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We have talked about

Nearest Neighbor
Naive Bayes
Logistic Regression
Boosting

We saw face detection



Support Vector Machines
(SVM)



Which one is the best?
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« maximum margin solution: most stable under perturbations of the inputs



Linear classifiers — How to find the best?
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V.X =

W j V(j) X(j)

Max Margin
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Solution
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Support vector machines (SVMs)
.1 9 .
min g [l | min [|w]
Vi (w.x; +b)y; > 1
Solve efficiently by quadratic
programming (QP)

— Well-studied solution algorithms

— Not simple gradient ascent, but close

Hyperplane defined by support
vectors

— Could use them as a lower-dimension
basis to write down line, although we
haven’t seen how yet

— More on this later

Non-support Vectors:
« everything else Support Vectors:

* moving them will not || ° data points on the
change w canonical lines




Soft Margin

* the points can be linearly separated but
there is a very narrow margin

° o * but possibly the large margin solution is
% ,' '. AAAAA better, even though one constraint is violated
® o, A AAA ,
¢ .. ° .A AAA
A AA
A

In general there is a trade off between the margin and the number of
mistakes on the training data



Introducing Slack Variables
g}ggHw\HC;ﬁj

Vi (w.x; +b)y; > 1 —¢;
V3§ =20

e Every constraint can be satisfied if &; is sufficiently large

e (' is a regularization parameter:
— small C allows constraints to be easily ignored — large margin
— large C' makes constraints hard to ignore — narrow margin

— C = > enforces all constraints: hard margin

e [ his is still a quadratic optimization problem and there is a
unigue minimum. Note, there is only one parameter, C.



What about multiple classes?




One against All

Learn 3 classifiers:
* +vs{0,-}, weights w,
e -vs{0,+}, weights w_
* 0vs{+,-}, weights w,
Output for x:

y = argmax; w..X

Any other way?

Any problems?



Learn 1 classifier: Multiclass SVM

Simultaneously learn 3

sets of weights:

e How do we
guarantee the
correct labels?

* Need new
constraints!

For all possible classes:
W(yj).Xj + p¥) > W(y’)_Xj + b6 1, vy £ yi, V7



What if the data is not linearly separable?

<a:(1), L ’ngm)> — m features
y; € {—1,4+1} — class

Add More Features!!!
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SVM with a polynomial
Kernel visualization

Created by:
Udi Aharoni




Non-Linear SVM
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So What?!!!
Logistic Regression

H(w) =) (wip(z;) + b)y; — In(1 4 e ) +0)
j
— No Large Margin
— No Quadratic Programming

— Concave Optimization



Dual Form (Lagrange Multiplier)

n f(6)
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Dual Form

e Plug in the new definition of w into the Lagrangian and simplify

L(wW,b, ) = Zaz——ZZyzyja ozjx X; — bZazyz

71=1 =1

but >, ay; = 0. Thus

n 1 n n
L(w,b,ax) = Z = Z Z Uil oy, X;
i=1 j=1 i=1
e Putting everything together get the dual problem optimization problem

max Z Q; — — Z Zyzyjoz ozjx X

jlzl

subject to a; > O fore =1,...,n and Zaiyizo



Implicit Mapping

Recall that the SVM solution depends only on the dot product (x;,x;)
between training examples.

Non-linear separable: K(Xiaxj) — <¢(XZ)7¢(X9)>

(azlxl\

T12o K(x,2) =¥(x)"(z) = Z Z(%%)(zizj)
ili?’ 2:1dj:1 ]

b(x) = CUz:B; = ;%%) (; wjzj) = (XTZ
T3T2 K(x,z) = (x'z)?
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Kernel Function



Popular Kernel Functions

Polynomial kernels
p
K(x,z) = (XTZ -+ 1)
The degree of the polynomial is a user-specified parameter.

Radial basis function kernels

oo

k
Ix — z||? _Zl Ix =22
K(x,z) =exp | — 202 - Ll 252

k=0

The width o is a user-specified parameter. This kernel corresponds to an
infinite dimensional feature mapping .

Sigmoid Kernel
K(x,z) = tanh (ﬁngz 4+ 51>

Active Research !!



Visual Kernels

Pyramid Match Kernel [Graumen et al. 03]

: e Can any similarity measure
: . be considered as kernel?
» No, it should satisfy Mercer conditions.

z\/\
\l/

optumal partial
matching

max E S(x;. w(x;))
T X—Y '
x,eX
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Example: Dalal-Triggs pedestrian
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1. Extract fixed-sized (64x128 pixel) window at
each position and scale

2. Compute HOG (histogram of gradient)
features within each window

3. Score the window with a linear SVM classifier

4. Perform non-maxima suppression to remove
overlapping detections with lower scores
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Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPRO5
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Slides by Pete Barnum

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR0O5



Normalize
—»| gamma &
colour

Input
image

-

Compute
gradients

Weighted vote
into spatial &
orientation cells

—

Contrast normalize
over overlapping
spatial blocks

Collect HOG's
over detection
window

Y

Linear
SVM

Person /
—3» non-person
classification

1

e Tested with

— RGB
— LAB

—

— Grayscale

Slightly better performance vs. grayscale




Normalize Weighted vote Contrast normalize Collect HOG's
Input Compute Linear
. gamma & | » into spatial &  |—>| over overlapping  |—| over detection >
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Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR0O5



Normalize Weighted vote Contrast normalize Collect HOG’s . Person/
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1

* Histogram of gradient
orientations

Orientation: 9 bins (for

Histograms in 8x8
unsigned angles)

pixel cells
90
135 45
180 0
225 315
270

frequency

— Votes weighted by magnitude

orientation

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPRO5
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Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPRO5



Person /
—3» non-person

classification

# orientations

Normalize Weighted vote Contrast normalize Collect HOG’s .
i‘::}'":“(_—» gamma & [ g:;lgg l:é into spatial &  [—| over overlapping »| over detection —» é‘{";;‘r
a8 colour ' orientation cells spatial blocks window
# features=15x7x9x4 =3780
X=

Slides by Pete Barnum
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Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPRO5



Training set




Input Normalize
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>
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Margin

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR0O5



Normalize Weighted vote Contrast normalize Collect HOG's Person /
Input —»| gamma & | > g&lggﬂz —>| into spatial &  |—>| over overlapping  |—| over detection > g?l:? I non-person

A colour orientation cells spatial blocks window classification

1

C 016 =wTz —b
sign(0.16) = 1

— > pedestrian

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPRO5



Detection examples







Each window is separately classified
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Problem formulation

{ airplane, bird, motorbike, person, sofa }

Desired output



Evaluating a detector

Test image (previously unseen)



First detection ...

v - — e i - - {.
> g A e s %
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L] ‘person’ detector predictions



Second detection ...
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L] ‘person’ detector predictions



Third detection ...
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L] ‘person’ detector predictions



Compare to ground truth

- - . e o e
: S R - -~ -~ ¢ s i 5
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L] ‘person’ detector predictions
] ground truth ‘person’ boxes



Sort by confidence

true false

positive positive

(IoU>=0.5) (10U<0.5)
Intersection Over Union (I0U)

Rredicted person
1 B 'bounding box

50 ([QU 0O (0 O
10 Ol 0O O0OQg L[]

loU=0.5 loUu=0.7 lou=0.9

Area of overlap

[t

Area of union




Evaluation metric

0.6 0.5
/"’;\ a4

precision@t=#true positives@t/#true positives@ t+# false positives@t

+ X

recall@t=#true positives@t/# ground truth objects



Evaluation metric
0.6 0.5

0.2
X

Average Precision (AP)

-

o)

/)]

0

O,

a .| I mean AP over classes
AP (MAP)

0 0.1 0.2 03 04 05 08 07 08 09 1

recall



What about this one?

| S T—

Can the model we
trained for pedestrians
detect the person in this
image?




Specifying an object model

Statistical Template in Bounding Box
—  Object is some (x,y,w,h) in image
—  Features defined wrt bounding box coordinates

Template Visualization

Images from Felzenszwalb












When do statistical templates make
sense’?

~ Caltech 101 Average Object Images



Deformable objects

Images from Caltech-256

Slide Credit: Duan Tran



Deformable objects

Images from D. Ramanan’s dataset

Slide Credit: Duan Tran



Parts-based Models

Define objects by collection of parts modeled by
1. Appearance
2. Spatial configuration

R

s’r_;"r /‘s Q‘\ A
;\"'” ) 1“"”)(

SoanG A

Slide credit: Rob Fergus



How to model spatial relations?
* One extreme: fixed template



How to model spatial relations?

* Another extreme: bag of words



ISM:Implicit Shape Model for
Detection

visual codeword with
displacement vectors

training image

Leibe. et al [ECCV 2004]
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ISM: Implicit Shape Model

Training overview

Start with bounding boxes and (ideally) segmentations of

objects

Extract local features (e.g., patches or SIFT) at interest points

on objects

Cluster features to create codebook

Record relative bounding box and segmentation for each
codeword

B P B e B e B
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Training Images Local Appearance Codebook
(+Reference Segmentations) Features (Cluster Centers)
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s SRRSALARLARYRAS
fflllil’l&’l;ll:
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Spatial Occurrence Distributions
(non-parametric)



Implicit Shape Model for Detection

Matched Codebook Probabilistic
Interest Points Entries Voting

Voting Space
(continuous)

Detected

Backprojected Backprojection
Hypotheses of Maxima

Liebe and Schiele, 2003, 2005



Example: Results on Cows

K. Grauman, B. Leibe



Example: Results on Cows

T

K. Grauman, B. Leibe



Example: Results on Cows

K. Grauman, B. Leibe



Example: Results on Cows




Example: Results on Cows




Example: Results on Cows




Example: Results on Cows




ISM: Detection Results

 Qualitative Performance
— Robust to clutter, occlusion, noise, low contrast

K. Grauman, B. Leibe



Explicit Models
Hybrid template/parts model

Detections

Template Visualization

root filters part filters deformation

coarse resolution  finer resolution models Felzenszwalb et al. 2008



How to model spatial relations?

* Explicit Models
* Too expensive




How to model spatial relations?
e Star-shaped model




How to model spatial relations?

e Star-shaped model




How to model spatial relations?

* Tree-shaped model

O
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How to model spatial relations?

* Many others...

X6 h
a) Constellation b) Star shape c) k-fan (k =2) d) Tree
Fergus et al. ’03 Leibe et al. '04, ‘08 Crandall et al. ‘05 Felzenszwalb &
Fei-Fei et al. ‘03 Crandall et al. ‘05 Huttenlocher ‘05

Fergus et al. ’05
C}ED Center { | @K - @ -

& ® & E x\ w i \{l_
o Shob dw O "

e) Bag of features f) Hierarchy g) Sparse flexible model

Csurka ’04 Bouchard & Triggs ‘05 Carneiro & Lowe ‘06
Vasconcelos ‘00

from [Carneiro & Lowe, ECCV’06]






Pictorial Structures Model

Part = oriented rectangle

q

D

Spatial model = relative size/orientation

1

FelZenszwalb and Huttenlocher 2005



Pictorial Structures Model

(L|1.60) (Hp (L|l;, u; H p(l;. [J.(-I.J.))
/ (‘vl—.'vj)EE

Appearance likelihood Geometry likelihood



Modeling the Appearance

* Any appearance model could be used
— HOG Templates, etc.
— Here: rectangles fit to background subtracted binary map

e Can train appearance models independently (easy,
not as good) or jointly (more complicated but better)

P(L|1,0) (Hl)(“i-“z') 11 1)(11'-/1('1'1))
=1

(vi,vj)EE

Appearance likelihood Geometry likelihood



Part representation

* Background subtraction




Pictorial structures model

Optimization is tricky but can be efficient

V2

L* = arg lllLill (Z 7721'(:[,") —+ Z (-]z'j (]z [] )) Vi

* Foreach |, find best |,:
Besta(/7) = m[in [le(lz) + djz(lz,lz)]

* Remove v,, and repeat with smaller tree, until
only a single part
* For k parts, n locations per part, this has complexity

of O(kn?), but can be solved in ~O(nk) using
generalized distance transform



Pictorial Structures

Model is represented by a graph G = (V, E).
— V ={wvq,...,vn} are the parts.

— (v;,v;) € E indicates a connection between parts.

m;(l;) is the cost of placing part i at location ;.

d;;(l;,1;) is a deformation cost.
Optimal location for object is given by L* = (I7,...,1}),
1

L*=argmin | Y m;)+ Y dij(li, 1)
L i=1 (vi,v;)€E



,n,
L*=argmin [ Y m;@)+ > d;;(1,15)
L i=1 (vi,vj)EE

e n parts and h locations gives h™ configurations.

91



head filter

a) Constellation [13]

Complexity O(h")
h: number of possible part placements
n: number of parts

92



Efficient minimization

n
L*=argmin [ Y m;(;)+ > di(1;,15)

L i=1 (vi,v)EE
e n parts and h locations gives h™ configurations.

e If graph is a tree we can use dynamic programming.

— O(nh?), much better but still slow.

93
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head filter

ML
i

Complexity O(nh?)



Efficient minimization

n
L*=argmin [ Y m;(;) + > di(l;,15)

L i=1 (vi,v)EE
e n parts and h locations gives h™ configurations.

e If graph is a tree we can use dynamic programming.

— O(nh?), much better but still slow.
o If d;;(l;,1;) = ||T;;(l;) — T;;(1;)||? can use DT.

— O(nh), as good as matching each part separately!!

95



Distance transform

Given a set of points on a grid P C G,
the quadratic distance transform of P is,

D — min|lg — pl|?
r(q) pepllq p||

96



Generalized distance transform

Given a function f:G—R,

Dy(a) = min (lla —»l> + 1))

— for each location ¢, find nearby location p with f(p) small.

97



1D case: Dy(q) = min,eg ((a - p)? + f(»))

For each p, D¢(q) is below the parabola rooted at (p, f(p)).

98



There is a simple geometric algorithm that computes Dy(p) in
O(h) time for the 1D case.

— Similar to Graham's scan convex hull algorithm.

— about 20 lines of C code.

The 2D case is ‘“separable”, it can be solved by sequential 1D
transformations along rows and columns of the grid.

See Distance Transforms of Sampled Functions, Felzen-
szwalb and Huttenlocher.

99



Pictorial Structures: Summary

L* = arglmin (Z m;(1;) + Z dij(li-lj))

i=1 (vi,vj)EE

di; (L, ;) = || Ty (1) — Ty (15)||2

100



Results for person matching

101



Results for person matching
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Enhanced pictorial structures

EICHNER, FERRARI: BETTER APPEARANCE MODELS FOR PICTORIAL STRUCTURES 9

BMVC 2009



Deformable Latent Parts Model

Useful parts discovered during training

- -‘ ﬁ /WW | 2
Detections .ﬁ = ,
=P

|
==F

Template Visualization

root filters part filters deformation

coarse resolution  finer resolution models Felzenszwalb et al. 2008



Deformable Part Models

Root filter Part filter Quadratic

Score = F,®(p,H) + ZF.®(p,H - Zd.®,(xy)

(Zmi(li)"‘ > dij(lislj))

i=1 (‘L’,‘_.L-‘_]')EE



HOG Filters

e Array of weights for features in subwindow of HOG pyramid

e Score 1s dot product of filter and feature vector

p

B ..f Score of F at position p 1s
F- o, H)

¢(p, H) = concatenation of
HOG features from
HOG pyramid H subwindow specified by p

106



-
— Z:(})Oa"°ypn)
- %:ug po: location of root
H P1,..., Pn - location of parts
_—
|
Hi
¢ i
Image pyramid HOG feature pyramid

Multiscale model captures features at two-resolutions
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feature map

response of root filter



feature map at twice the resolution

response of part filters



n

> omi(L)+ Y di(1,15)

=1 ('vi,vj)EE

response of part filters

transformed responses



] ol
2 |-
model

feature map at twice the resolution

response of root filter

color encoding of filter
response values

_ combined score of
root locations



State-of-the-art Detector:
Deformable Parts Model (DPM)

©rasc,

= - -//’\///t.:
=KX X | ¢
Llfetlme g \ \ ST
Ach[evement

Strong low-level features based on HOG

Efficient matching algorithms for deformable part-based
models (pictorial structures)

Discriminative learning with latent variables (latent SVM)

Felzenszwalb et al., 2008, 2010, 2011, 2012



Person model
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Person detections

high scoring false positives

high scoring true positives (not enough overlap)
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root filters part filters deformation
coarse resolution finer resolution models



Car detections

high scoring true positives high scoring false positives
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Cat detections

high scoring false positives
(not enough overlap)

high scoring true positives




Person riding horse




Person riding bicycle
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mean Average Precision (mAP)

PASCAL VOC detection history
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mean Average Precision (mAP)

Part-based models & multiple
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mean Average Precision (mAP)
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mean Average Precision (mAP)
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Region-based Convolutional
Networks (R-CNNs)
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[R-CNN. Girshick et al. CVPR 2014]
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Region-based Convolutional
Networks (R-CNNs)

mean Average Precision (mAP)
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2015

~1 year

~5 years



Convolutional Neural Networks

e Qverview



Standard Neural Networks




From NNs to Convolutional NNs

Local connectivity
Shared (“tied”) weig
Multiple feature ma
Pooling

TS

DS



Convolutional NNs

* Local connectivity

compare

CNC

e Each orange unit is only connected to (3)
neighboring blue units

\




Convolutional NNs

* Shared (“tied”) weights

All orange units share the same

@ parameters

@- - @ Each orange unit computes the same
wil @ function but with a different input window
wd2

wd3



Convolutional NNs

* Convolution with 1-D filter: [Wd3 ,wi2 ,wil ]

wil

wl2
wi All orange units share the same

parameters

Each orange unit computes the same
function but with a different input window



Convolutional NNs

* Convolution with 1-D filter: [Wd3 ,wi2 ,wil ]

wil
O All orange units share the same

wi2 parameters
wd

Each orange unit computes the same
function but with a different input window



Convolutional NNs

* Convolution with 1-D filter: [Wd3 ,wi2 ,wil ]

© 0

All orange units share the same
parameters

Each orange unit computes the same
function but with a different input window



Convolutional NNs

* Convolution with 1-D filter: [Wd3 ,wi2 ,wil ]

wil
wd?2

© 00

wd

All orange units share the same
parameters

Each orange unit computes the same
function but with a different input window



Convolutional NNs

* Convolution with 1-D filter: [Wd3 ,wi2 ,wil ]

wll

. wl?2

©0 00

wd

All orange units share the same
parameters

Each orange unit computes the same
function but with a different input window



Convolutional NNs

 Multiple feature maps

All orange units share the same
parameters

Each orange unit computes the same
function but with a different input window

Feature map 2
(array of orange
units)

Feature map 1
(array of green
units)



Convolutional NNs

* Pooling (max, average)

O
:>—»O * Pooling area: 2 units
- O
o ' @ * Pooling stride: 2 units
O O 8 * Subsamples feature maps



2D input

Convolution

L

Image



Practical ConvNets

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
30%32 6@28x28

S2: f. maps
6@14x14

Full coanection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Gradient-Based Learning Applied to Document Recognition,
Lecun et al., 1998



Demo

* http://cs.stanford.edu/people/karpathy/
convnetjs/demo/mnist.html

* ConvNetlJS by Andrej Karpathy (Ph.D. student at
Stanford)

Software libraries
» Caffe (C++, python, matlab)
 Torch7 (C++, lua)

 Theano (python)



Core idea of “deep learning”

* |nput: the “raw” signal (image, waveform, ...)

* Features: hierarchy of features is learned from
the raw input



Structure

Recognition using Visual Phrases , CVPR 2011



Structured Prediction

* Prediction of complex outputs
— Structured outputs: multivariate, correlated, constrained

D-fariingy,,

S : " I rJ I

* Novel, general way to solve many learning problems



Handwriting Recognition

X Y

h."".ﬂ{"E' == brace

Sequential structure



Object Segmentation

Spatial structure



Local Prediction

1141

brace y

Classify using local information
%) Ignores correlations & constraints!




[]

Ml tree

[]

M ground




Structured Prediction

HAlEE -
. B

brace y

e Use local information
* Exploit correlations






Structured Models

h(x) = arg max score(X,y) <= scoring function
yeY(x)

4

space of feasible outputs

Mild assumptions:
—— _ T
score(x,y) =w f(x,y) => w f(xp,yp)
p

linear combination

sum of part scores



Supervised Structured Prediction

Model: Pw(y | x) o< exp{w ' f(x,y)}
Data Learning Prediction
(x1,y1)
5 Estimate w arg max Pw(y|x)
(", y") i
Example:
Local Margin Weighted matching
(ignores structure) Generally:
Combinatorial
Likelihood opﬁmization

(can be intractable)



Model:

Data

Local Estimation

Pw(y|x) o< |] eXD{WTf(yjm X)}
ik

* Treat edges as independent decisions

* Estimate w locally, use globally
— E.g., naive Bayes, SVM, logistic regression
— Cf. [Matusov+al, 03] for matchings

— Simple and cheap
— Not well-calibrated for matching model
— lgnores correlations & constraints



Conditional Likelihood Estimation

[Tk exp{w "f(y;x, x)}
Yyrey(x) ik exp{w M (y),, x)}

* Estimate w jointly:
Z log Pw(yi | Xi)
()

* Denominator is #P-complete W E‘
[Valiant 79, Jerrum & Sinclair 93]

MOdek Pw(y | X) —

Data

Tractable model, intractable learning

* Need tractable learning method
¥ | margin-based estimation




Structured large margin estimation

 We want:

arg maxXy WTf(,y) — “brace”

* Equivalently:
w ' f(HZHEa, “brace”) > w'f(HEHE, “s0322")

w ! f(E , “brace”) > w ' (A ,“22aab”) a ot
d 101:

WTf( , “brace”) > WTf(m , “z2222” ) )



Structured Loss




Large margin estimation

* Given training examples(Xi, yi), we want:
wif(x!,y) >w!f(x',y) Vy#y’

s Maximize margin 7Y

m Mistake weighted margin: vﬁ(yi, y)

0(y"y) = >, I(y, # yp)  #of mistakes iny

*Collins 02, Altun et al 03, Taskar 03



Large margin estimation

max -y
[[wi]<1

w f(xy) > w! (' y) + G y), Viy
* Eliminate ~

1
min  =||w||?
w2
w f(x',y") >w' f(x'y) + Ly y), Viy

e Add slacks1 $i for inseparable case (hinge loss)
min - Sliwl*+ 03¢

1
w!f(xhy) + & >wlf(xhy) + 40 y), Viy



Large margin estimation

e Brute force enumeration
, 1
min §|IWII2 +C> ¢

(/
w!f(x,y) +&>w' f(xy) +0yhy), Viy
e Min-max formulation

_ 1
min - _|Iwl?+C 3¢
()

w!f(x' ") +& > max [w' f(x',y) + £, y)], Vi

1 . ? . .
— Plug-in" linear program for inference

max [w'f(x'y) + £(y%, y)]



Min-max formulation

max [w ' f(x',y) + £(y" y)]

Structured loss (Hamming): ((y'y) = Zﬁp(}’fy,}’p)
_ p
Inference max S w  E(x, yp) + (Y, ¥p)
- p -
LP Inference  max qu
z>0;
Az<b:

Key step: max <(mmmmm> max

discrete optim. continuous optim.



Matching Inference LP

MaxXx
y
Need Hamming-like loss
Max
Z
En
vertu
de
les
What k nouvelles
is propositions S. t .
the ,
anticipated quel
cost est
of y]k‘ le
collecting colt d
fees > . prévu egree
under ] k de
the perception
new de
proposal le

? J droits
?

w ! f(x',y) + £(y%,y)

S 2 [wTEGx) + € }
7k

q=FTw—I—€

> %k <1
k

> %k <1
j

Az < Db



LP Duality

* Linear programming duality
— Variables
— Constraints

 Optimal values are the same
— When both feasible regions are bounded

W

constraints

4

variables

A
“ ot ATaze




Min-max Formulation

1. 5
min ﬂwl+c;&

wlf(x',y") + & > max [w ' f(x",y) + (0", y)], Vi

\( 7/

g = F. max q, z; min b, \:
G=EwEh Ajch; ’“AT,\M t
........................................... . L N>

220 A;i=0

LP duality




Min-max formulation summary

N ST T Teri o
min §||W|| ‘|‘C(; b; A\j —w f(XZ,YZ)>

st. A/N>F'w44; X\ >0, Vi

*Taskar et al 04



3D Mapping

Data provided by: Michael Montemerlo & Sebastian Thrun

Label: ground, building, tree, shrub
Training: 30 thousand points Testing: 3 million points















Before and After

Before Decoding After Decoding

WJJ e

mﬁ;

erson

person_riding_bicycle _' person_riding_bicycle [

¥
il
/

: |‘l g
person | o

i‘!

person el

Recognition using Visual Phrases , CVPR 2011



Before and After

Before Decoding After Decoding

person
person

person " 3 & person

Recognition using Visual Phrases , CVPR 2011



