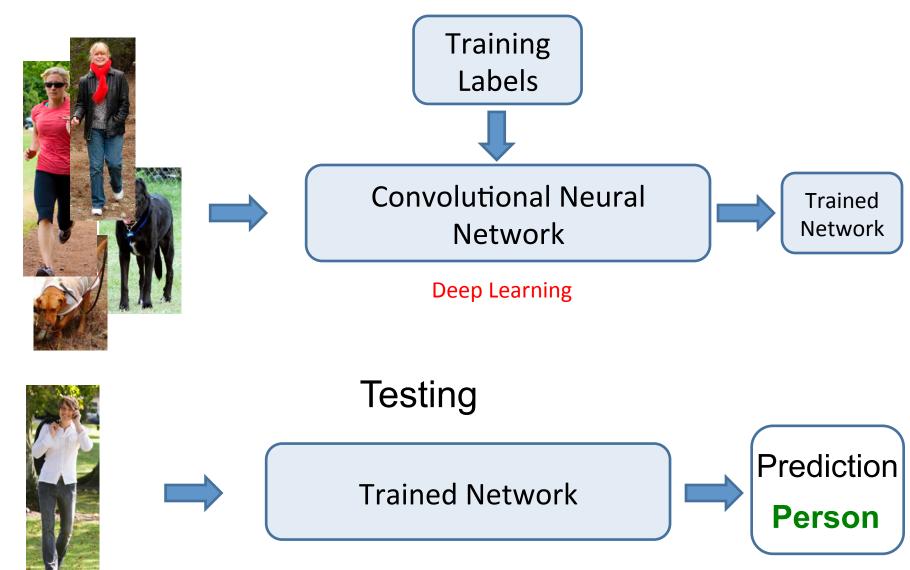
# Sliding Window



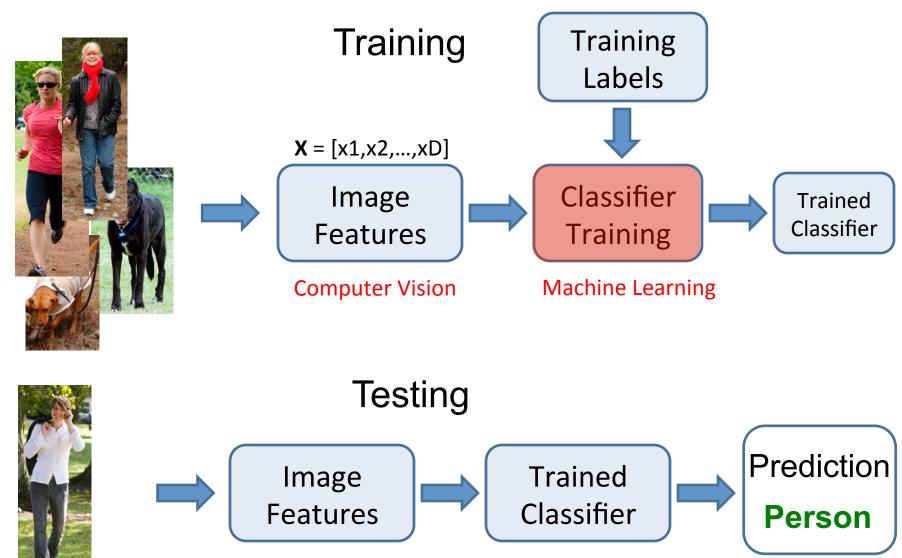
### Image Categorization Pipelines



### **Image Categorization Pipelines**



### Image Categorization Pipelines



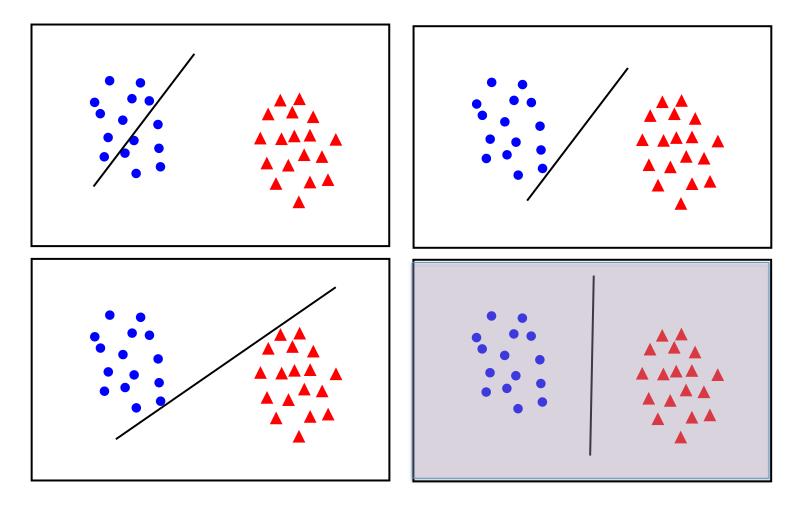
### We have talked about

- Nearest Neighbor
- Naïve Bayes
- Logistic Regression
- Boosting

We saw face detection

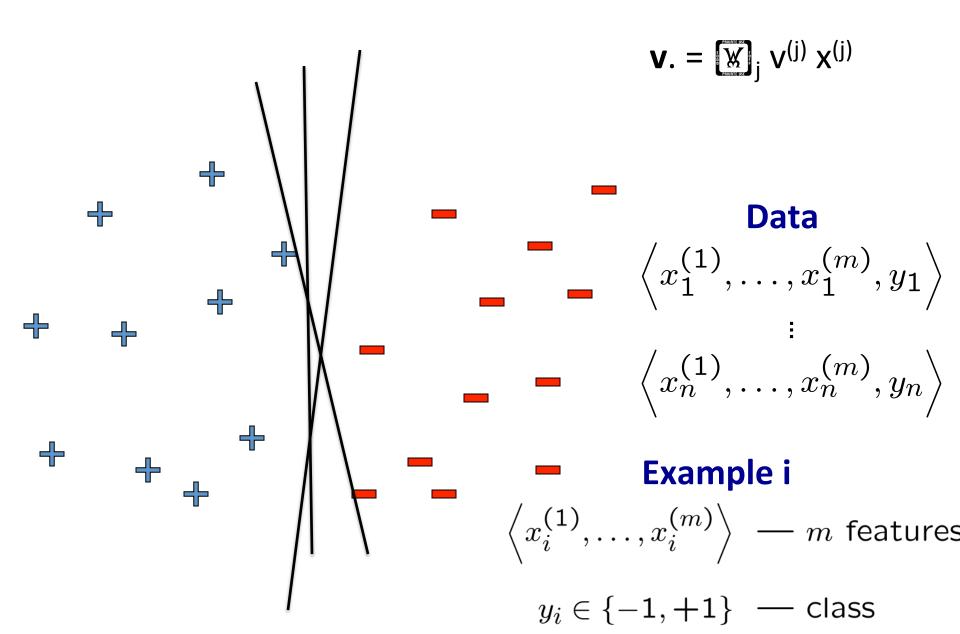
# Support Vector Machines (SVM)

### Which one is the best?

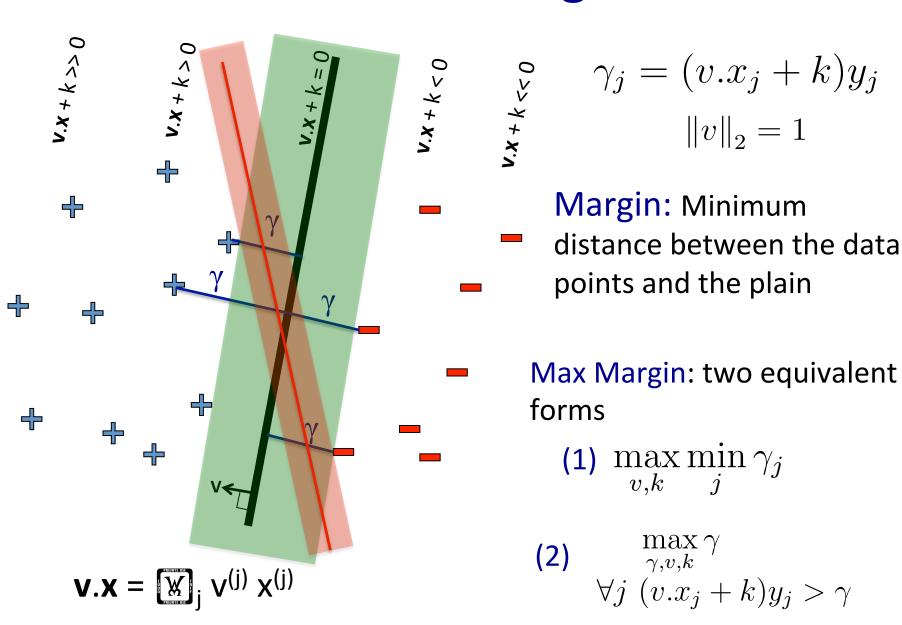


• maximum margin solution: most stable under perturbations of the inputs

### Linear classifiers — How to find the best?



### Max Margin



### Solution

$$\max_{\substack{\gamma,v,k}} \gamma$$

$$\forall j \ (v.x_j + k)y_j > \gamma$$

$$\|v\|_{2} \leq 1$$

Non convex formulation

$$\forall j(v^*.x_j + k^*)y_j > \gamma$$

$$\forall j(2v^*.x_j + 2k^*)y_j > \gamma$$

$$\forall j(10v^*.x_j + 10k^*)y_j > \gamma$$

$$\vdots$$

$$\forall j(100v^*.x_j + 100k^*)y_j > \gamma$$

### Solution

$$\begin{array}{c}
\max_{\gamma,v,k} \gamma \\
\forall j \ (v.x_j + k)y_j > \gamma \longrightarrow \forall j \ (w.x_j + b) > 1 \\
\|v\|_2 = 1 \longrightarrow \gamma = \frac{1}{\|w\|}
\end{array}$$

$$\forall j \ (\frac{v}{\gamma}.x_j + \frac{k}{\gamma})y_j > \frac{\gamma}{\gamma}$$

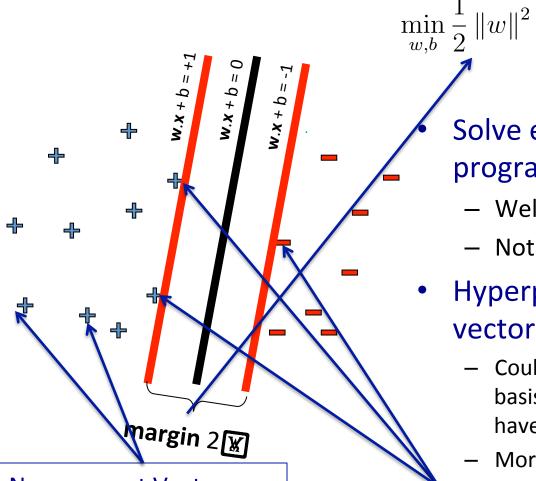
$$w = \frac{v}{\gamma} \quad b = \frac{k}{\gamma}$$

$$\|w\|_2 = \frac{\|v\|_2}{\gamma}$$

$$\min_{w,b} ||w||$$

$$\forall j \ (w.x_j + b)y_j > 1$$

### Support vector machines (SVMs)



 $\min_{w,b} ||w||$  $\forall j \ (w.x_j + b)y_j > 1$ 

Solve efficiently by quadratic programming (QP)

- Well-studied solution algorithms
- Not simple gradient ascent, but close
- Hyperplane defined by support vectors
  - Could use them as a lower-dimension basis to write down line, although we haven't seen how yet
  - More on this later

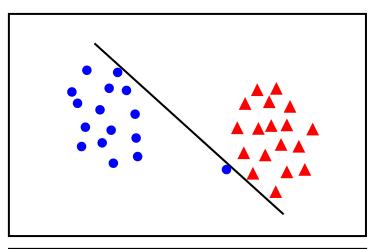
#### Non-support Vectors:

- everything else
- moving them will not change w

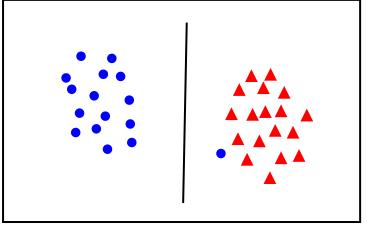
#### **Support Vectors:**

 data points on the canonical lines

### Soft Margin



 the points can be linearly separated but there is a very narrow margin



 but possibly the large margin solution is better, even though one constraint is violated

In general there is a trade off between the margin and the number of mistakes on the training data

### Introducing Slack Variables

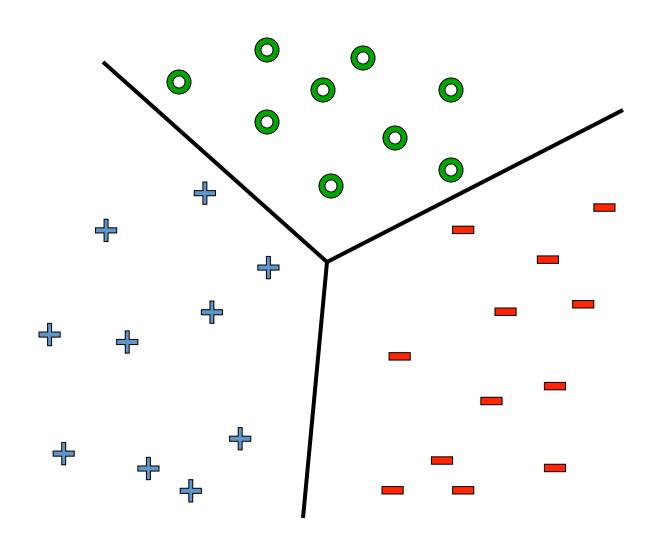
$$\min_{w,b,\xi} ||w|| + C \sum_{j} \xi_{j}$$

$$\forall j \ (w.x_{j} + b)y_{j} > 1 - \xi_{j}$$

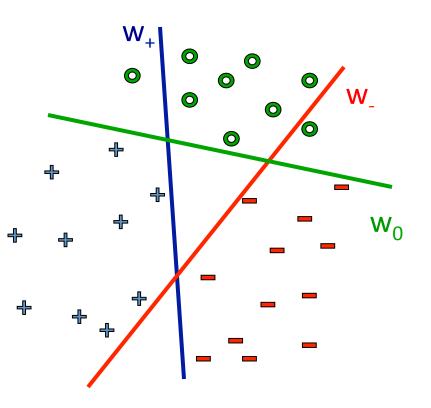
$$\forall j \ \xi_{j} \ge 0$$

- ullet Every constraint can be satisfied if  $\xi_i$  is sufficiently large
- C is a regularization parameter:
  - small C allows constraints to be easily ignored  $\rightarrow$  large margin
  - large C makes constraints hard to ignore  $\rightarrow$  narrow margin
  - $-C=\infty$  enforces all constraints: hard margin
- ullet This is still a quadratic optimization problem and there is a unique minimum. Note, there is only one parameter, C.

# What about multiple classes?



### One against All



#### **Learn 3 classifiers:**

- + vs {0,-}, weights w<sub>+</sub>
- - vs {0,+}, weights w\_
- 0 vs {+,-}, weights w<sub>0</sub>

#### Output for x:

$$y = argmax_i w_i.x$$

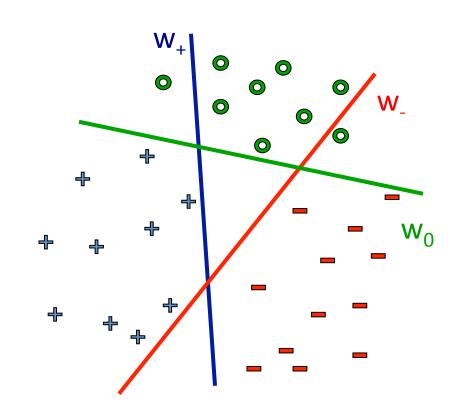
Any other way?

Any problems?

#### Learn 1 classifier: Multiclass SVM

# Simultaneously learn 3 sets of weights:

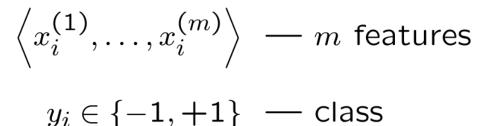
- How do we guarantee the correct labels?
- Need new constraints!

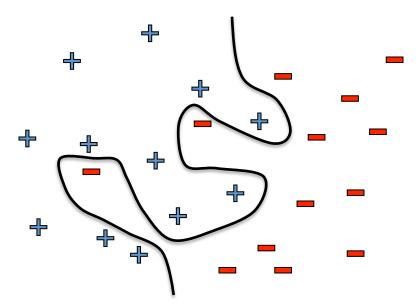


#### For all possible classes:

$$\mathbf{w}^{(y_j)}.\mathbf{x}_j + b^{(y_j)} \ge \mathbf{w}^{(y')}.\mathbf{x}_j + b^{(y')} + 1, \ \forall y' \ne y_j, \ \forall j$$

### What if the data is not linearly separable?





#### **Add More Features!!!**

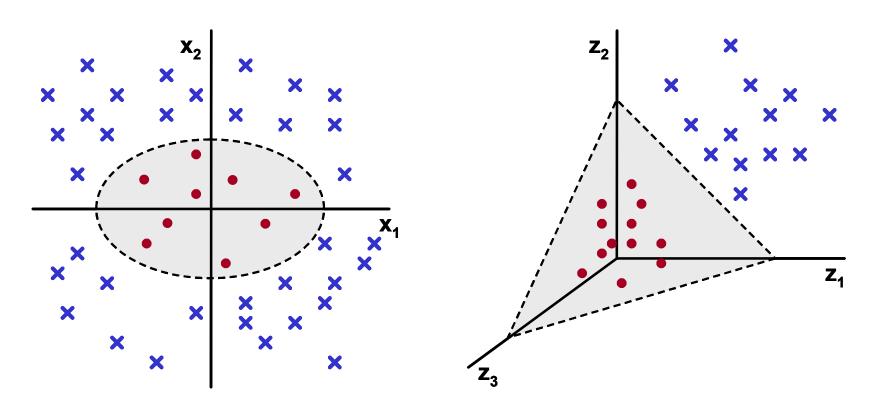
$$\phi(x) = \begin{pmatrix} x^{(1)} \\ \vdots \\ x^{(n)} \\ x^{(1)}x^{(2)} \\ x^{(1)}x^{(3)} \\ \vdots \\ e^{x^{(1)}} \end{pmatrix}$$

# SVM with a polynomial Kernel visualization

Created by: Udi Aharoni

### Non-Linear SVM

$$\psi: R^2 \to R^3 \quad \psi(\mathbf{x}) = (z_i, z_2, z_3) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$



### So What?!!!

Logistic Regression

$$l(w) = \sum_{j} (w\psi(x_j) + b)y_j - \ln(1 + e^{\sum_{j} w\psi(x_j) + b})$$

- No Large Margin
- No Quadratic Programming
- Concave Optimization

# Dual Form (Lagrange Multiplier)

$$\min_{\theta} f(\theta)$$

$$\forall j \ g_j(\theta) \ge 0$$

$$\max_{\alpha:\alpha_j\geq 0} \min_{\theta} \mathcal{L}(\theta,\alpha) = f(\theta) - \left[\sum_j \alpha_j g_j(\theta)\right]$$

$$\min_{w,b} \frac{1}{2} \|w\|^2$$

$$\forall j \ (w.x_j + b) - 1 \ge 0$$

$$\max_{\alpha:\alpha_i \ge 0} \min_{w,b} \mathcal{L}(w,b,\alpha) = \frac{1}{2} \|w\|^2 - \left[ \sum_i \alpha_i(w.x_i + b - 1) \right]$$

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \mathbf{w} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = 0 \implies \left| \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i \right|$$

$$\frac{\partial}{\partial b} \mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_i y_i = 0$$

### **Dual Form**

ullet Plug in the new definition of  ${f w}$  into the Lagrangian and simplify

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} y_i y_j \alpha_i \alpha_j \mathbf{x}_i^T \mathbf{x}_j - b \sum_{i=1}^{n} \alpha_i y_i$$

but  $\sum_{i=1}^{n} \alpha_i y_i = 0$ . Thus

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} y_i y_j \alpha_i \alpha_j \mathbf{x}_i^T \mathbf{x}_j$$

Putting everything together get the dual problem optimization problem

$$\max_{\alpha} \left\{ \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} y_i y_j \alpha_i \alpha_j \mathbf{x}_i^T \mathbf{x}_j \right\}$$
 subject to  $\alpha_i \geq 0$  for  $i = 1, \dots, n$  and  $\sum_{i=1}^{n} \alpha_i y_i = 0$ 

## Implicit Mapping

Recall that the SVM solution depends only on the dot product  $\langle \mathbf{x}_i, \mathbf{x}_j \rangle$  between training examples.

Non-linear separable: 
$$K(\mathbf{x}_i, \mathbf{x}_j) = \langle \psi(\mathbf{x}_i), \psi(\mathbf{x}_j) \rangle$$

$$\psi(\mathbf{x}) = \begin{pmatrix} x_1 x_1 \\ x_1 x_2 \\ x_1 x_3 \\ x_2 x_1 \\ x_2 x_2 \\ x_2 x_3 \\ x_3 x_1 \\ x_3 x_2 \\ x_3 x_3 \end{pmatrix} K(\mathbf{x}, \mathbf{z}) = \psi(\mathbf{x})^T \psi(\mathbf{z}) = \sum_{i=1}^d \sum_{j=1}^d (x_i x_j)(z_i z_j)$$

$$= \left(\sum_{i=1}^d x_i z_i\right) \left(\sum_{j=1}^d x_j z_j\right) = (\mathbf{x}^T \mathbf{z})^2$$

$$K(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z})^2$$

$$Kernel Function$$

### Popular Kernel Functions

#### Polynomial kernels

$$K(\mathbf{x}, \mathbf{z}) = \left(\mathbf{x}^T \mathbf{z} + 1\right)^p$$

The degree of the polynomial is a user-specified parameter.

#### Radial basis function kernels

$$K(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{z}\|^2}{2\sigma^2}\right) = \sum_{k=0}^{\infty} \frac{1}{k!} \left(-\frac{\|\mathbf{x} - \mathbf{z}^2\|}{2\sigma^2}\right)^k$$

The width  $\sigma$  is a user-specified parameter. This kernel corresponds to an infinite dimensional feature mapping  $\psi$ .

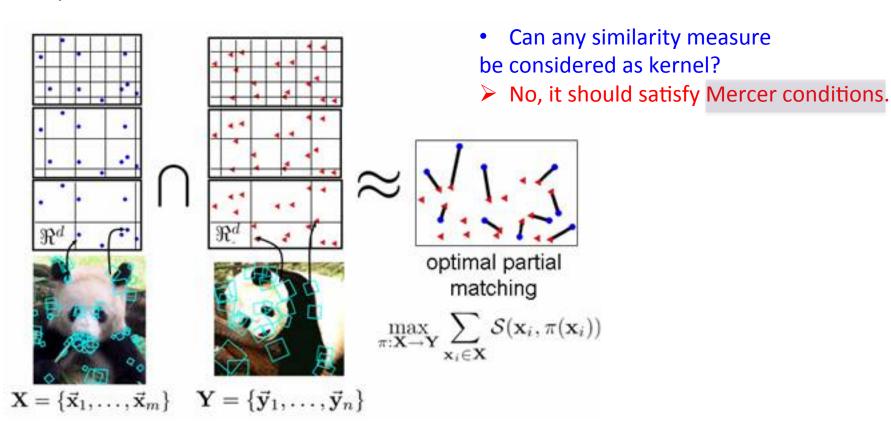
#### Sigmoid Kernel

$$K(\mathbf{x},\mathbf{z}) = anh\left(eta_0\mathbf{x}^T\mathbf{z} + eta_1
ight)$$

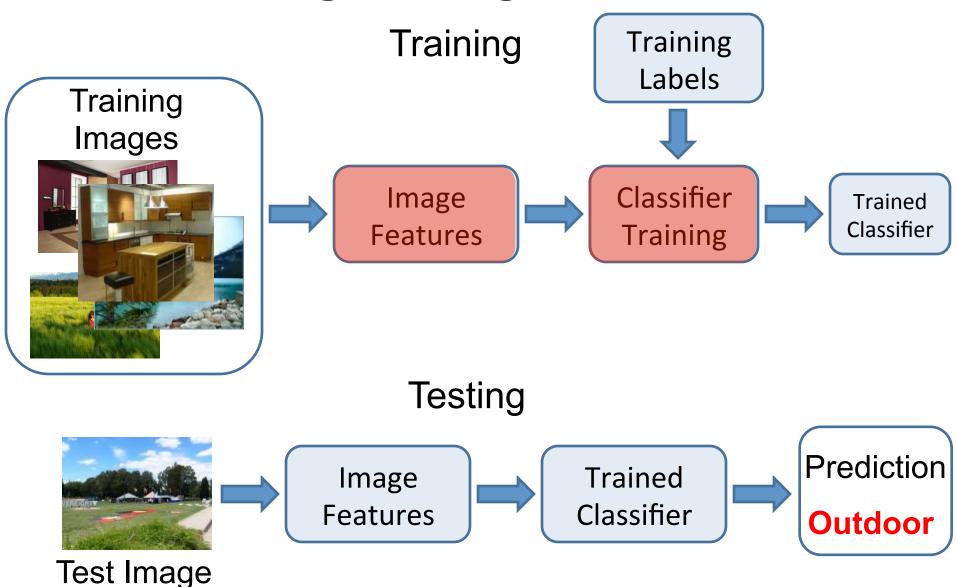
Active Research!!

### Visual Kernels

Pyramid Match Kernel [Graumen et al. 03]



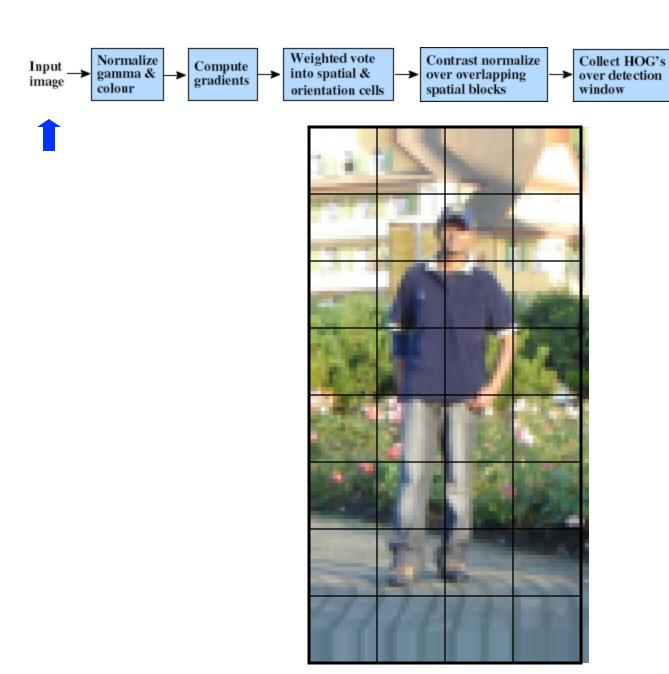
### **Image Categorization**



### Example: Dalal-Triggs pedestrian



- 1. Extract fixed-sized (64x128 pixel) window at each position and scale
- 2. Compute HOG (histogram of gradient) features within each window
- 3. Score the window with a linear SVM classifier
- 4. Perform non-maxima suppression to remove overlapping detections with lower scores

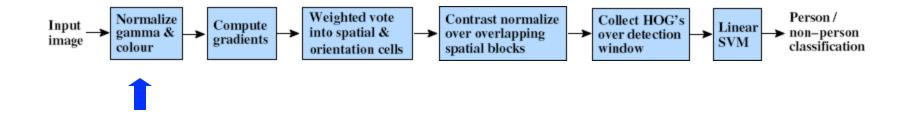


Person/

 non-person classification

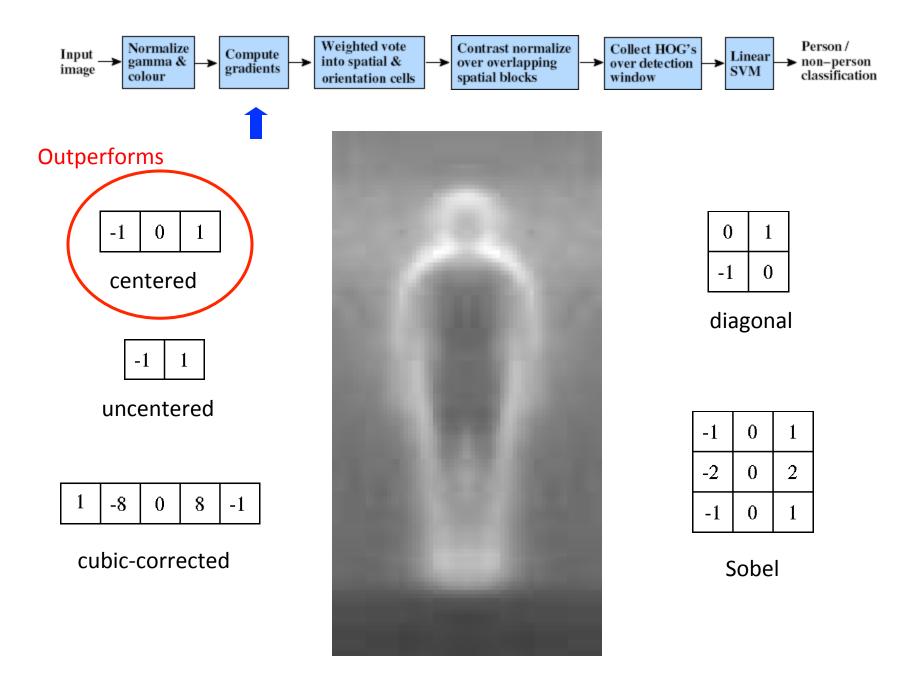
Linear

SVM



#### Tested with

- RGBSlightly better performance vs. grayscale
- Grayscale

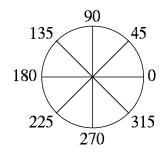




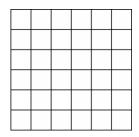


Histogram of gradient orientations

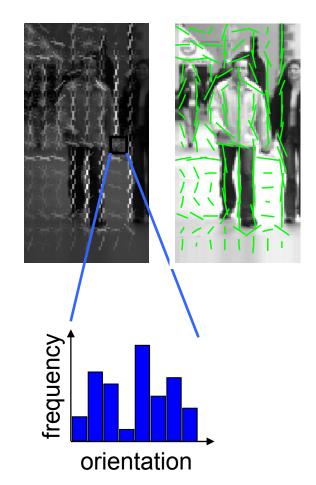
Orientation: 9 bins (for unsigned angles)

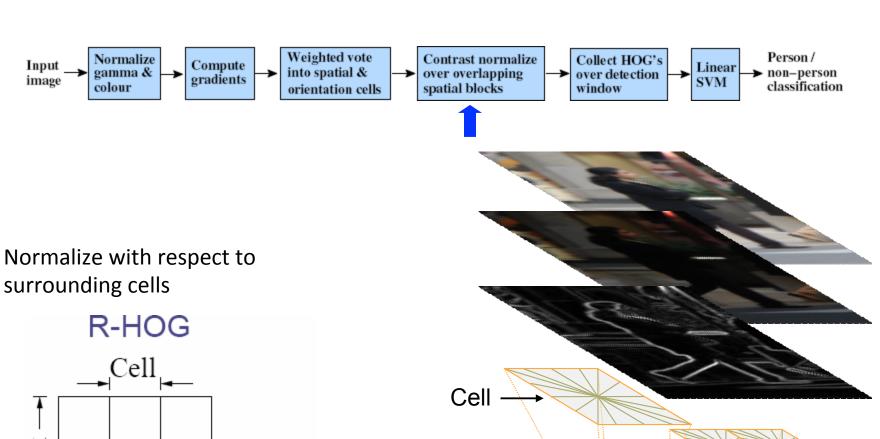


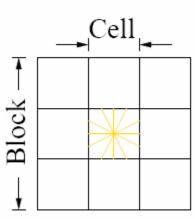
Histograms in 8x8 pixel cells

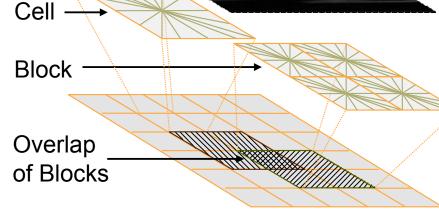


Votes weighted by magnitude

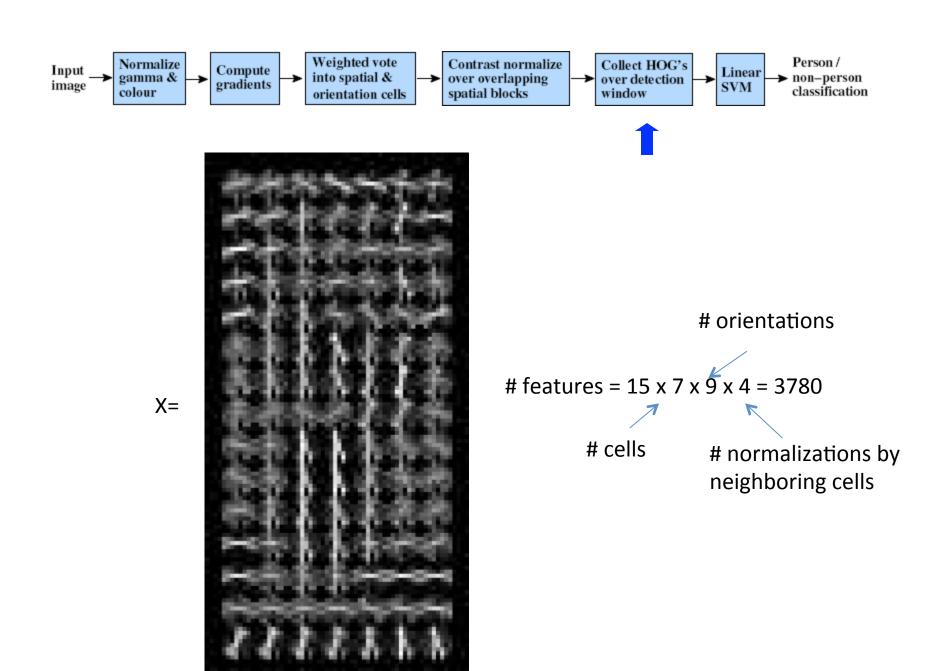








$$L2 - norm : v \longrightarrow v/\sqrt{||v||_2^2 + \epsilon^2}$$



# Training set







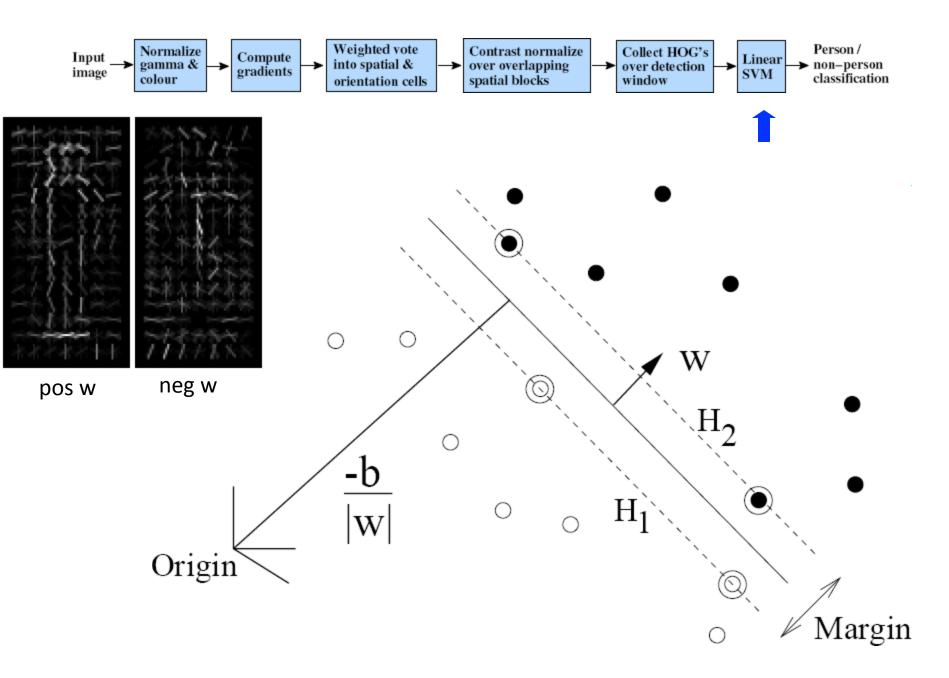


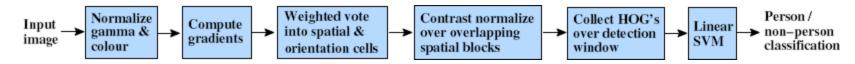




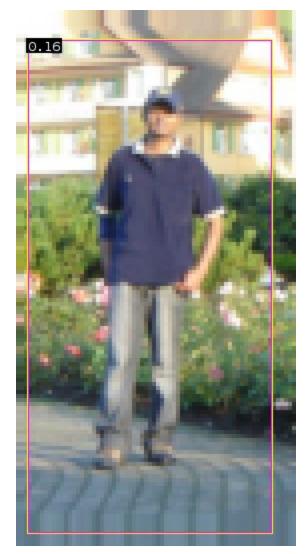












$$0.16 = w^T x - b$$

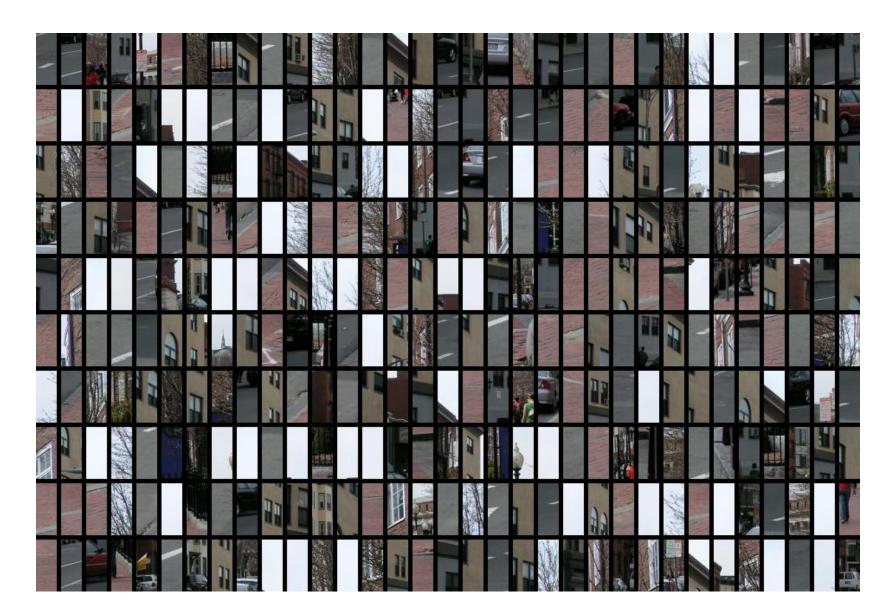
$$sign(0.16) = 1$$

# Detection examples





### Each window is separately classified



# Each window is separately classified



# Non-Max Suppression

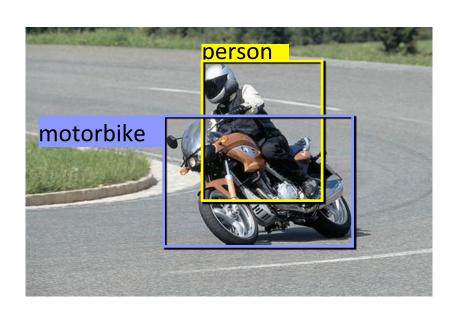


### Problem formulation

{ airplane, bird, motorbike, person, sofa }



Input



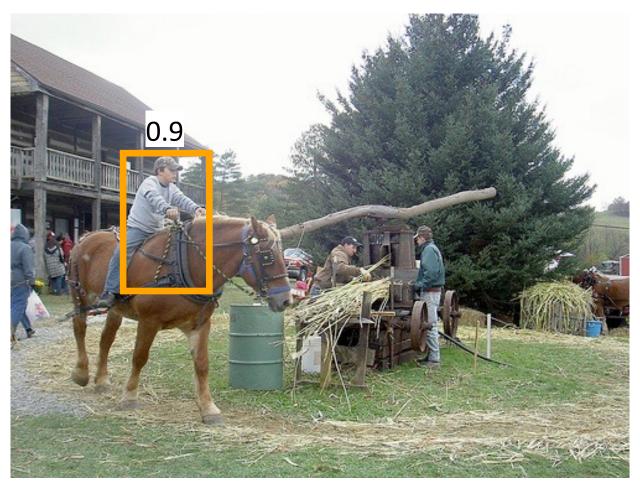
Desired output

### Evaluating a detector



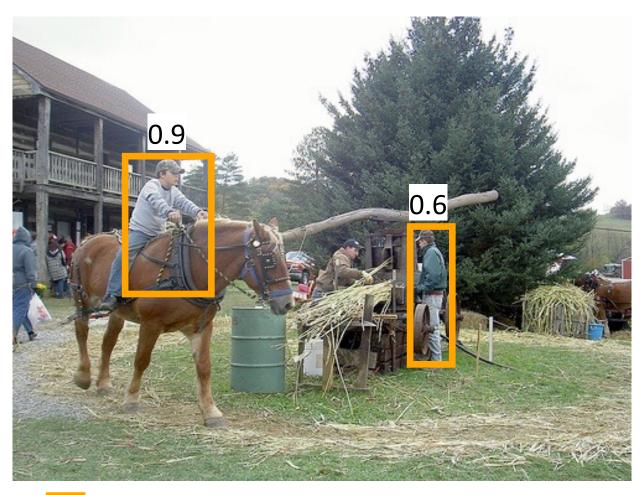
Test image (previously unseen)

### First detection ...



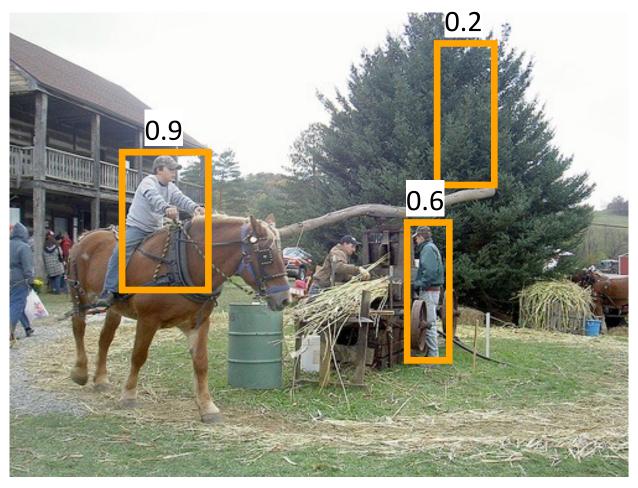
person' detector predictions

### Second detection ...



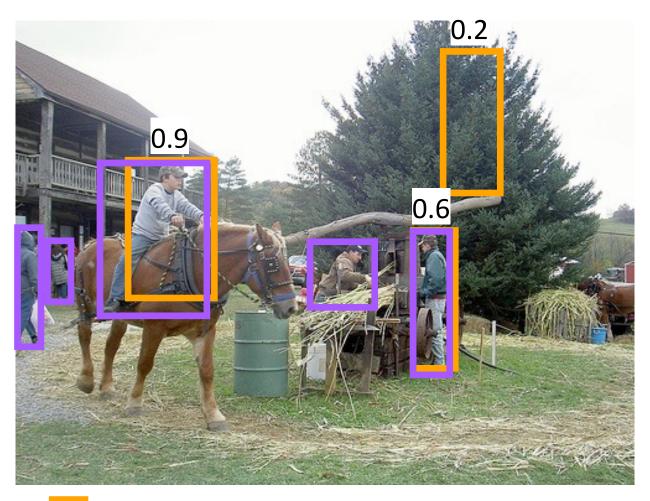
person' detector predictions

### Third detection ...



ferson' detector predictions

### Compare to ground truth



- 'person' detector predictions
- ground truth 'person' boxes

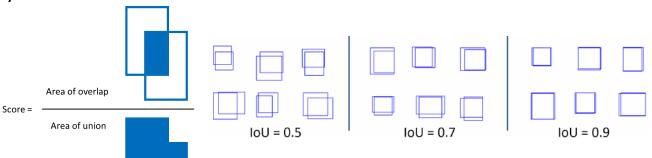
### Sort by confidence



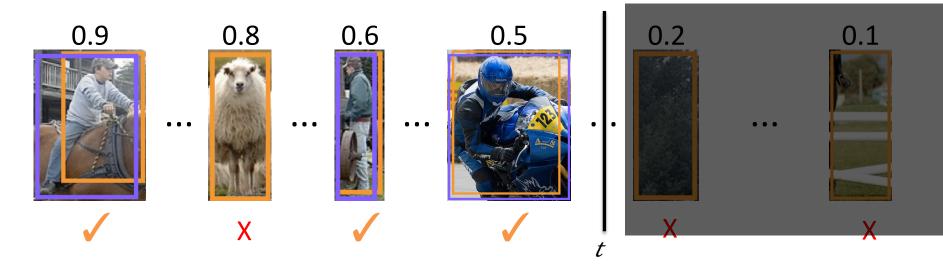
true false
positive positive
(IOU>=0.5) (IOU<0.5)

Intersection Over Union (IOU)





### **Evaluation** metric

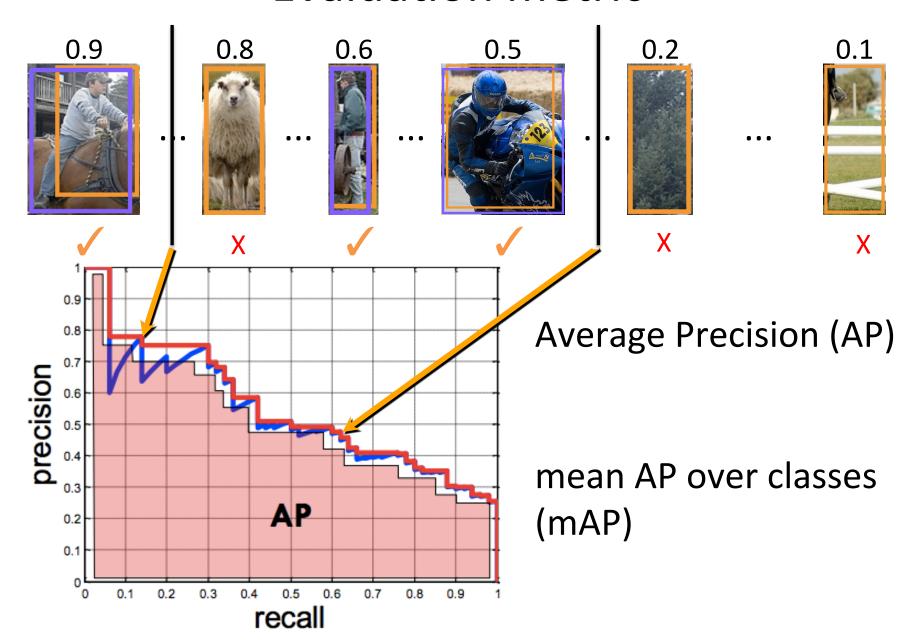


precision@t=#true positives@t/#true positives@t+#false positives@t



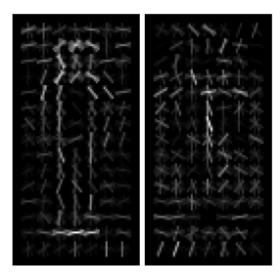
recall@t=#true positives@t/#ground truth objects

### **Evaluation** metric



### What about this one?





Can the model we trained for pedestrians detect the person in this image?

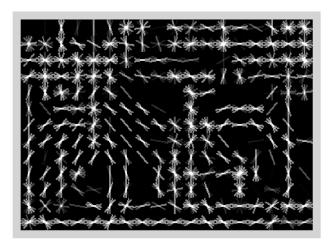
# Specifying an object model

#### Statistical Template in Bounding Box

- Object is some (x,y,w,h) in image
- Features defined wrt bounding box coordinates



**Image** 



**Template Visualization** 







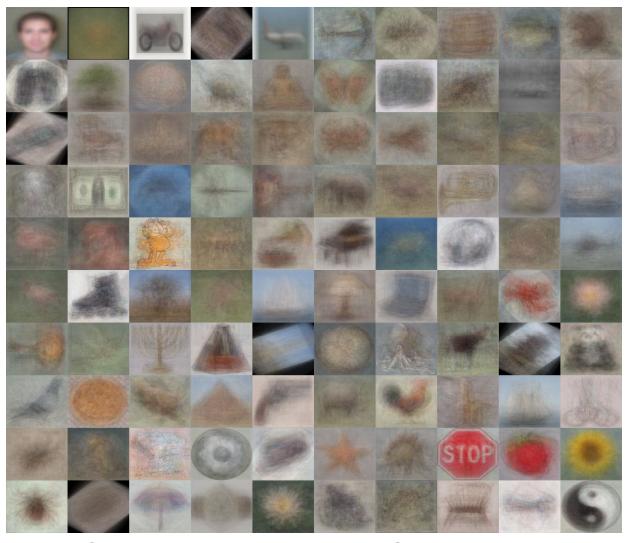






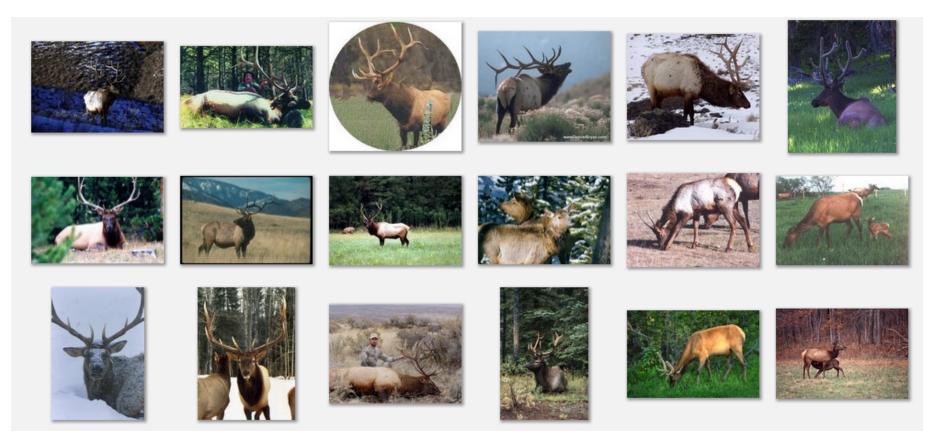


# When do statistical templates make sense?



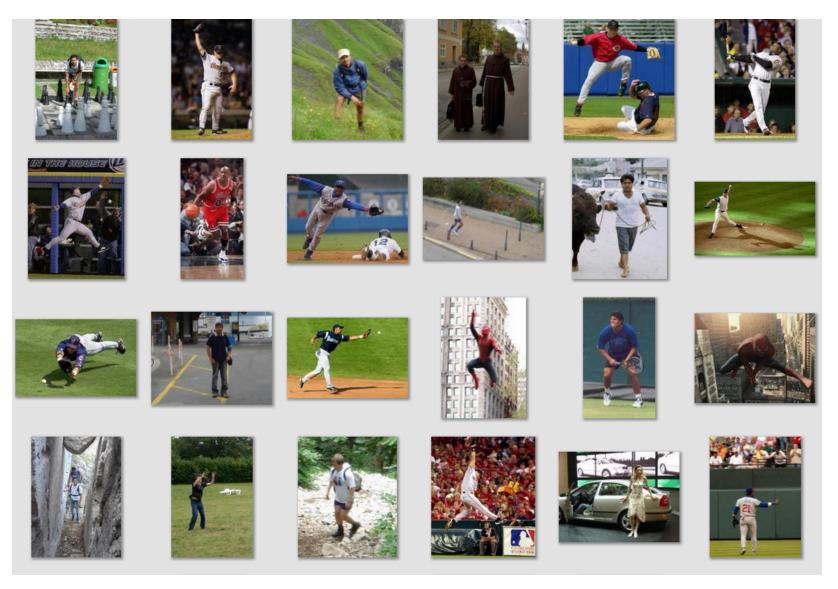
Caltech 101 Average Object Images

# Deformable objects



Images from Caltech-256

# Deformable objects



Images from D. Ramanan's dataset

### Parts-based Models

Define objects by collection of parts modeled by

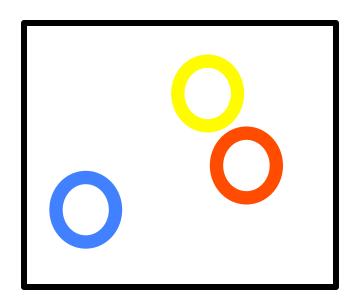
- 1. Appearance
- 2. Spatial configuration



Slide credit: Rob Fergus

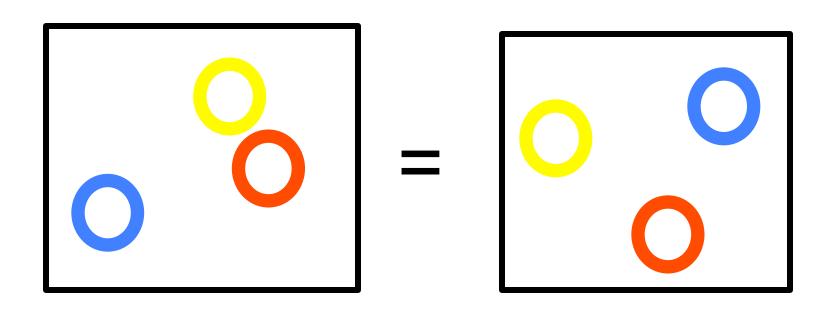
# How to model spatial relations?

• One extreme: fixed template

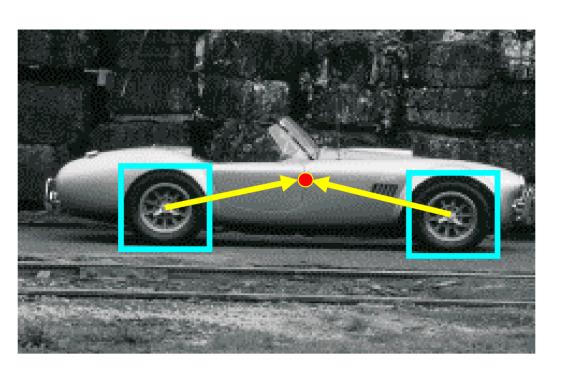


### How to model spatial relations?

Another extreme: bag of words



# ISM:Implicit Shape Model for Detection



training image



visual codeword with displacement vectors

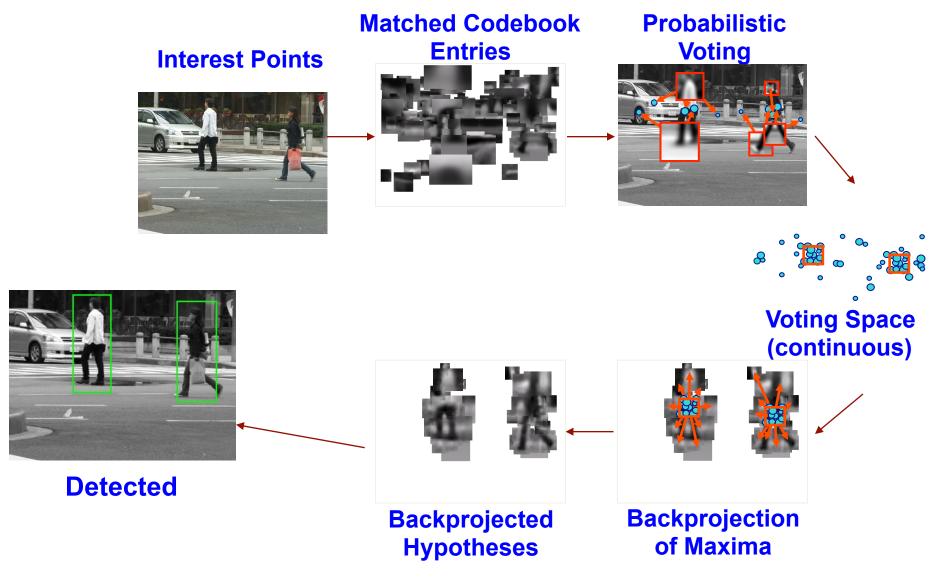
### ISM: Implicit Shape Model

### Training overview

- Start with bounding boxes and (ideally) segmentations of objects
- Extract local features (e.g., patches or SIFT) at interest points on objects
- Cluster features to create codebook
- Record relative bounding box and segmentation for each codeword



### Implicit Shape Model for Detection



Liebe and Schiele, 2003, 2005

# Example: Results on Cows

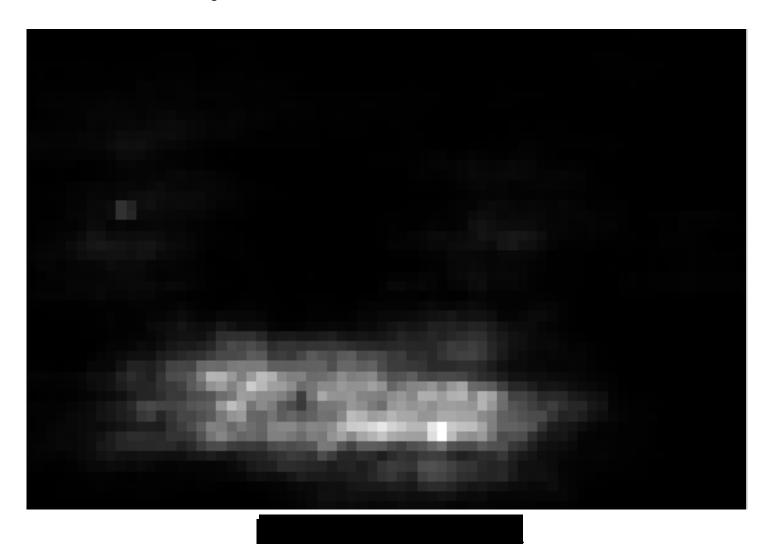


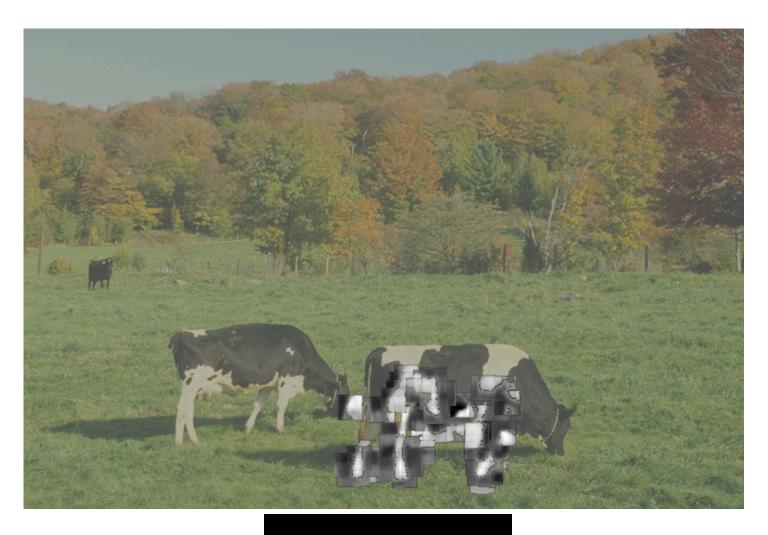
# Example: Results on Cows



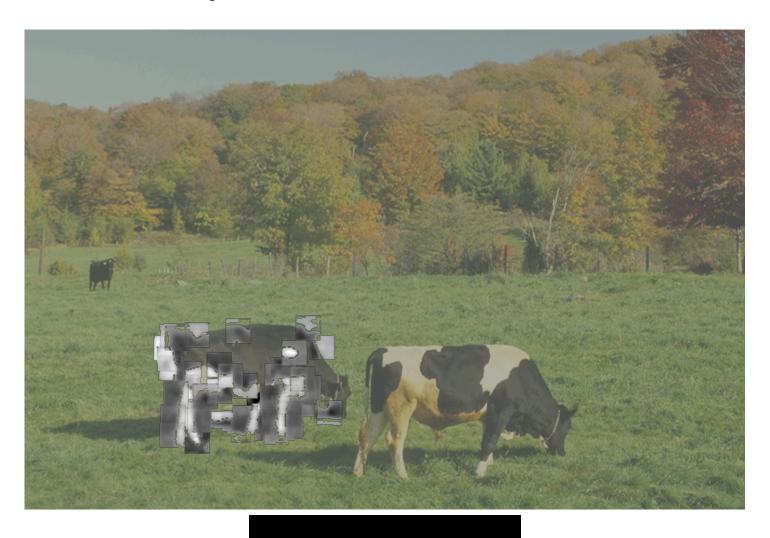
# Example: Results on Cows





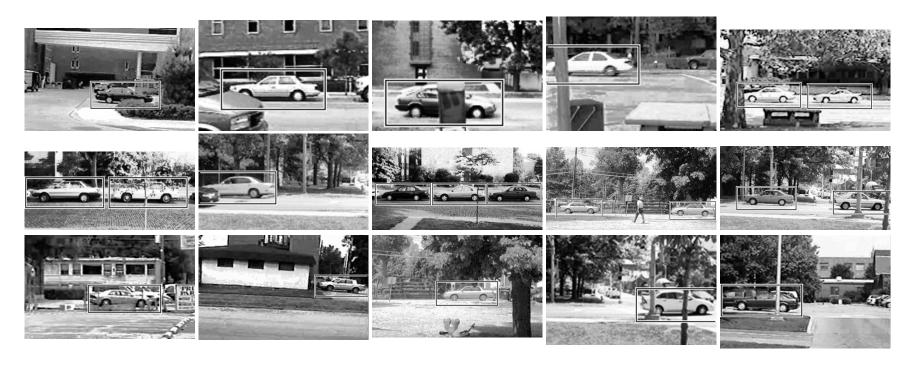






### ISM: Detection Results

- Qualitative Performance
  - Robust to clutter, occlusion, noise, low contrast

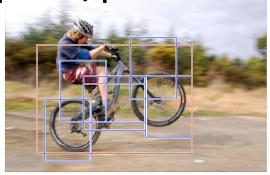


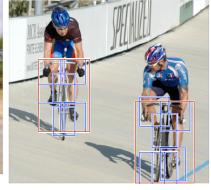
## **Explicit Models**

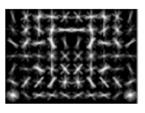
Hybrid template/parts model

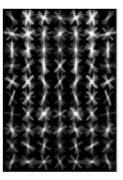
**Detections** 

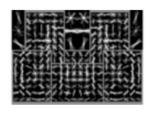
**Template Visualization** 



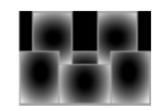


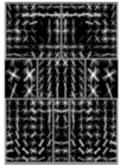


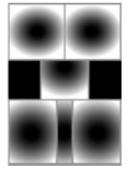










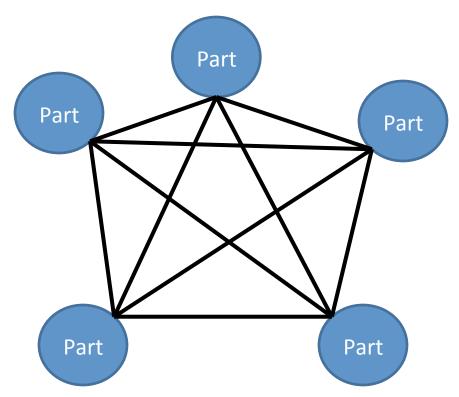


root filters coarse resolution

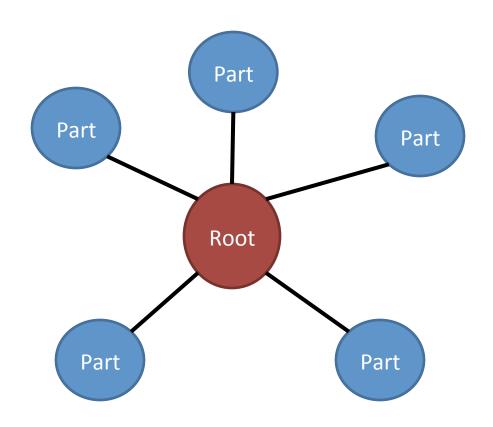
part filters finer resolution

deformation models

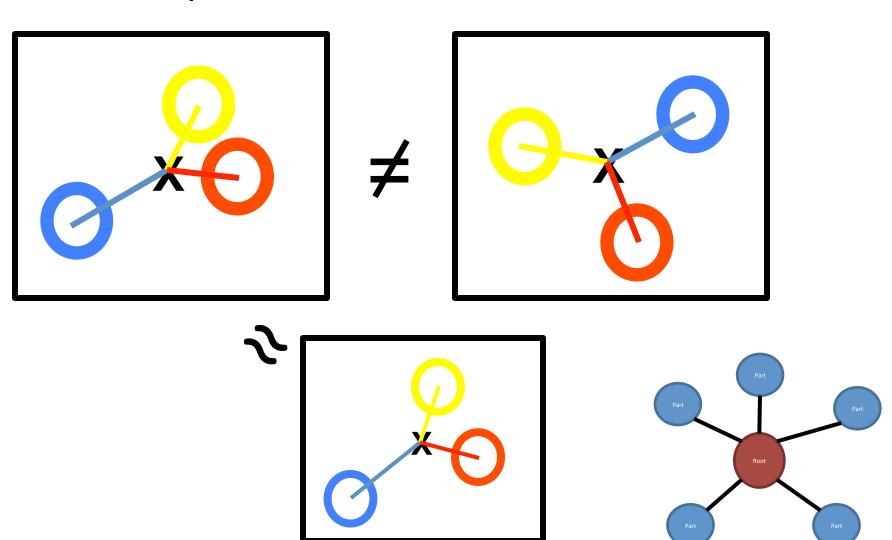
- Explicit Models
- Too expensive



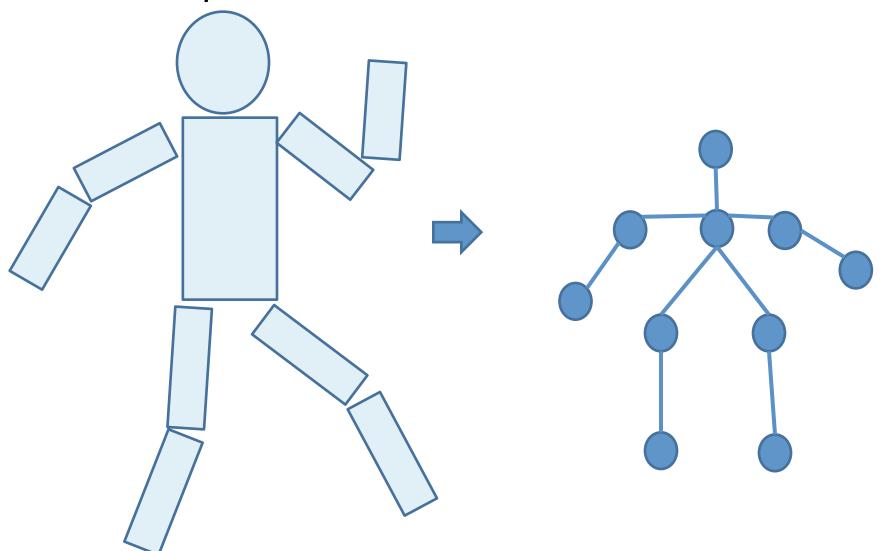
Star-shaped model



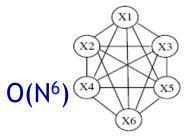
Star-shaped model



Tree-shaped model

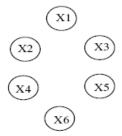


#### Many others...



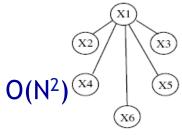
a) Constellation

Fergus et al. '03 Fei-Fei et al. '03



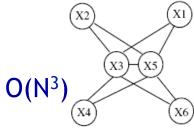
e) Bag of features

Csurka '04 Vasconcelos '00



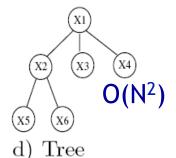
b) Star shape

Leibe et al. '04, '08 Crandall et al. '05 Fergus et al. '05

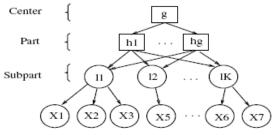


c) k-fan (k = 2)

Crandall et al. '05

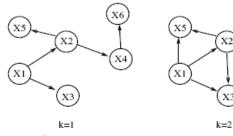


Felzenszwalb & Huttenlocher '05



f) Hierarchy

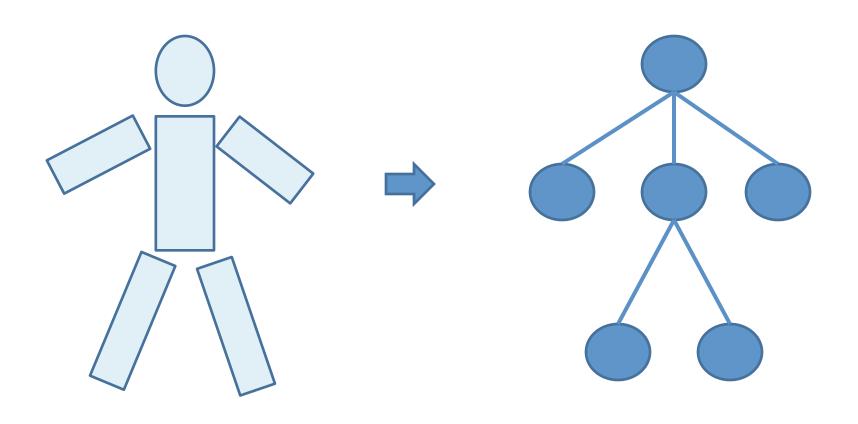
Bouchard & Triggs '05



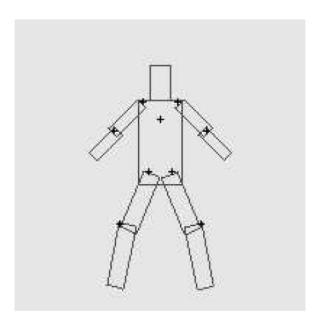
g) Sparse flexible model

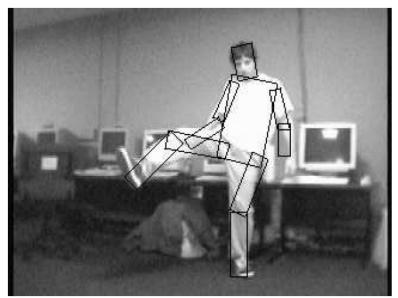
Carneiro & Lowe '06

# Tree-shaped model

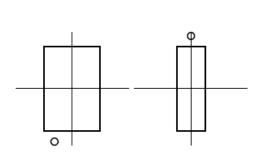


## Pictorial Structures Model

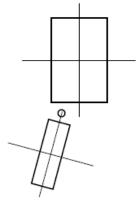




Part = oriented rectangle

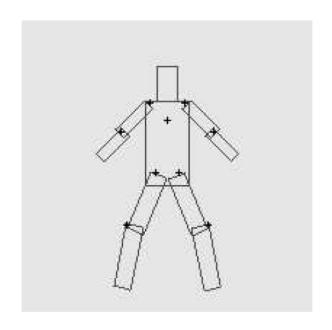


Spatial model = relative size/orientation



Felzenszwalb and Huttenlocher 2005

## Pictorial Structures Model



$$P(L|I,\theta) \propto \left(\prod_{i=1}^n p(I|l_i,u_i) \prod_{(v_i,v_j) \in E} p(l_i,l_j|c_{ij})\right)$$
 Appearance likelihood Geometry likelihood

## Modeling the Appearance

- Any appearance model could be used
  - HOG Templates, etc.
  - Here: rectangles fit to background subtracted binary map
- Can train appearance models independently (easy, not as good) or jointly (more complicated but better)

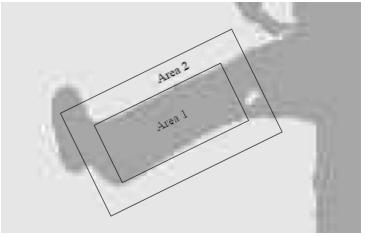
$$P(L|I,\theta) \propto \left(\prod_{i=1}^n p(I|l_i,u_i) \prod_{(v_i,v_j) \in E} p(l_i,l_j|c_{ij})\right)$$
 Appearance likelihood Geometry likelihood

## Part representation

Background subtraction







## Pictorial structures model

Optimization is tricky but can be efficient

$$L^* = \arg\min_{L} \left( \sum_{i=1}^{n} m_i(l_i) + \sum_{(v_i, v_j) \in E} d_{ij}(l_i, l_j) \right)$$

For each l<sub>1</sub>, find best l<sub>2</sub>:

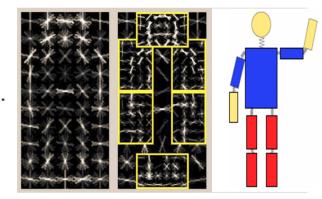
Best<sub>2</sub>(
$$l_1$$
) = min  $m_2(l_2) + d_{12}(l_1, l_2)$ 

- Remove v<sub>2</sub>, and repeat with smaller tree, until only a single part
- For k parts, n locations per part, this has complexity of O(kn²), but can be solved in ~O(nk) using generalized distance transform

## **Pictorial Structures**

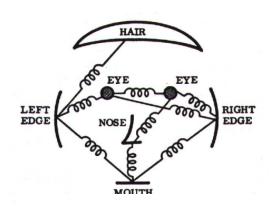
- Model is represented by a graph G = (V, E).
  - $-V = \{v_1, \ldots, v_n\}$  are the parts.
  - $-(v_i,v_j) \in E$  indicates a connection between parts.
- $m_i(l_i)$  is the cost of placing part i at location  $l_i$ .
- $d_{ij}(l_i, l_j)$  is a deformation cost.
- ullet Optimal location for object is given by  $L^*=(l_1^*,\ldots,l_n^*)$ ,

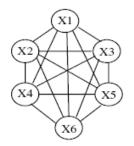
$$L^* = \underset{L}{\operatorname{argmin}} \left( \sum_{i=1}^n m_i(l_i) + \sum_{(v_i, v_j) \in E} d_{ij}(l_i, l_j) \right)$$



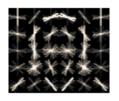
$$L^* = \underset{L}{\operatorname{argmin}} \left( \sum_{i=1}^n m_i(l_i) + \sum_{(v_i, v_j) \in E} d_{ij}(l_i, l_j) \right)$$

• n parts and h locations gives  $h^n$  configurations.

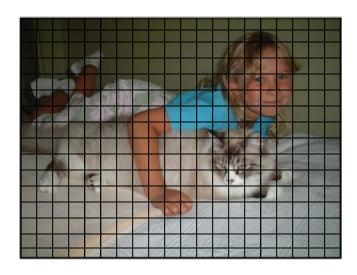




a) Constellation [13]



head filter



Complexity O(h<sup>n</sup>)

h: number of possible part placements

n: number of parts

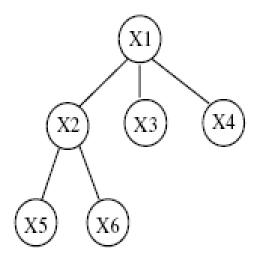
92

#### Efficient minimization

$$L^* = \underset{L}{\operatorname{argmin}} \left( \sum_{i=1}^n m_i(l_i) + \sum_{(v_i, v_j) \in E} d_{ij}(l_i, l_j) \right)$$

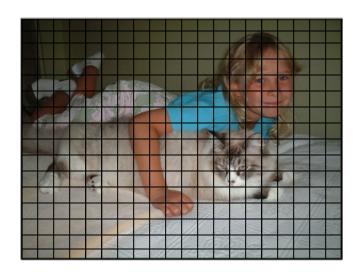
- n parts and h locations gives  $h^n$  configurations.
- If graph is a tree we can use dynamic programming.
  - $-O(nh^2)$ , much better but still slow.







head filter



Complexity O(nh²)

#### Efficient minimization

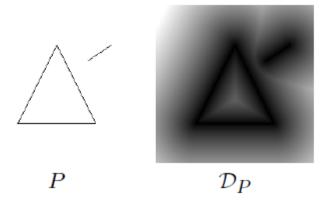
$$L^* = \underset{L}{\operatorname{argmin}} \left( \sum_{i=1}^n m_i(l_i) + \sum_{(v_i, v_j) \in E} d_{ij}(l_i, l_j) \right)$$

- n parts and h locations gives  $h^n$  configurations.
- If graph is a tree we can use dynamic programming.
  - $-O(nh^2)$ , much better but still slow.
- If  $d_{ij}(l_i, l_j) = ||T_{ij}(l_i) T_{ji}(l_j)||^2$  can use DT.
  - -O(nh), as good as matching each part separately!!

#### **Distance transform**

Given a set of points on a grid  $P \subseteq \mathcal{G}$ , the quadratic distance transform of P is,

$$\mathcal{D}_P(q) = \min_{p \in P} ||q - p||^2$$



#### Generalized distance transform

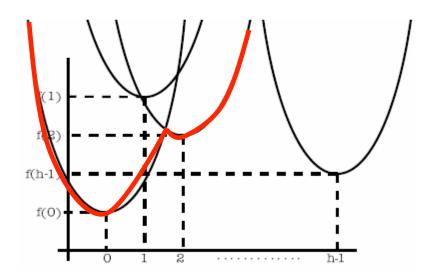
Given a function  $f: \mathcal{G} \to \mathbb{R}$ ,

$$\mathcal{D}_f(q) = \min_{p \in \mathcal{G}} \left( ||q - p||^2 + f(p) \right)$$

- for each location q, find nearby location p with f(p) small.

1D case: 
$$\mathcal{D}_f(q) = \min_{p \in \mathcal{G}} \left( (q - p)^2 + f(p) \right)$$

For each p,  $\mathcal{D}_f(q)$  is below the parabola rooted at (p, f(p)).



There is a simple geometric algorithm that computes  $\mathcal{D}_f(p)$  in O(h) time for the 1D case.

- similar to Graham's scan convex hull algorithm.
- about 20 lines of C code.

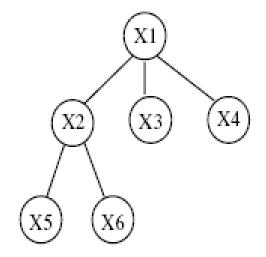
The 2D case is "separable", it can be solved by sequential 1D transformations along rows and columns of the grid.

See **Distance Transforms of Sampled Functions**, Felzenszwalb and Huttenlocher.

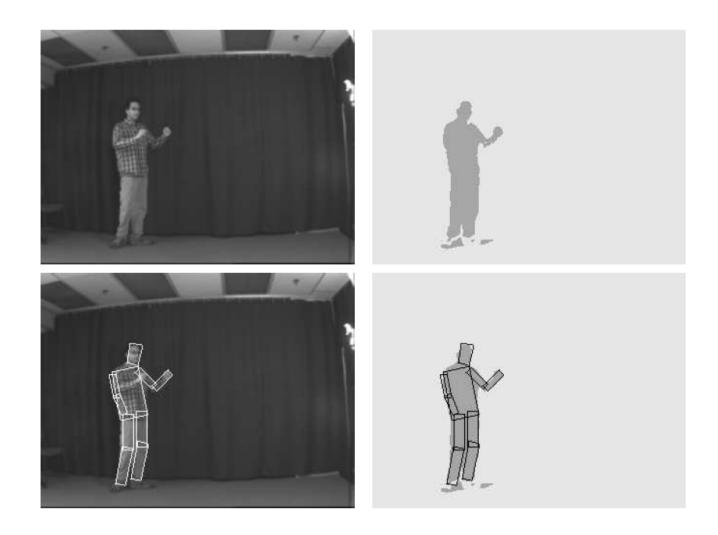
## Pictorial Structures: Summary

$$L^* = \underset{L}{\operatorname{argmin}} \left( \sum_{i=1}^n m_i(l_i) + \sum_{(v_i, v_j) \in E} d_{ij}(l_i, l_j) \right)$$

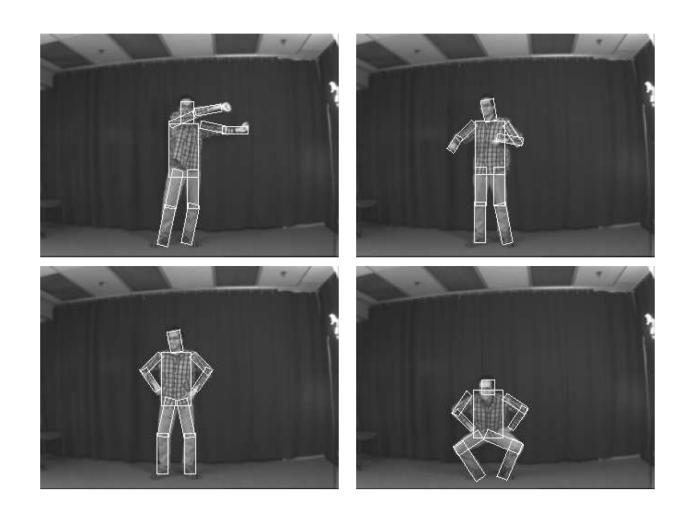
$$d_{ij}(l_i, l_j) = ||T_{ij}(l_i) - T_{ji}(l_j)||^2$$



# Results for person matching



## Results for person matching



## Enhanced pictorial structures

EICHNER, FERRARI: BETTER APPEARANCE MODELS FOR PICTORIAL STRUCTURES

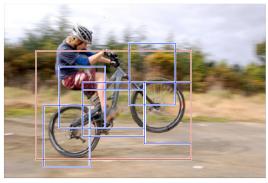


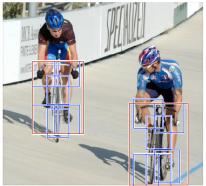
### Deformable Latent Parts Model

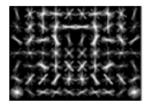
#### Useful parts discovered during training

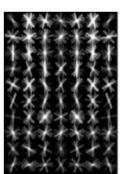
**Detections** 

Template Visualization



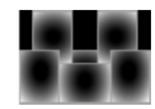


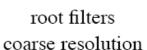




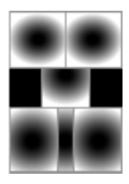








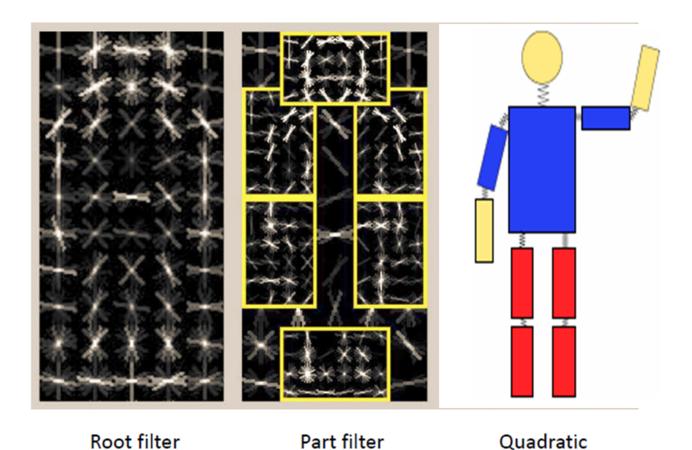
part filters finer resolution



deformation models

Felzenszwalb et al. 2008

#### Deformable Part Models

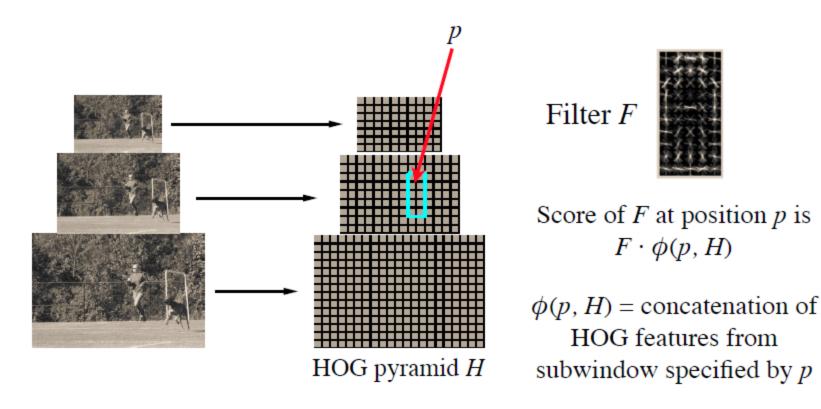


Score =  $F_0 \cdot \Phi(p_0, H) + \Sigma F_i \cdot \Phi(p_i, H) - \Sigma d_i \cdot \Phi_d(x, y)$ 

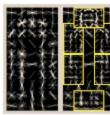
$$\left(\sum_{i=1}^{n} m_{i}(l_{i}) + \sum_{(v_{i},v_{j})\in E} d_{ij}(l_{i},l_{j})\right)$$

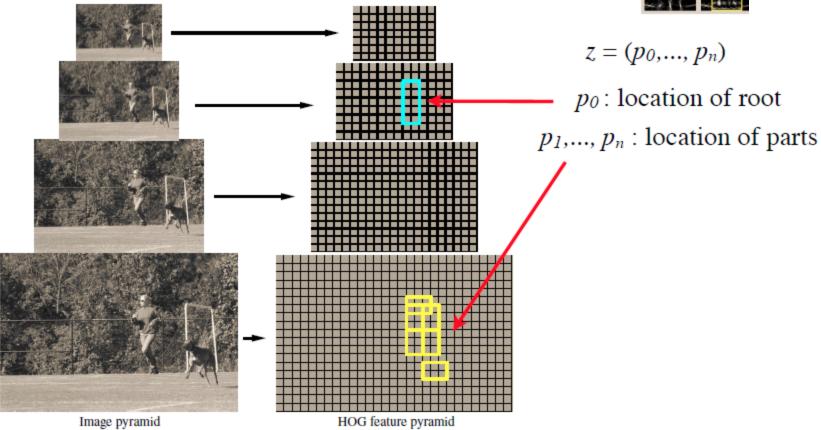
#### **HOG Filters**

- Array of weights for features in subwindow of HOG pyramid
- Score is dot product of filter and feature vector



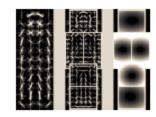
### Object hypothesis

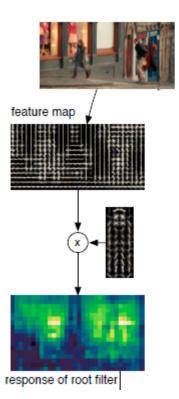


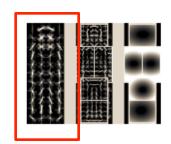


Multiscale model captures features at two-resolutions

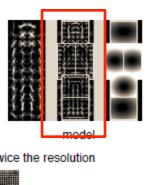




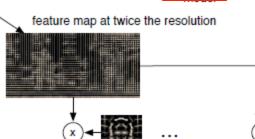




- -

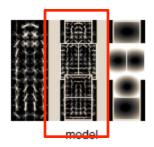




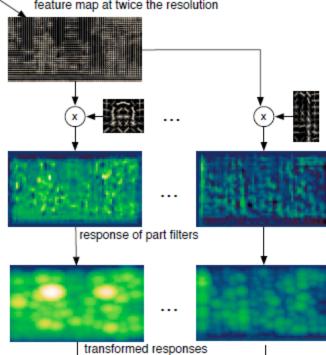


response of part filters

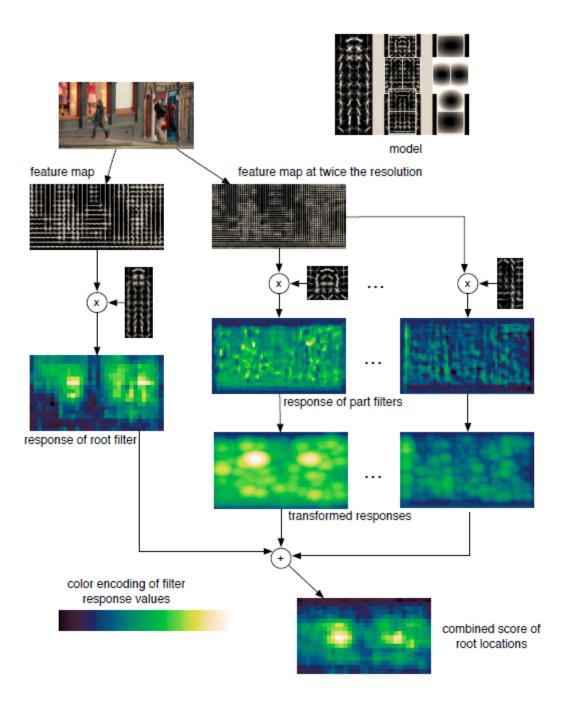




feature map at twice the resolution

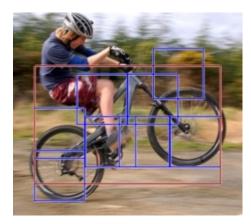


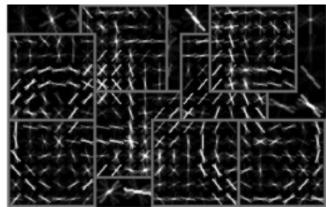
$$\left(\sum_{i=1}^{n} m_{i}(l_{i}) + \sum_{(v_{i},v_{j})\in E} d_{ij}(l_{i},l_{j})\right)$$



# State-of-the-art Detector: Deformable Parts Model (DPM)

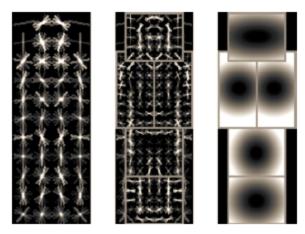






- 1. Strong low-level features based on HOG
- 2. Efficient matching algorithms for deformable part-based models (pictorial structures)
- Discriminative learning with latent variables (latent SVM)

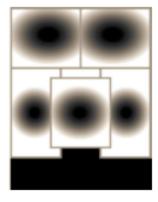
#### Person model





root filters part filters deformation coarse resolution finer resolution

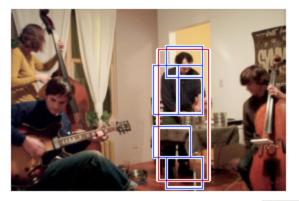




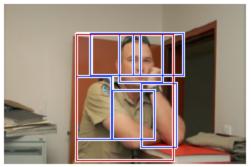
models

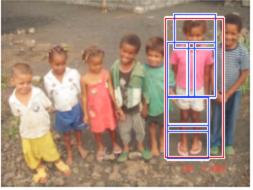
#### Person detections

high scoring true positives

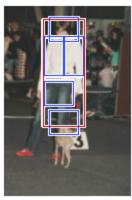






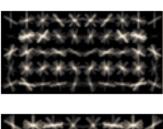


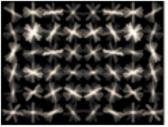
high scoring false positives (not enough overlap)





## Car



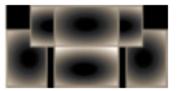


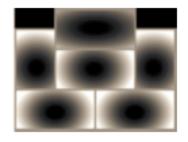
root filters coarse resolution





part filters finer resolution

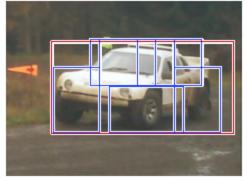


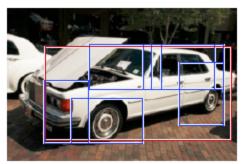


deformation models

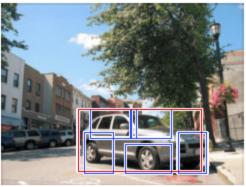
#### Car detections

high scoring true positives

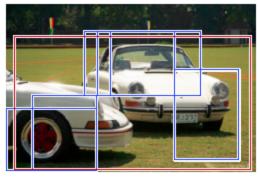


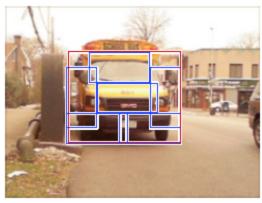




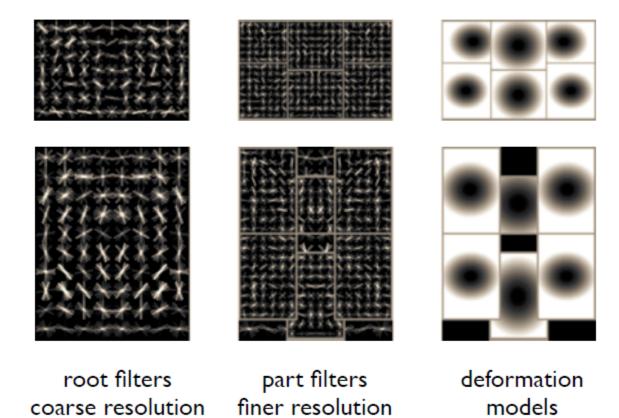


#### high scoring false positives



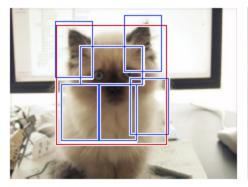


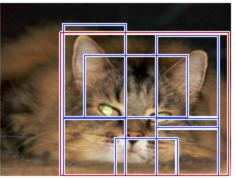
## Cat

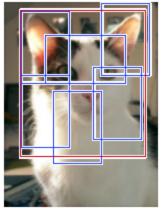


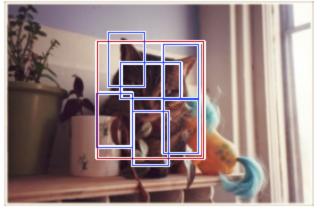
#### Cat detections

high scoring true positives

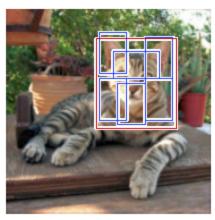


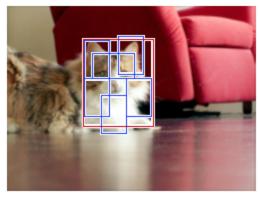




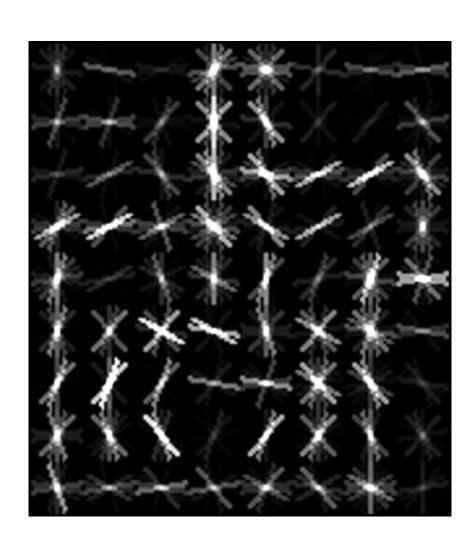


high scoring false positives (not enough overlap)

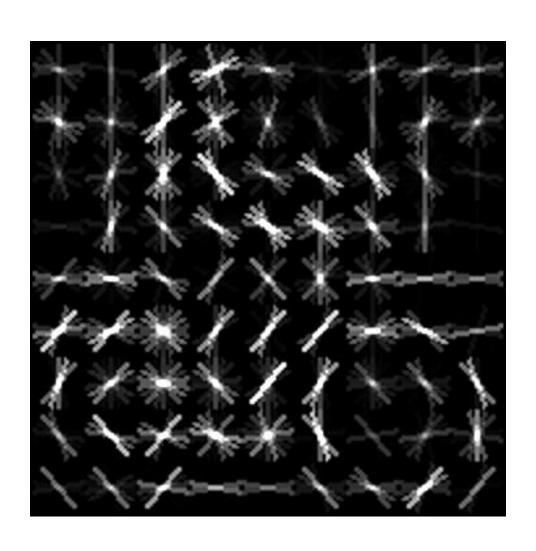


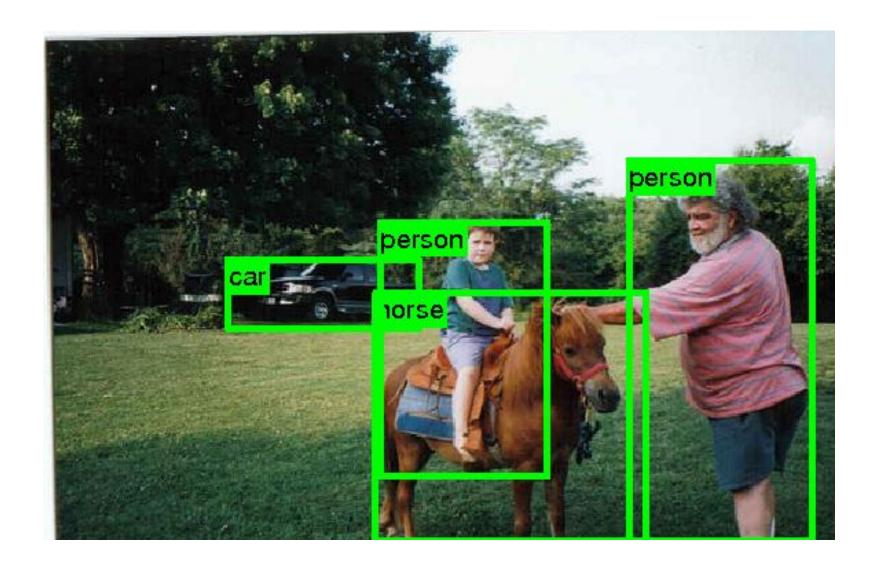


## Person riding horse

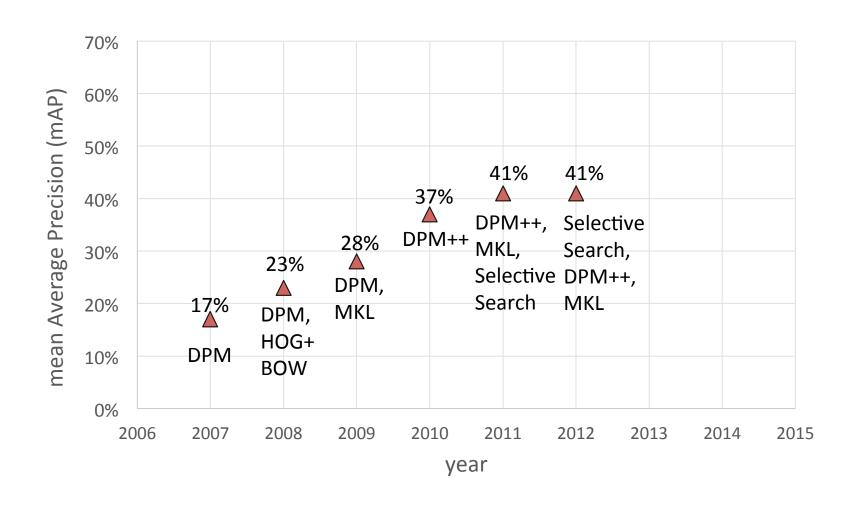


## Person riding bicycle

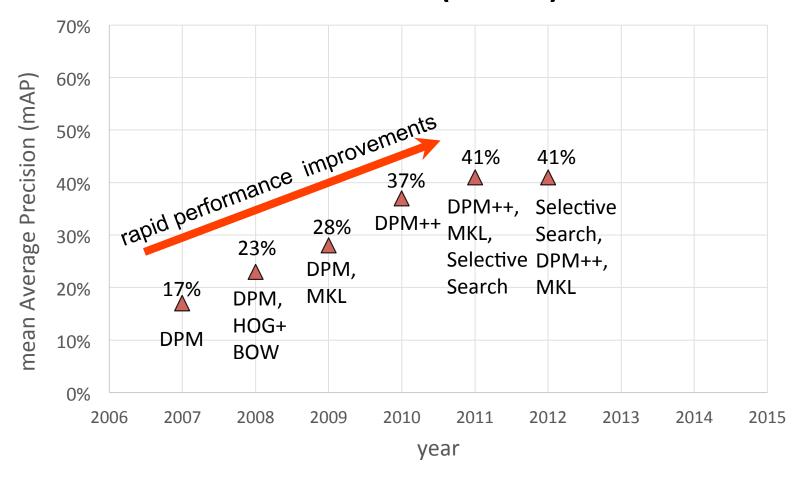




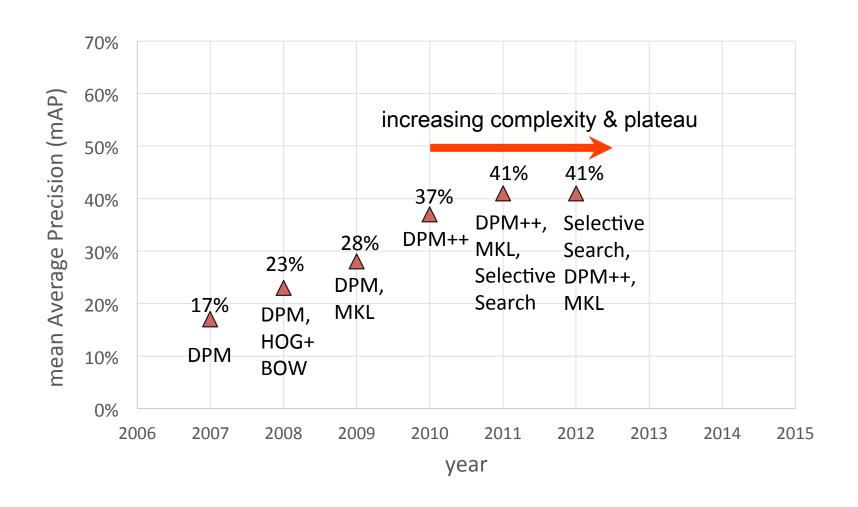
## PASCAL VOC detection history



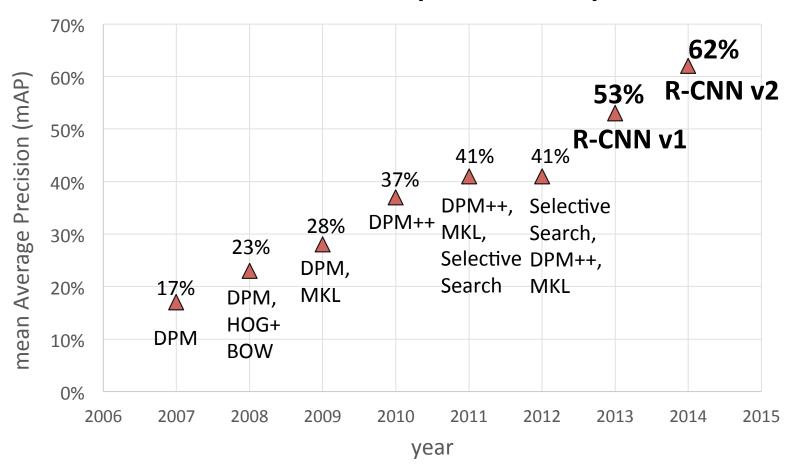
# Part-based models & multiple features (MKL)



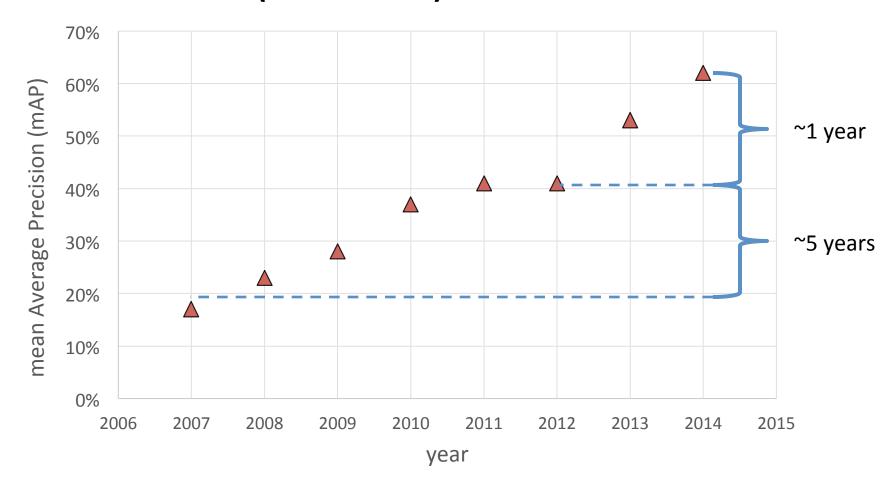
## Kitchen-sink approaches



# Region-based Convolutional Networks (R-CNNs)



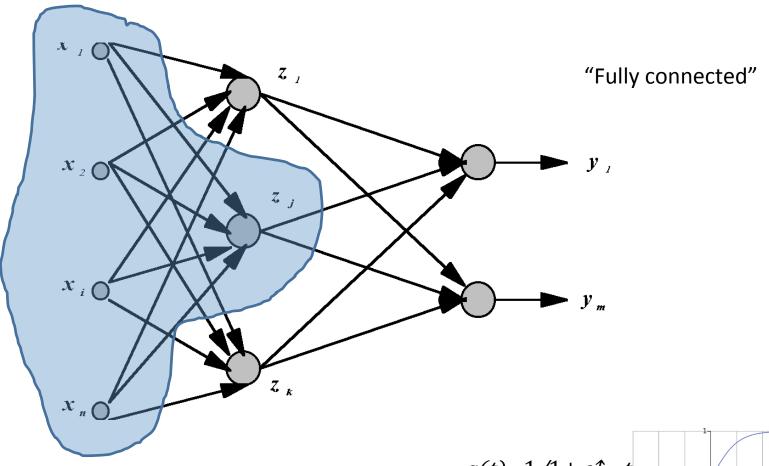
# Region-based Convolutional Networks (R-CNNs)



## **Convolutional Neural Networks**

Overview

## Standard Neural Networks



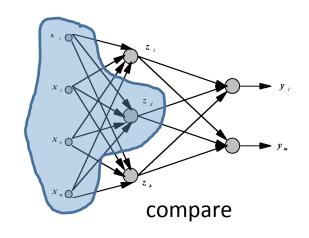
 $\mathbf{x} = (x \downarrow 1, ..., x \downarrow 784) \uparrow T$   $z \downarrow j = g(\mathbf{w} \downarrow j \uparrow T \mathbf{x}) g(t) = 1/1 + e \uparrow - t$ 

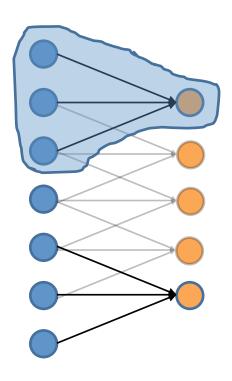


## From NNs to Convolutional NNs

- Local connectivity
- Shared ("tied") weights
- Multiple feature maps
- Pooling

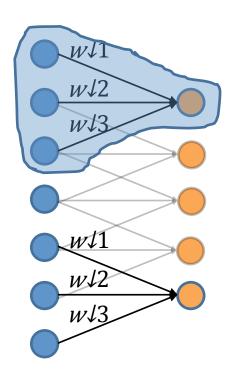
Local connectivity





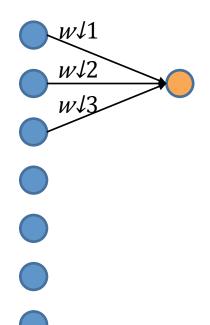
Each orange unit is only connected to (3)
 neighboring blue units

Shared ("tied") weights



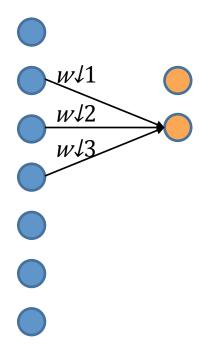
All orange units share the same parameters

• Convolution with 1-D filter:  $[w \downarrow 3, w \downarrow 2, w \downarrow 1]$ 



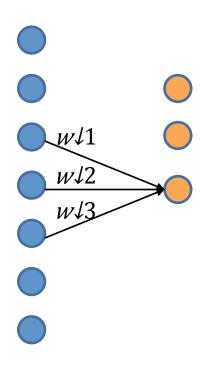
All orange units share the same parameters

• Convolution with 1-D filter:  $[w \downarrow 3, w \downarrow 2, w \downarrow 1]$ 



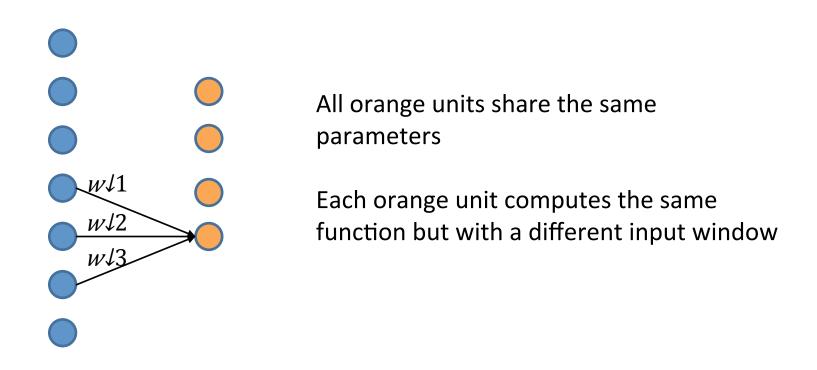
All orange units share the same parameters

• Convolution with 1-D filter:  $[w \downarrow 3, w \downarrow 2, w \downarrow 1]$ 

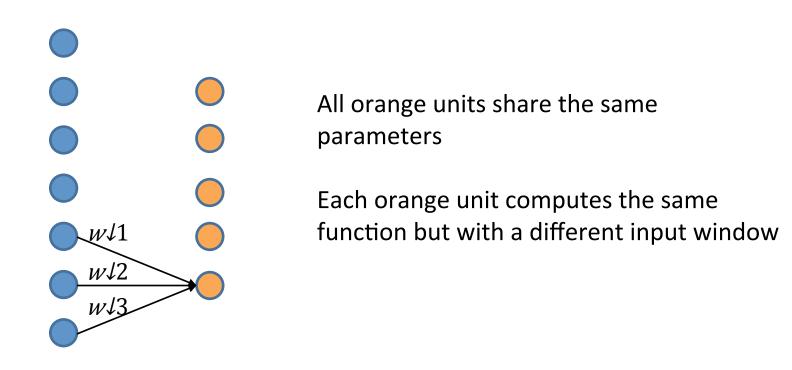


All orange units share the same parameters

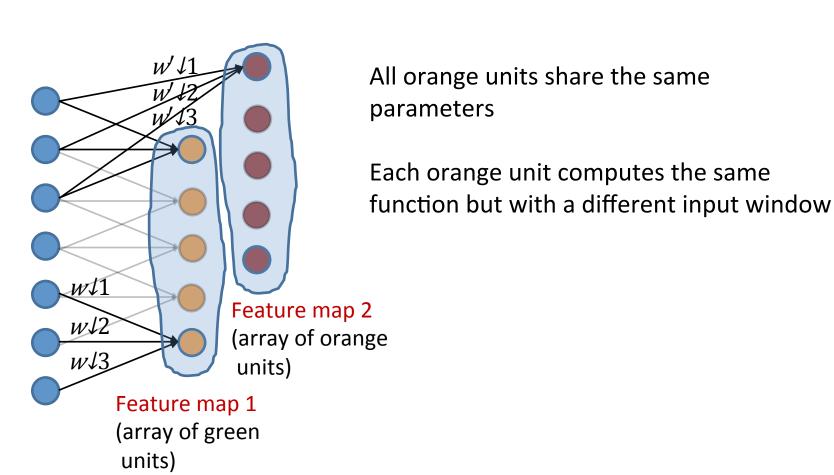
• Convolution with 1-D filter:  $[w \downarrow 3, w \downarrow 2, w \downarrow 1]$ 



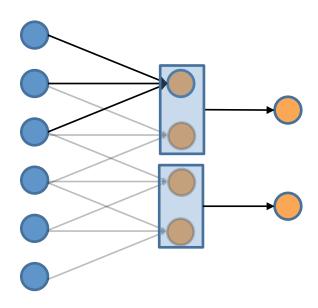
• Convolution with 1-D filter:  $[w \downarrow 3, w \downarrow 2, w \downarrow 1]$ 



Multiple feature maps



Pooling (max, average)

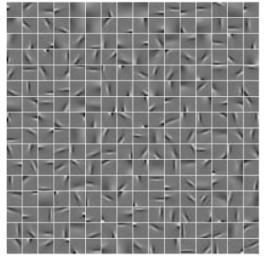


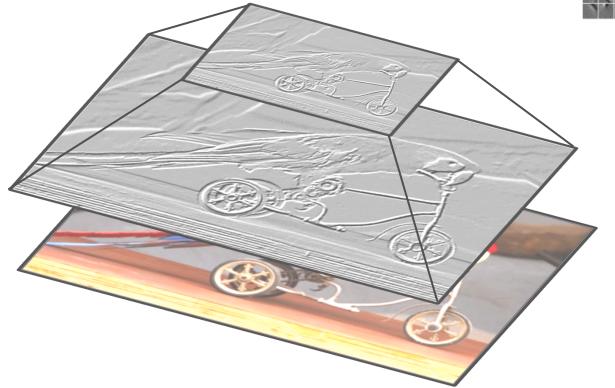
Pooling area: 2 units

Pooling stride: 2 units

• **Subsamples** feature maps

## 2D input





**Pooling** 

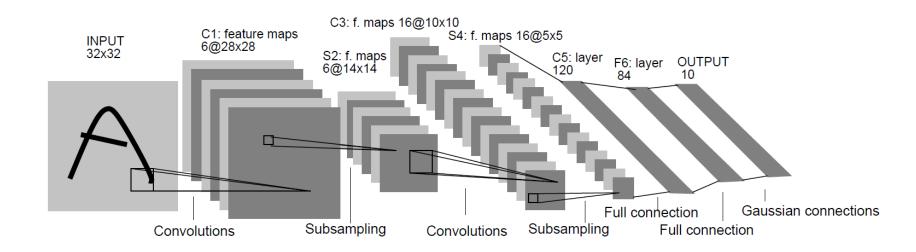


Convolution



Image

## Practical ConvNets



Gradient-Based Learning Applied to Document Recognition, Lecun et al., 1998

#### Demo

- http://cs.stanford.edu/people/karpathy/ convnetjs/demo/mnist.html
- ConvNetJS by Andrej Karpathy (Ph.D. student at Stanford)

#### Software libraries

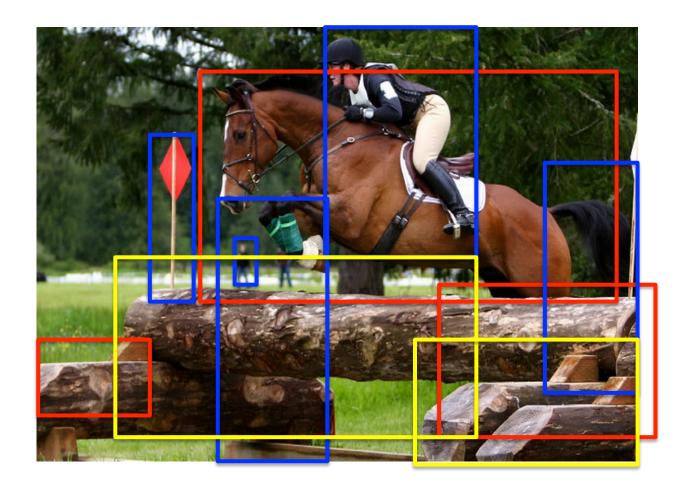
- Caffe (C++, python, matlab)
- Torch7 (C++, lua)
- Theano (python)

## Core idea of "deep learning"

• Input: the "raw" signal (image, waveform, ...)

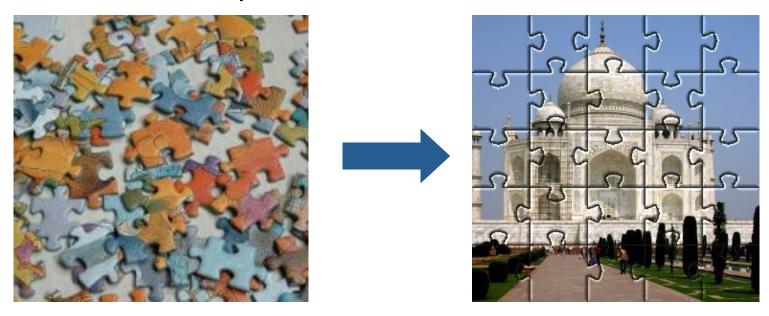
 Features: hierarchy of features is *learned* from the raw input

## Structure



#### Structured Prediction

- Prediction of complex outputs
  - Structured outputs: multivariate, correlated, constrained

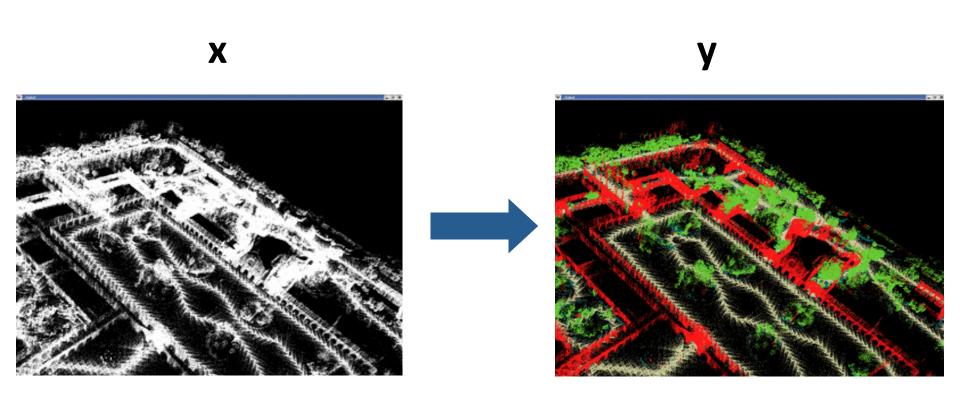


Novel, general way to solve many learning problems

## Handwriting Recognition

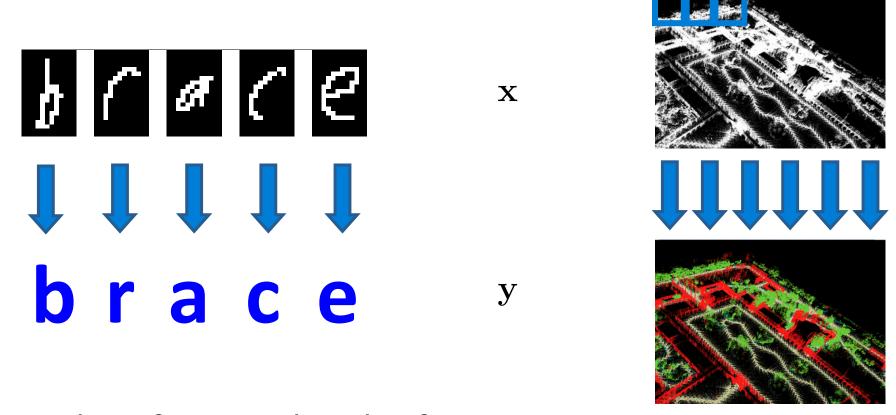
Sequential structure

# **Object Segmentation**



Spatial structure

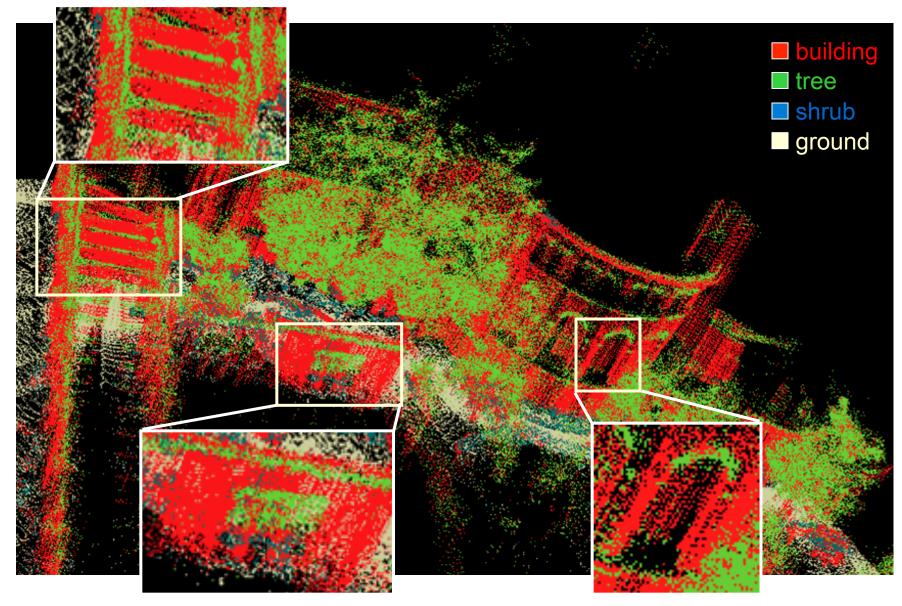
### **Local Prediction**



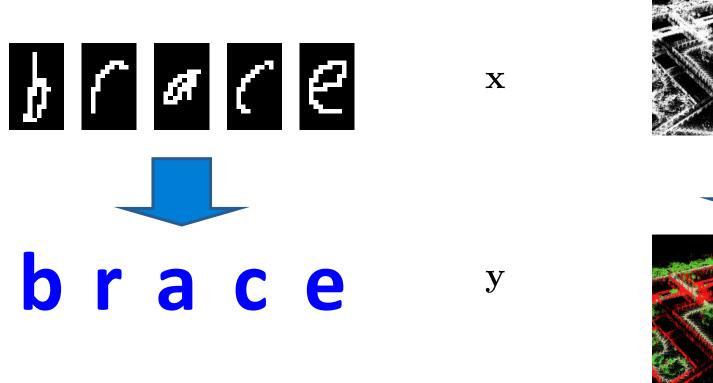
Classify using local information

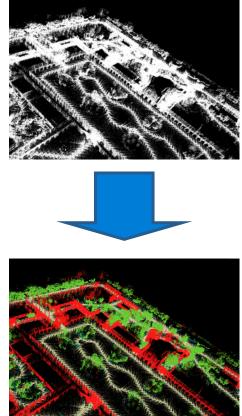
Ignores correlations & constraints!

# **Local Prediction**



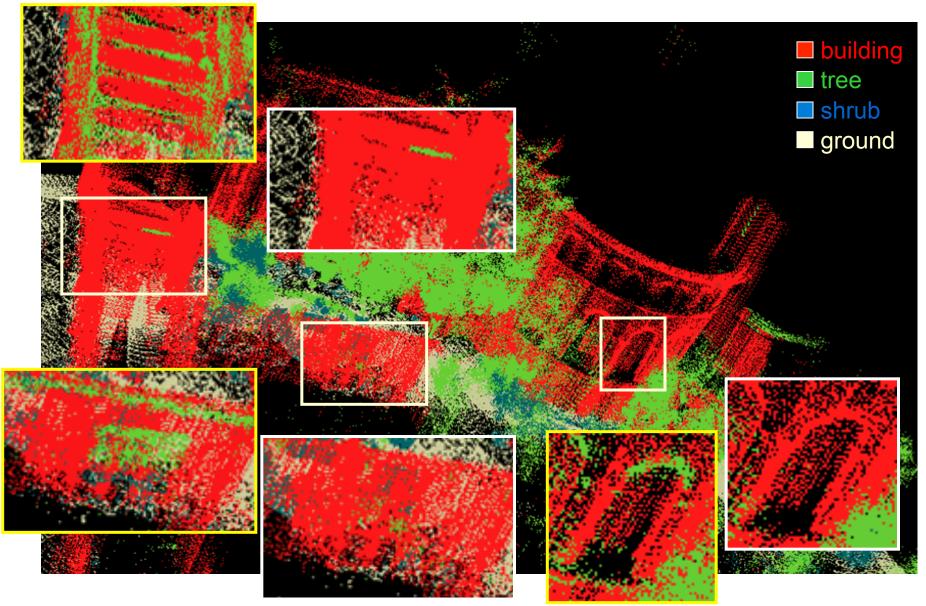
### Structured Prediction





- Use local information
- Exploit correlations

# **Structured Prediction**



### Structured Models

$$h(\mathbf{x}) = \underset{\mathbf{y} \in \mathcal{Y}(\mathbf{x})}{\operatorname{arg max}} score(\mathbf{x}, \mathbf{y}) \leftarrow \underset{\mathbf{y} \in \mathcal{Y}(\mathbf{x})}{\operatorname{scoring function}}$$
space of feasible outputs

#### Mild assumptions:

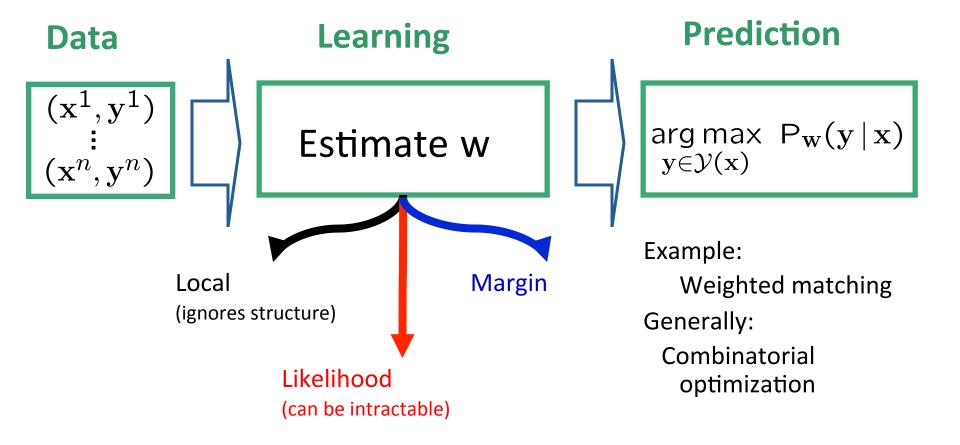
$$score(\mathbf{x}, \mathbf{y}) = \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{p} \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}_{p}, \mathbf{y}_{p})$$

linear combination

sum of part scores

# Supervised Structured Prediction

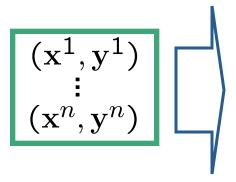
Model:  $P_w(y | x) \propto exp\{w^T f(x, y)\}$ 



### **Local Estimation**

Model: 
$$P_{\mathbf{w}}(\mathbf{y} | \mathbf{x}) \propto \prod_{jk} \exp\{\mathbf{w}^{\top} \mathbf{f}(y_{jk}, \mathbf{x})\}$$

#### **Data**



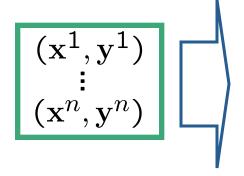
Treat edges as independent decisions

- Estimate w locally, use globally
  - E.g., naïve Bayes, SVM, logistic regression
    - Cf. [Matusov+al, 03] for matchings
    - Simple and cheap
    - Not well-calibrated for matching model
    - Ignores correlations & constraints

#### **Conditional Likelihood Estimation**

Model: 
$$\mathsf{P}_{\mathbf{w}}(\mathbf{y} \mid \mathbf{x}) \coloneqq \frac{\prod_{jk} \mathsf{exp}\{\mathbf{w}^{\top} \mathbf{f}(y_{jk}, \mathbf{x})\}}{\sum_{\mathbf{y}' \in \mathcal{Y}(\mathbf{x})} \prod_{jk} \mathsf{exp}\{\mathbf{w}^{\top} \mathbf{f}(y_{jk}', \mathbf{x})\}}$$

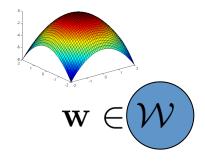
#### **Data**



Estimate w jointly:

$$\sum_{i} \log \mathsf{P}_{\mathbf{w}}(\mathbf{y}^{i} \,|\, \mathbf{x}^{i})$$

Denominator is #P-complete
 [Valiant 79, Jerrum & Sinclair 93]



- Tractable model, intractable learning
- Need tractable learning method
   margin-based estimation

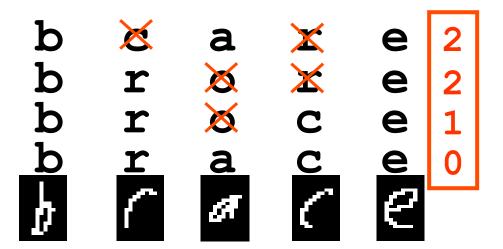
# Structured large margin estimation

#### We want:

$$\operatorname{arg\,max}_{\mathbf{y}} \ \mathbf{w}^{\top} \mathbf{f}(\mathbf{y}, \mathbf{y}) = \operatorname{"brace"}$$

#### Equivalently:

## Structured Loss



# Large margin estimation

• Given training examples  $(\mathbf{x}^i, \mathbf{y}^i)$ , we want:

$$\mathbf{w}^{\top}\mathbf{f}(\mathbf{x}^{i}, \mathbf{y}^{i}) > \mathbf{w}^{\top}\mathbf{f}(\mathbf{x}^{i}, \mathbf{y}) \quad \forall \mathbf{y} \neq \mathbf{y}^{i}$$

lacktriangle Maximize margin  $\gamma$ 

$$\mathbf{w}^{\top}\mathbf{f}(\mathbf{x}^{i},\mathbf{y}^{i}) \geq \mathbf{w}^{\top}\mathbf{f}(\mathbf{x}^{i},\mathbf{y}) + \gamma \ell(\mathbf{y}^{i},\mathbf{y}) \quad \forall \mathbf{y}$$

■ Mistake weighted margin:  $\gamma \ell(\mathbf{y}^i, \mathbf{y})$ 

$$\ell(\mathbf{y}^i, \mathbf{y}) = \sum_p I(y_p^i \neq y_p)$$
 # of mistakes in **y**

# Large margin estimation

$$\begin{aligned} & \max_{||\mathbf{w}|| \leq 1} \gamma \\ & \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}^i) \geq \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}) + \gamma \ell(\mathbf{y}^i, \mathbf{y}), \quad \forall i, \mathbf{y} \end{aligned}$$

• Eliminate  $\gamma$ 

$$\begin{aligned} & \min_{\mathbf{w}} & \frac{1}{2} ||\mathbf{w}||^2 \\ & \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}^i) \geq \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}) + \ell(\mathbf{y}^i, \mathbf{y}), \quad \forall i, \mathbf{y} \end{aligned}$$

• Add slacks 
$$\frac{\xi_i}{i}$$
 for inseparable case (hinge loss) 
$$\min_{\mathbf{w}, \xi} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_i \xi_i \\ \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}^i) + \xi_i \geq \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}) + \ell(\mathbf{y}^i, \mathbf{y}), \quad \forall i, \mathbf{y}$$

## Large margin estimation

Brute force enumeration

min 
$$\frac{1}{2}||\mathbf{w}||^2 + C\sum_i \xi_i$$
  
 $\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}^i) + \xi_i \geq \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}) + \ell(\mathbf{y}^i, \mathbf{y}), \quad \forall i, \mathbf{y}$ 

Min-max formulation

$$\min \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \xi_i$$

$$\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}^i) + \xi_i \ge \max_{\mathbf{y}} \left[ \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}) + \ell(\mathbf{y}^i, \mathbf{y}) \right], \quad \forall i$$

- 'Plug-in' linear program for inference

$$\max_{\mathbf{y}} \left[ \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}) + \ell(\mathbf{y}^i, \mathbf{y}) \right]$$

### Min-max formulation

$$\max_{\mathbf{y}} \left[ \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^{i}, \mathbf{y}) + \ell(\mathbf{y}^{i}, \mathbf{y}) \right]$$

Structured loss (Hamming):

$$\ell(\mathbf{y}^i,\mathbf{y}) = \sum_p \ell_p(\mathbf{y}^i_p,\mathbf{y}_p)$$

(Hamming): 
$$\ell(\mathbf{y}^i, \mathbf{y}) = \sum_p \ell_p(\mathbf{y}^i_p, \mathbf{y}_p)$$
$$\max_{\mathbf{y}} \left[ \sum_p \mathbf{w}^\top \mathbf{f}(\mathbf{x}^i_p, \mathbf{y}_p) + \ell_p(\mathbf{y}^i_p, \mathbf{y}_p) \right]$$

LP Inference

$$\max_{\substack{\mathbf{z} \geq 0;\ \mathbf{A}\mathbf{z} < \mathbf{b};}} \mathbf{q}^{\top}\mathbf{z}$$

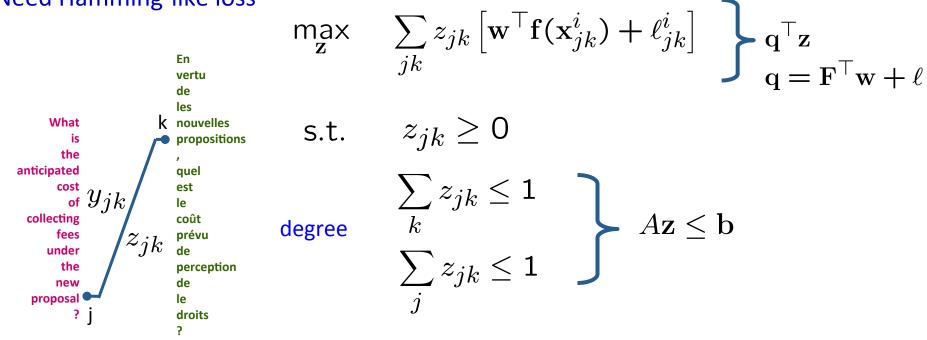
discrete optim.

continuous optim.

# Matching Inference LP

$$\max_{\mathbf{y}} \ \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}) + \ell(\mathbf{y}^i, \mathbf{y})$$

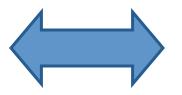
#### **Need Hamming-like loss**



# LP Duality

- Linear programming duality
  - Variables (x) constraints
  - Constraints variables
- Optimal values are the same
  - When both feasible regions are bounded

$$\begin{aligned} & \underset{\mathbf{z}}{\text{max}} & & \mathbf{c}^{\top}\mathbf{z} \\ & \text{s.t.} & & \mathbf{A}\mathbf{z} \leq \mathbf{b}; \\ & & \mathbf{z} \geq \mathbf{0}. \end{aligned}$$



$$\min_{\lambda} \quad \mathbf{b}^{\top} \lambda$$
s.t.  $\mathbf{A}^{\top} \lambda \geq \mathbf{c}$ 
 $\lambda \geq 0$ .

### Min-max Formulation

$$\min_{\mathbf{w},\xi} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \xi_i$$

$$\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}^i) + \xi_i \ge \max_{\mathbf{y}} \left[ \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}) + \ell(\mathbf{y}^i, \mathbf{y}) \right], \quad \forall i$$

$$\mathbf{q}_i = \mathbf{F}_i^{\mathsf{T}} \mathbf{w} + \ell_i$$

$$\mathbf{q}_i = \mathbf{F}_i^\top \mathbf{w} + \ell_i \qquad \max_{\substack{\mathbf{A}_i \mathbf{z}_i \leq \mathbf{b}_i \\ \mathbf{z}_i \geq 0}} \mathbf{q}_i^\top \mathbf{z}_i \qquad \min_{\substack{\mathbf{A}_i^\top \lambda_i \geq \mathbf{q}_i \\ \lambda_i \geq 0}} \mathbf{b}_i^\top \lambda_i$$

$$\mathsf{LP duality}$$

$$\min_{\mathbf{w}, \xi, \lambda} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \xi_i$$
s.t. 
$$\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}^i) + \xi_i \ge \mathbf{b}_i^{\top} \lambda_i,$$

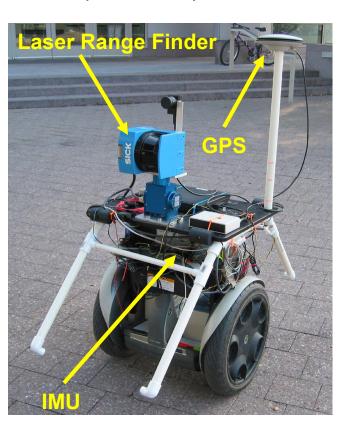
$$\mathbf{A}_i^{\top} \lambda_i \ge \mathbf{q}_i; \quad \lambda_i \ge 0$$

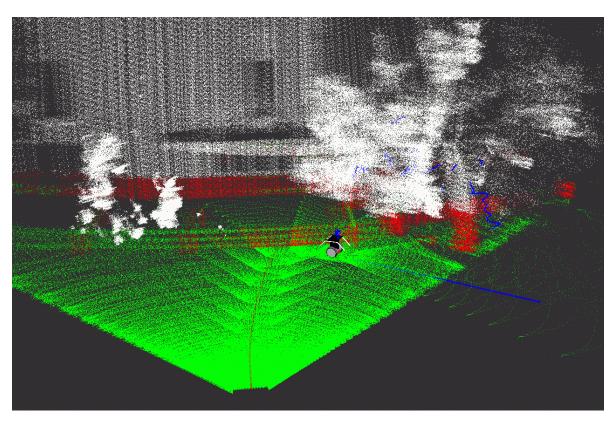
## Min-max formulation summary

$$\min_{\mathbf{w},\lambda} \frac{1}{2} ||\mathbf{w}||^2 + C \left( \sum_{i} \mathbf{b}_{i}^{\top} \lambda_{i} - \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^{i}, \mathbf{y}^{i}) \right)$$
s.t.  $\mathbf{A}_{i}^{\top} \lambda_{i} \geq \mathbf{F}_{i}^{\top} \mathbf{w} + \ell_{i}; \quad \lambda_{i} \geq 0, \ \forall i.$ 

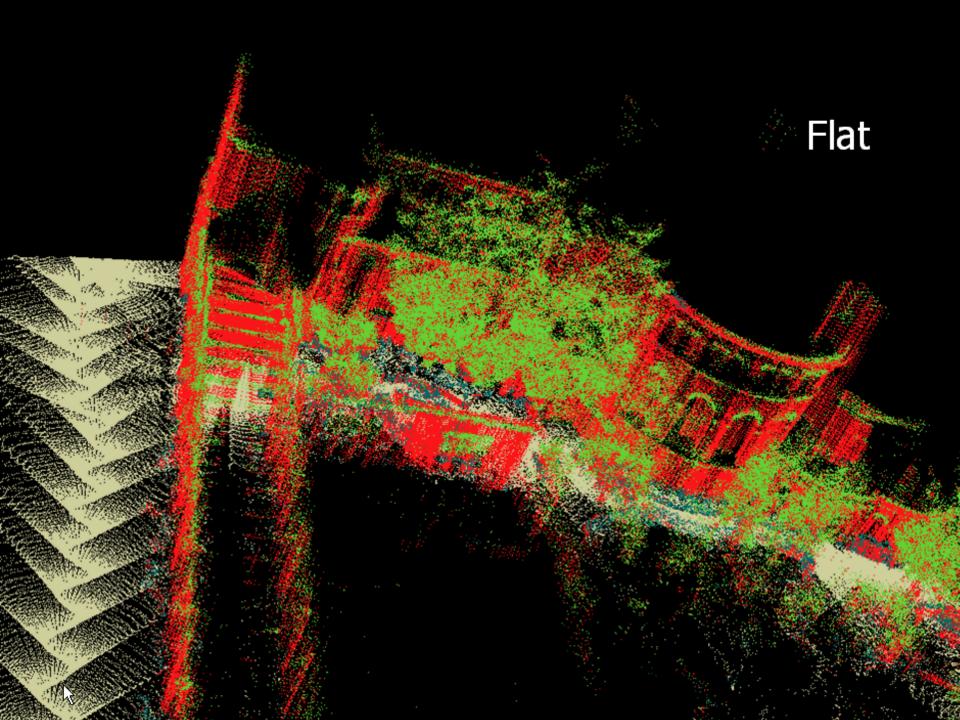
# 3D Mapping

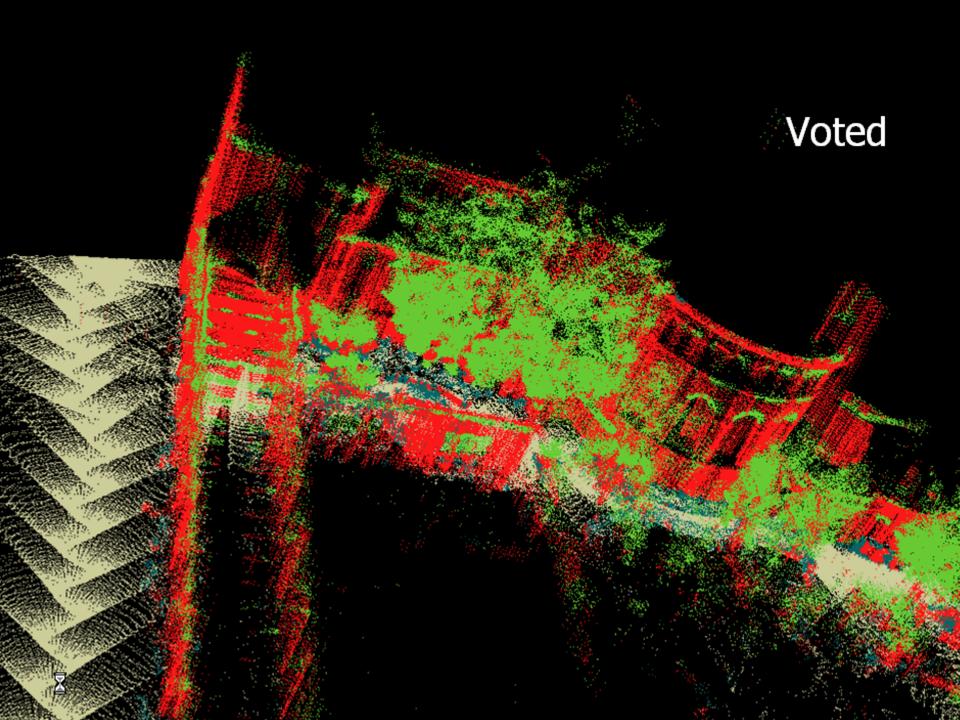
Data provided by: Michael Montemerlo & Sebastian Thrun

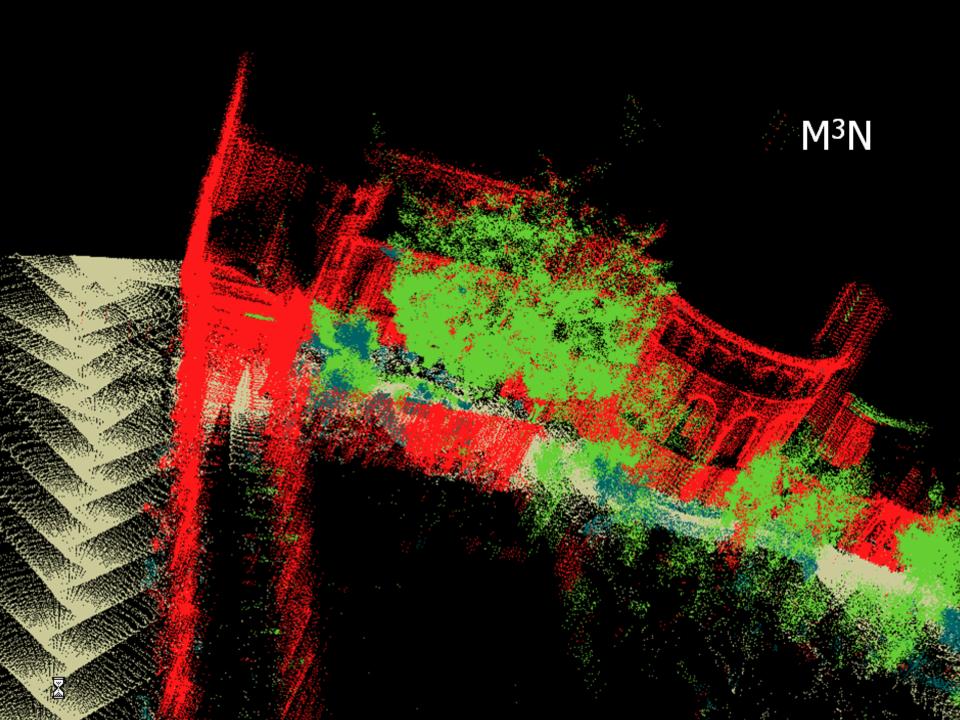


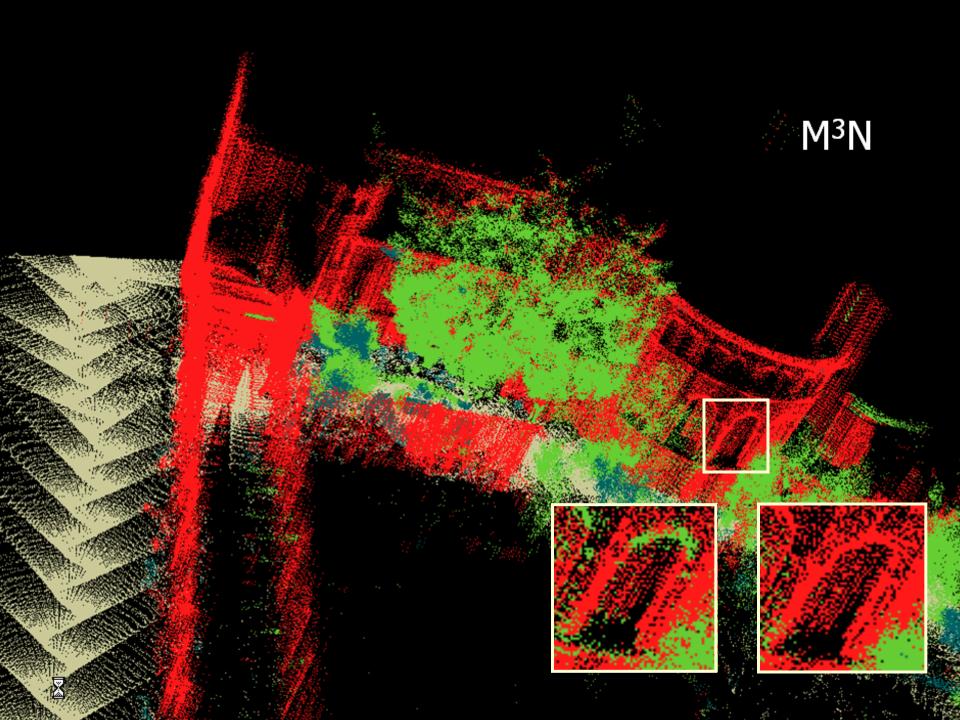


Label: ground, building, tree, shrub



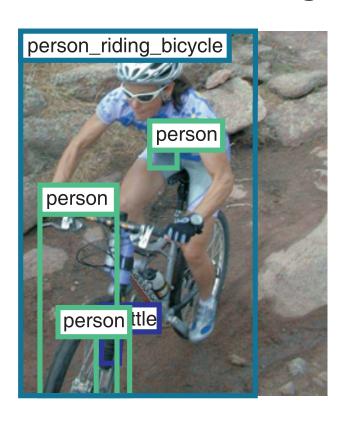




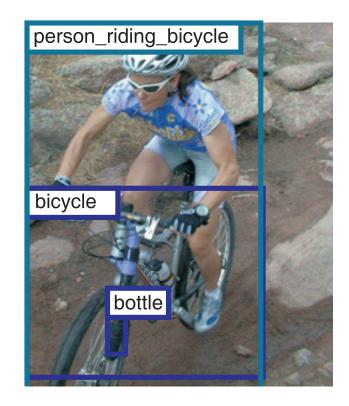


### Before and After

#### **Before Decoding**

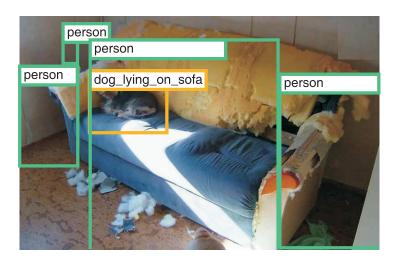


#### After Decoding



### Before and After

#### **Before Decoding**



#### After Decoding

