Object Detection

Ali Farhadi Mohammad Rastegari CSE 576

Object Recognition

Person

Dog

Chair

Object Detection

Sliding Window

Sliding Window

Image Categorization Pipelines

Image Categorization Pipelines

Image Categorization Pipelines

We have talked about

- Nearest Neighbor
- Naïve Bayes
- Logistic Regression
- Boosting

We saw face detection

Support Vector Machines (SVM)

Which one is the best?

• maximum margin solution: most stable under perturbations of the inputs

Linear classifiers — How to find the best?

Max Margin

Solution

$$\max_{\substack{\gamma,v,k}} \gamma$$

$$\forall j \ (v.x_j + k)y_j > \gamma$$

$$\|v\|_{2} \leq 1$$

Non convex formulation

$$\forall j(v^*.x_j + k^*)y_j > \gamma$$

$$\forall j(2v^*.x_j + 2k^*)y_j > \gamma$$

$$\forall j(10v^*.x_j + 10k^*)y_j > \gamma$$

$$\vdots$$

$$\forall j(100v^*.x_j + 100k^*)y_j > \gamma$$

Solution

$$\begin{array}{c}
\max_{\gamma,v,k} \gamma \\
\forall j \ (v.x_j + k)y_j > \gamma \longrightarrow \forall j \ (w.x_j + b) > 1 \\
\|v\|_2 = 1 \longrightarrow \gamma = \frac{1}{\|w\|}
\end{array}$$

$$\forall j \ (\frac{v}{\gamma}.x_j + \frac{k}{\gamma})y_j > \frac{\gamma}{\gamma}$$

$$w = \frac{v}{\gamma} \quad b = \frac{k}{\gamma}$$

$$\|w\|_2 = \frac{\|v\|_2}{\gamma}$$

$$\min_{w,b} ||w||$$

$$\forall j \ (w.x_j + b)y_j > 1$$

Support vector machines (SVMs)

 $\min_{w,b} ||w||$ $\forall j \ (w.x_j + b)y_j > 1$

Solve efficiently by quadratic programming (QP)

- Well-studied solution algorithms
- Not simple gradient ascent, but close
- Hyperplane defined by support vectors
 - Could use them as a lower-dimension basis to write down line, although we haven't seen how yet
 - More on this later

Non-support Vectors:

- everything else
- moving them will not change w

Support Vectors:

 data points on the canonical lines

Soft Margin

 the points can be linearly separated but there is a very narrow margin

 but possibly the large margin solution is better, even though one constraint is violated

In general there is a trade off between the margin and the number of mistakes on the training data

Introducing Slack Variables

$$\min_{w,b,\xi} ||w|| + C \sum_{j} \xi_{j}$$

$$\forall j \ (w.x_{j} + b)y_{j} > 1 - \xi_{j}$$

$$\forall j \ \xi_{j} \ge 0$$

- ullet Every constraint can be satisfied if ξ_i is sufficiently large
- C is a regularization parameter:
 - small C allows constraints to be easily ignored \rightarrow large margin
 - large C makes constraints hard to ignore \rightarrow narrow margin
 - $-C=\infty$ enforces all constraints: hard margin
- ullet This is still a quadratic optimization problem and there is a unique minimum. Note, there is only one parameter, C.

What about multiple classes?

One against All

Learn 3 classifiers:

- + vs {0,-}, weights w₊
- - vs {0,+}, weights w_
- 0 vs {+,-}, weights w₀

Output for x:

$$y = argmax_i w_i.x$$

Any other way?

Any problems?

Learn 1 classifier: Multiclass SVM

Simultaneously learn 3 sets of weights:

- How do we guarantee the correct labels?
- Need new constraints!

For all possible classes:

$$\mathbf{w}^{(y_j)}.\mathbf{x}_j + b^{(y_j)} \ge \mathbf{w}^{(y')}.\mathbf{x}_j + b^{(y')} + 1, \ \forall y' \ne y_j, \ \forall j$$

What if the data is not linearly separable?

Add More Features!!!

$$\phi(x) = \begin{pmatrix} x^{(1)} \\ \vdots \\ x^{(n)} \\ x^{(1)}x^{(2)} \\ x^{(1)}x^{(3)} \\ \vdots \\ e^{x^{(1)}} \end{pmatrix}$$

SVM with a polynomial Kernel visualization

Created by: Udi Aharoni

Non-Linear SVM

$$\psi: R^2 \to R^3 \quad \psi(\mathbf{x}) = (z_i, z_2, z_3) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

So What?!!!

Logistic Regression

$$l(w) = \sum_{j} (w\psi(x_j) + b)y_j - \ln(1 + e^{\sum_{j} w\psi(x_j) + b})$$

- No Large Margin
- No Quadratic Programming
- Concave Optimization

Dual Form (Lagrange Multiplier)

$$\min_{\theta} f(\theta)$$

$$\forall j \ g_j(\theta) \ge 0$$

$$\max_{\alpha:\alpha_j\geq 0} \min_{\theta} \mathcal{L}(\theta,\alpha) = f(\theta) - \left[\sum_j \alpha_j g_j(\theta)\right]$$

$$\min_{w,b} \frac{1}{2} \|w\|^2$$

$$\forall j \ (w.x_j + b) - 1 \ge 0$$

$$\max_{\alpha:\alpha_i \ge 0} \min_{w,b} \mathcal{L}(w,b,\alpha) = \frac{1}{2} \|w\|^2 - \left[\sum_i \alpha_i(w.x_i + b - 1) \right]$$

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \mathbf{w} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = 0 \implies \left| \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i \right|$$

$$\frac{\partial}{\partial b} \mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_i y_i = 0$$

Dual Form

ullet Plug in the new definition of ${f w}$ into the Lagrangian and simplify

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} y_i y_j \alpha_i \alpha_j \mathbf{x}_i^T \mathbf{x}_j - b \sum_{i=1}^{n} \alpha_i y_i$$

but $\sum_{i=1}^{n} \alpha_i y_i = 0$. Thus

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} y_i y_j \alpha_i \alpha_j \mathbf{x}_i^T \mathbf{x}_j$$

Putting everything together get the dual problem optimization problem

$$\max_{\alpha} \left\{ \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} y_i y_j \alpha_i \alpha_j \mathbf{x}_i^T \mathbf{x}_j \right\}$$
 subject to $\alpha_i \geq 0$ for $i = 1, \dots, n$ and $\sum_{i=1}^{n} \alpha_i y_i = 0$

Implicit Mapping

Recall that the SVM solution depends only on the dot product $\langle \mathbf{x}_i, \mathbf{x}_j \rangle$ between training examples.

Non-linear separable:
$$K(\mathbf{x}_i, \mathbf{x}_j) = \langle \psi(\mathbf{x}_i), \psi(\mathbf{x}_j) \rangle$$

$$\psi(\mathbf{x}) = \begin{pmatrix} x_1 x_1 \\ x_1 x_2 \\ x_1 x_3 \\ x_2 x_1 \\ x_2 x_2 \\ x_2 x_3 \\ x_3 x_1 \\ x_3 x_2 \\ x_3 x_3 \end{pmatrix} K(\mathbf{x}, \mathbf{z}) = \psi(\mathbf{x})^T \psi(\mathbf{z}) = \sum_{i=1}^d \sum_{j=1}^d (x_i x_j)(z_i z_j)$$

$$= \left(\sum_{i=1}^d x_i z_i\right) \left(\sum_{j=1}^d x_j z_j\right) = (\mathbf{x}^T \mathbf{z})^2$$

$$K(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z})^2$$

$$Kernel Function$$

Popular Kernel Functions

Polynomial kernels

$$K(\mathbf{x}, \mathbf{z}) = \left(\mathbf{x}^T \mathbf{z} + 1\right)^p$$

The degree of the polynomial is a user-specified parameter.

Radial basis function kernels

$$K(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{z}\|^2}{2\sigma^2}\right) = \sum_{k=0}^{\infty} \frac{1}{k!} \left(-\frac{\|\mathbf{x} - \mathbf{z}^2\|}{2\sigma^2}\right)^k$$

The width σ is a user-specified parameter. This kernel corresponds to an infinite dimensional feature mapping ψ .

Sigmoid Kernel

$$K(\mathbf{x},\mathbf{z}) = anh\left(eta_0\mathbf{x}^T\mathbf{z} + eta_1
ight)$$

Active Research!!

Visual Kernels

Pyramid Match Kernel [Graumen et al. 03]

Image Categorization

Example: Dalal-Triggs pedestrian

- 1. Extract fixed-sized (64x128 pixel) window at each position and scale
- 2. Compute HOG (histogram of gradient) features within each window
- 3. Score the window with a linear SVM classifier
- 4. Perform non-maxima suppression to remove overlapping detections with lower scores

Person/

 non-person classification

Linear

SVM

Tested with

- RGBSlightly better performance vs. grayscale
- Grayscale

Histogram of gradient orientations

Orientation: 9 bins (for unsigned angles)

Histograms in 8x8 pixel cells

Votes weighted by magnitude

$$L2 - norm : v \longrightarrow v/\sqrt{||v||_2^2 + \epsilon^2}$$

Training set

$$0.16 = w^T x - b$$

$$sign(0.16) = 1$$

Detection examples

Each window is separately classified

Each window is separately classified

Non-Max Suppression

Problem formulation

{ airplane, bird, motorbike, person, sofa }

Input

Desired output

Evaluating a detector

Test image (previously unseen)

First detection ...

person' detector predictions

Second detection ...

person' detector predictions

Third detection ...

ferson' detector predictions

Compare to ground truth

- 'person' detector predictions
- ground truth 'person' boxes

Sort by confidence

true false
positive positive
(IOU>=0.5) (IOU<0.5)

Intersection Over Union (IOU)

Evaluation metric

precision@t=#true positives@t/#true positives@t+#false positives@t

recall@t=#true positives@t/#ground truth objects

Evaluation metric

What about this one?

Can the model we trained for pedestrians detect the person in this image?

Specifying an object model

Statistical Template in Bounding Box

- Object is some (x,y,w,h) in image
- Features defined wrt bounding box coordinates

Image

Template Visualization

When do statistical templates make sense?

Caltech 101 Average Object Images

Deformable objects

Images from Caltech-256

Deformable objects

Images from D. Ramanan's dataset

Parts-based Models

Define objects by collection of parts modeled by

- 1. Appearance
- 2. Spatial configuration

Slide credit: Rob Fergus

How to model spatial relations?

• One extreme: fixed template

How to model spatial relations?

Another extreme: bag of words

ISM:Implicit Shape Model for Detection

training image

visual codeword with displacement vectors

ISM: Implicit Shape Model

Training overview

- Start with bounding boxes and (ideally) segmentations of objects
- Extract local features (e.g., patches or SIFT) at interest points on objects
- Cluster features to create codebook
- Record relative bounding box and segmentation for each codeword

Implicit Shape Model for Detection

Liebe and Schiele, 2003, 2005

Example: Results on Cows

Example: Results on Cows

Example: Results on Cows

ISM: Detection Results

- Qualitative Performance
 - Robust to clutter, occlusion, noise, low contrast

Explicit Models

Hybrid template/parts model

Detections

Template Visualization

root filters coarse resolution

part filters finer resolution

deformation models

- Explicit Models
- Too expensive

Star-shaped model

Star-shaped model

Tree-shaped model

Many others...

a) Constellation

Fergus et al. '03 Fei-Fei et al. '03

e) Bag of features

Csurka '04 Vasconcelos '00

b) Star shape

Leibe et al. '04, '08 Crandall et al. '05 Fergus et al. '05

c) k-fan (k = 2)

Crandall et al. '05

Felzenszwalb & Huttenlocher '05

f) Hierarchy

Bouchard & Triggs '05

g) Sparse flexible model

Carneiro & Lowe '06

Tree-shaped model

Pictorial Structures Model

Part = oriented rectangle

Spatial model = relative size/orientation

Felzenszwalb and Huttenlocher 2005

Pictorial Structures Model

$$P(L|I,\theta) \propto \left(\prod_{i=1}^n p(I|l_i,u_i) \prod_{(v_i,v_j) \in E} p(l_i,l_j|c_{ij})\right)$$
 Appearance likelihood Geometry likelihood

Modeling the Appearance

- Any appearance model could be used
 - HOG Templates, etc.
 - Here: rectangles fit to background subtracted binary map
- Can train appearance models independently (easy, not as good) or jointly (more complicated but better)

$$P(L|I,\theta) \propto \left(\prod_{i=1}^n p(I|l_i,u_i) \prod_{(v_i,v_j) \in E} p(l_i,l_j|c_{ij})\right)$$
 Appearance likelihood Geometry likelihood

Part representation

Background subtraction

Pictorial structures model

Optimization is tricky but can be efficient

$$L^* = \arg\min_{L} \left(\sum_{i=1}^{n} m_i(l_i) + \sum_{(v_i, v_j) \in E} d_{ij}(l_i, l_j) \right)$$

For each l₁, find best l₂:

Best₂(
$$l_1$$
) = min $m_2(l_2) + d_{12}(l_1, l_2)$

- Remove v₂, and repeat with smaller tree, until only a single part
- For k parts, n locations per part, this has complexity of O(kn²), but can be solved in ~O(nk) using generalized distance transform

Pictorial Structures

- Model is represented by a graph G = (V, E).
 - $-V = \{v_1, \ldots, v_n\}$ are the parts.
 - $-(v_i,v_j) \in E$ indicates a connection between parts.
- $m_i(l_i)$ is the cost of placing part i at location l_i .
- $d_{ij}(l_i, l_j)$ is a deformation cost.
- ullet Optimal location for object is given by $L^*=(l_1^*,\ldots,l_n^*)$,

$$L^* = \underset{L}{\operatorname{argmin}} \left(\sum_{i=1}^n m_i(l_i) + \sum_{(v_i, v_j) \in E} d_{ij}(l_i, l_j) \right)$$

$$L^* = \underset{L}{\operatorname{argmin}} \left(\sum_{i=1}^n m_i(l_i) + \sum_{(v_i, v_j) \in E} d_{ij}(l_i, l_j) \right)$$

• n parts and h locations gives h^n configurations.

a) Constellation [13]

head filter

Complexity O(hⁿ)

h: number of possible part placements

n: number of parts

92

Efficient minimization

$$L^* = \underset{L}{\operatorname{argmin}} \left(\sum_{i=1}^n m_i(l_i) + \sum_{(v_i, v_j) \in E} d_{ij}(l_i, l_j) \right)$$

- n parts and h locations gives h^n configurations.
- If graph is a tree we can use dynamic programming.
 - $-O(nh^2)$, much better but still slow.

head filter

Complexity O(nh²)

Efficient minimization

$$L^* = \underset{L}{\operatorname{argmin}} \left(\sum_{i=1}^n m_i(l_i) + \sum_{(v_i, v_j) \in E} d_{ij}(l_i, l_j) \right)$$

- n parts and h locations gives h^n configurations.
- If graph is a tree we can use dynamic programming.
 - $-O(nh^2)$, much better but still slow.
- If $d_{ij}(l_i, l_j) = ||T_{ij}(l_i) T_{ji}(l_j)||^2$ can use DT.
 - -O(nh), as good as matching each part separately!!

Distance transform

Given a set of points on a grid $P \subseteq \mathcal{G}$, the quadratic distance transform of P is,

$$\mathcal{D}_P(q) = \min_{p \in P} ||q - p||^2$$

Generalized distance transform

Given a function $f: \mathcal{G} \to \mathbb{R}$,

$$\mathcal{D}_f(q) = \min_{p \in \mathcal{G}} \left(||q - p||^2 + f(p) \right)$$

- for each location q, find nearby location p with f(p) small.

1D case:
$$\mathcal{D}_f(q) = \min_{p \in \mathcal{G}} \left((q - p)^2 + f(p) \right)$$

For each p, $\mathcal{D}_f(q)$ is below the parabola rooted at (p, f(p)).

There is a simple geometric algorithm that computes $\mathcal{D}_f(p)$ in O(h) time for the 1D case.

- similar to Graham's scan convex hull algorithm.
- about 20 lines of C code.

The 2D case is "separable", it can be solved by sequential 1D transformations along rows and columns of the grid.

See **Distance Transforms of Sampled Functions**, Felzenszwalb and Huttenlocher.

Pictorial Structures: Summary

$$L^* = \underset{L}{\operatorname{argmin}} \left(\sum_{i=1}^n m_i(l_i) + \sum_{(v_i, v_j) \in E} d_{ij}(l_i, l_j) \right)$$

$$d_{ij}(l_i, l_j) = ||T_{ij}(l_i) - T_{ji}(l_j)||^2$$

Results for person matching

Results for person matching

Enhanced pictorial structures

EICHNER, FERRARI: BETTER APPEARANCE MODELS FOR PICTORIAL STRUCTURES

Deformable Latent Parts Model

Useful parts discovered during training

Detections

Template Visualization

part filters finer resolution

deformation models

Felzenszwalb et al. 2008

Deformable Part Models

Score = $F_0 \cdot \Phi(p_0, H) + \Sigma F_i \cdot \Phi(p_i, H) - \Sigma d_i \cdot \Phi_d(x, y)$

$$\left(\sum_{i=1}^{n} m_{i}(l_{i}) + \sum_{(v_{i},v_{j})\in E} d_{ij}(l_{i},l_{j})\right)$$

HOG Filters

- Array of weights for features in subwindow of HOG pyramid
- Score is dot product of filter and feature vector

Object hypothesis

Multiscale model captures features at two-resolutions

- -

response of part filters

feature map at twice the resolution

$$\left(\sum_{i=1}^{n} m_{i}(l_{i}) + \sum_{(v_{i},v_{j})\in E} d_{ij}(l_{i},l_{j})\right)$$

State-of-the-art Detector: Deformable Parts Model (DPM)

- 1. Strong low-level features based on HOG
- 2. Efficient matching algorithms for deformable part-based models (pictorial structures)
- Discriminative learning with latent variables (latent SVM)

Person model

root filters part filters deformation coarse resolution finer resolution

models

Person detections

high scoring true positives

high scoring false positives (not enough overlap)

Car

root filters coarse resolution

part filters finer resolution

deformation models

Car detections

high scoring true positives

high scoring false positives

Cat

Cat detections

high scoring true positives

high scoring false positives (not enough overlap)

Person riding horse

Person riding bicycle

PASCAL VOC detection history

Part-based models & multiple features (MKL)

Kitchen-sink approaches

Region-based Convolutional Networks (R-CNNs)

Region-based Convolutional Networks (R-CNNs)

Convolutional Neural Networks

Overview

Standard Neural Networks

 $\mathbf{x} = (x \downarrow 1, ..., x \downarrow 784) \uparrow T$ $z \downarrow j = g(\mathbf{w} \downarrow j \uparrow T \mathbf{x}) g(t) = 1/1 + e \uparrow - t$

From NNs to Convolutional NNs

- Local connectivity
- Shared ("tied") weights
- Multiple feature maps
- Pooling

Local connectivity

Each orange unit is only connected to (3)
 neighboring blue units

Shared ("tied") weights

All orange units share the same parameters

• Convolution with 1-D filter: $[w \downarrow 3, w \downarrow 2, w \downarrow 1]$

All orange units share the same parameters

• Convolution with 1-D filter: $[w \downarrow 3, w \downarrow 2, w \downarrow 1]$

All orange units share the same parameters

• Convolution with 1-D filter: $[w \downarrow 3, w \downarrow 2, w \downarrow 1]$

All orange units share the same parameters

• Convolution with 1-D filter: $[w \downarrow 3, w \downarrow 2, w \downarrow 1]$

• Convolution with 1-D filter: $[w \downarrow 3, w \downarrow 2, w \downarrow 1]$

Multiple feature maps

Pooling (max, average)

Pooling area: 2 units

Pooling stride: 2 units

• **Subsamples** feature maps

2D input

Pooling

Convolution

Image

Practical ConvNets

Gradient-Based Learning Applied to Document Recognition, Lecun et al., 1998

Demo

- http://cs.stanford.edu/people/karpathy/ convnetjs/demo/mnist.html
- ConvNetJS by Andrej Karpathy (Ph.D. student at Stanford)

Software libraries

- Caffe (C++, python, matlab)
- Torch7 (C++, lua)
- Theano (python)

Core idea of "deep learning"

• Input: the "raw" signal (image, waveform, ...)

 Features: hierarchy of features is *learned* from the raw input

Structure

Structured Prediction

- Prediction of complex outputs
 - Structured outputs: multivariate, correlated, constrained

Novel, general way to solve many learning problems

Handwriting Recognition

Sequential structure

Object Segmentation

Spatial structure

Local Prediction

Classify using local information

Ignores correlations & constraints!

Local Prediction

Structured Prediction

- Use local information
- Exploit correlations

Structured Prediction

Structured Models

$$h(\mathbf{x}) = \underset{\mathbf{y} \in \mathcal{Y}(\mathbf{x})}{\operatorname{arg max}} score(\mathbf{x}, \mathbf{y}) \leftarrow \underset{\mathbf{y} \in \mathcal{Y}(\mathbf{x})}{\operatorname{scoring function}}$$
space of feasible outputs

Mild assumptions:

$$score(\mathbf{x}, \mathbf{y}) = \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{p} \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}_{p}, \mathbf{y}_{p})$$

linear combination

sum of part scores

Supervised Structured Prediction

Model: $P_w(y | x) \propto exp\{w^T f(x, y)\}$

Local Estimation

Model:
$$P_{\mathbf{w}}(\mathbf{y} | \mathbf{x}) \propto \prod_{jk} \exp\{\mathbf{w}^{\top} \mathbf{f}(y_{jk}, \mathbf{x})\}$$

Data

Treat edges as independent decisions

- Estimate w locally, use globally
 - E.g., naïve Bayes, SVM, logistic regression
 - Cf. [Matusov+al, 03] for matchings
 - Simple and cheap
 - Not well-calibrated for matching model
 - Ignores correlations & constraints

Conditional Likelihood Estimation

Model:
$$\mathsf{P}_{\mathbf{w}}(\mathbf{y} \mid \mathbf{x}) \coloneqq \frac{\prod_{jk} \mathsf{exp}\{\mathbf{w}^{\top} \mathbf{f}(y_{jk}, \mathbf{x})\}}{\sum_{\mathbf{y}' \in \mathcal{Y}(\mathbf{x})} \prod_{jk} \mathsf{exp}\{\mathbf{w}^{\top} \mathbf{f}(y_{jk}', \mathbf{x})\}}$$

Data

Estimate w jointly:

$$\sum_{i} \log \mathsf{P}_{\mathbf{w}}(\mathbf{y}^{i} \,|\, \mathbf{x}^{i})$$

Denominator is #P-complete
 [Valiant 79, Jerrum & Sinclair 93]

- Tractable model, intractable learning
- Need tractable learning method
 margin-based estimation

Structured large margin estimation

We want:

$$\operatorname{arg\,max}_{\mathbf{y}} \ \mathbf{w}^{\top} \mathbf{f}(\mathbf{y}, \mathbf{y}) = \operatorname{"brace"}$$

Equivalently:

Structured Loss

Large margin estimation

• Given training examples $(\mathbf{x}^i, \mathbf{y}^i)$, we want:

$$\mathbf{w}^{\top}\mathbf{f}(\mathbf{x}^{i}, \mathbf{y}^{i}) > \mathbf{w}^{\top}\mathbf{f}(\mathbf{x}^{i}, \mathbf{y}) \quad \forall \mathbf{y} \neq \mathbf{y}^{i}$$

lacktriangle Maximize margin γ

$$\mathbf{w}^{\top}\mathbf{f}(\mathbf{x}^{i},\mathbf{y}^{i}) \geq \mathbf{w}^{\top}\mathbf{f}(\mathbf{x}^{i},\mathbf{y}) + \gamma \ell(\mathbf{y}^{i},\mathbf{y}) \quad \forall \mathbf{y}$$

■ Mistake weighted margin: $\gamma \ell(\mathbf{y}^i, \mathbf{y})$

$$\ell(\mathbf{y}^i, \mathbf{y}) = \sum_p I(y_p^i \neq y_p)$$
 # of mistakes in **y**

Large margin estimation

$$\begin{aligned} & \max_{||\mathbf{w}|| \leq 1} \gamma \\ & \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}^i) \geq \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}) + \gamma \ell(\mathbf{y}^i, \mathbf{y}), \quad \forall i, \mathbf{y} \end{aligned}$$

• Eliminate γ

$$\begin{aligned} & \min_{\mathbf{w}} & \frac{1}{2} ||\mathbf{w}||^2 \\ & \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}^i) \geq \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}) + \ell(\mathbf{y}^i, \mathbf{y}), \quad \forall i, \mathbf{y} \end{aligned}$$

• Add slacks
$$\frac{\xi_i}{i}$$
 for inseparable case (hinge loss)
$$\min_{\mathbf{w}, \xi} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_i \xi_i \\ \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}^i) + \xi_i \geq \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}) + \ell(\mathbf{y}^i, \mathbf{y}), \quad \forall i, \mathbf{y}$$

Large margin estimation

Brute force enumeration

min
$$\frac{1}{2}||\mathbf{w}||^2 + C\sum_i \xi_i$$

 $\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}^i) + \xi_i \geq \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}) + \ell(\mathbf{y}^i, \mathbf{y}), \quad \forall i, \mathbf{y}$

Min-max formulation

$$\min \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \xi_i$$

$$\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}^i) + \xi_i \ge \max_{\mathbf{y}} \left[\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}) + \ell(\mathbf{y}^i, \mathbf{y}) \right], \quad \forall i$$

- 'Plug-in' linear program for inference

$$\max_{\mathbf{y}} \left[\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}) + \ell(\mathbf{y}^i, \mathbf{y}) \right]$$

Min-max formulation

$$\max_{\mathbf{y}} \left[\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^{i}, \mathbf{y}) + \ell(\mathbf{y}^{i}, \mathbf{y}) \right]$$

Structured loss (Hamming):

$$\ell(\mathbf{y}^i,\mathbf{y}) = \sum_p \ell_p(\mathbf{y}^i_p,\mathbf{y}_p)$$

(Hamming):
$$\ell(\mathbf{y}^i, \mathbf{y}) = \sum_p \ell_p(\mathbf{y}^i_p, \mathbf{y}_p)$$
$$\max_{\mathbf{y}} \left[\sum_p \mathbf{w}^\top \mathbf{f}(\mathbf{x}^i_p, \mathbf{y}_p) + \ell_p(\mathbf{y}^i_p, \mathbf{y}_p) \right]$$

LP Inference

$$\max_{\substack{\mathbf{z} \geq 0;\ \mathbf{A}\mathbf{z} < \mathbf{b};}} \mathbf{q}^{\top}\mathbf{z}$$

discrete optim.

continuous optim.

Matching Inference LP

$$\max_{\mathbf{y}} \ \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}) + \ell(\mathbf{y}^i, \mathbf{y})$$

Need Hamming-like loss

LP Duality

- Linear programming duality
 - Variables (x) constraints
 - Constraints variables
- Optimal values are the same
 - When both feasible regions are bounded

$$\begin{aligned} & \underset{\mathbf{z}}{\text{max}} & & \mathbf{c}^{\top}\mathbf{z} \\ & \text{s.t.} & & \mathbf{A}\mathbf{z} \leq \mathbf{b}; \\ & & \mathbf{z} \geq \mathbf{0}. \end{aligned}$$

$$\min_{\lambda} \quad \mathbf{b}^{\top} \lambda$$
s.t. $\mathbf{A}^{\top} \lambda \geq \mathbf{c}$
 $\lambda \geq 0$.

Min-max Formulation

$$\min_{\mathbf{w},\xi} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \xi_i$$

$$\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}^i) + \xi_i \ge \max_{\mathbf{y}} \left[\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}) + \ell(\mathbf{y}^i, \mathbf{y}) \right], \quad \forall i$$

$$\mathbf{q}_i = \mathbf{F}_i^{\mathsf{T}} \mathbf{w} + \ell_i$$

$$\mathbf{q}_i = \mathbf{F}_i^\top \mathbf{w} + \ell_i \qquad \max_{\substack{\mathbf{A}_i \mathbf{z}_i \leq \mathbf{b}_i \\ \mathbf{z}_i \geq 0}} \mathbf{q}_i^\top \mathbf{z}_i \qquad \min_{\substack{\mathbf{A}_i^\top \lambda_i \geq \mathbf{q}_i \\ \lambda_i \geq 0}} \mathbf{b}_i^\top \lambda_i$$

$$\mathsf{LP duality}$$

$$\min_{\mathbf{w}, \xi, \lambda} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \xi_i$$
s.t.
$$\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^i, \mathbf{y}^i) + \xi_i \ge \mathbf{b}_i^{\top} \lambda_i,$$

$$\mathbf{A}_i^{\top} \lambda_i \ge \mathbf{q}_i; \quad \lambda_i \ge 0$$

Min-max formulation summary

$$\min_{\mathbf{w},\lambda} \frac{1}{2} ||\mathbf{w}||^2 + C \left(\sum_{i} \mathbf{b}_{i}^{\top} \lambda_{i} - \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}^{i}, \mathbf{y}^{i}) \right)$$
s.t. $\mathbf{A}_{i}^{\top} \lambda_{i} \geq \mathbf{F}_{i}^{\top} \mathbf{w} + \ell_{i}; \quad \lambda_{i} \geq 0, \ \forall i.$

3D Mapping

Data provided by: Michael Montemerlo & Sebastian Thrun

Label: ground, building, tree, shrub

Before and After

Before Decoding

After Decoding

Before and After

Before Decoding

After Decoding

