Image Stitching

Ali Farhadi CSE 576

Several slides from Rick Szeliski, Steve Seitz, Derek Hoiem, and Ira Kemelmacher

 Combine two or more overlapping images to make one larger image

Slide credit: Vaibhav Vaish

How to do it?

- Basic Procedure
 - 1. Take a sequence of images from the same position
 - 1. Rotate the camera about its optical center
 - 2. Compute transformation between second image and first
 - 3. Shift the second image to overlap with the first
 - 4. Blend the two together to create a mosaic
 - 5. If there are more images, repeat

- 1. Take a sequence of images from the same position
 - Rotate the camera about its optical center

2. Compute transformation between images

- Extract interest points
- Find Matches
- Compute transformation

3. Shift the images to overlap

4. Blend the two together to create a mosaic

5. Repeat for all images

How to do it?

- Basic Procedure
- Take a sequence of images from the same position
 - 1. Rotate the camera about its optical center
 - 2. Compute transformation between second image and first
 - 3. Shift the second image to overlap with the first
 - 4. Blend the two together to create a mosaic
 - 5. If there are more images, repeat

Compute Transformations

- Extract interest points
- Find good matches
 - Compute transformation

Let's assume we are given a set of good matching interest points

Image reprojection

- The mosaic has a natural interpretation in 3D
 - The images are reprojected onto a common plane
 - The mosaic is formed on this plane

Example

Image reprojection

 Rather than thinking of this as a 3D reprojection, think of it as a 2D image warp from one image to another

Motion models

- What happens when we take two images with a camera and try to align them?
- translation?
- rotation?
- scale?
- affine?
- Perspective?

Recall: Projective transformations

• (aka homographies)

 $\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} \qquad \begin{aligned} x' &= u/w \\ y' &= v/w \end{aligned}$

Parametric (global) warping

• Examples of parametric warps:

translation

rotation

aspect

affine

perspective

2D coordinate transformations

- translation: x' = x + t x = (x,y)
- rotation: x' = R x + t
- similarity: **x'** = s **R x** + **t**
- affine: **x'** = **A x** + **t**
- perspective: $\underline{x}' \cong H \underline{x}$ $\underline{x} = (x,y,1)$ (\underline{x} is a homogeneous coordinate)

Image Warping

Given a coordinate transform x' = h(x) and a source image f(x), how do we compute a transformed image g(x') = f(h(x))?

Forward Warping

- Send each pixel f(x) to its corresponding location x' = h(x) in g(x')
 - What if pixel lands "between" two pixels?

Forward Warping

- Send each pixel f(x) to its corresponding location x' = h(x) in g(x')
 - What if pixel lands "between" two pixels?
 - Answer: add "contribution" to several pixels, normalize later (*splatting*)

Inverse Warping

- Get each pixel g(x') from its corresponding location x' = h(x) in f(x)
 - What if pixel comes from "between" two pixels?

Inverse Warping

- Get each pixel g(x') from its corresponding location x' = h(x) in f(x)
 - What if pixel comes from "between" two pixels?
 - Answer: *resample* color value from *interpolated* source image

Interpolation

- Possible interpolation filters:
 - nearest neighbor
 - bilinear
 - bicubic (interpolating)

Motion models

Translation

Affine

2 unknowns

6 unknowns

8 unknowns

Finding the transformation

- Translation = 2 degrees of freedom
- Similarity = 4 degrees of freedom
- Affine = 6 degrees of freedom
- Homography = 8 degrees of freedom
- How many corresponding points do we need to solve?

Simple case: translations

How do we solve for $(\mathbf{x}_t, \mathbf{y}_t)$?

Displacement of match $i\left(\mathbf{ar{x}}_{i}^{\prime}-\mathbf{x}_{i},\mathbf{y}_{i}^{\prime}-\mathbf{y}_{i}
ight)$

$$(\mathbf{x}_t, \mathbf{y}_t) = \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}'_i - \mathbf{x}_i, \frac{1}{n} \sum_{i=1}^n \mathbf{y}'_i - \mathbf{y}_i\right)$$

$$\mathbf{x}_i + \mathbf{x}_t = \mathbf{x}'_i$$

 $\mathbf{y}_i + \mathbf{y}_t = \mathbf{y}'_i$

- System of linear equations
 - What are the knowns? Unknowns?
 - How many unknowns? How many equations (per match)?

$$egin{array}{rcl} \mathbf{x}_i + \mathbf{x_t} &=& \mathbf{x}_i' \ \mathbf{y}_i + \mathbf{y_t} &=& \mathbf{y}_i' \end{array}$$

- Problem: more equations than unknowns
 - "Overdetermined" system of equations
 - We will find the *least squares* solution

Least squares formulation

• For each poin $(\mathbf{x}_i, \mathbf{y}_i)$

$$egin{array}{rcl} \mathbf{x}_i + \mathbf{x_t} &=& \mathbf{x}'_i \ \mathbf{y}_i + \mathbf{y_t} &=& \mathbf{y}'_i \end{array}$$

• we define the *residuals* as

$$r_{\mathbf{x}_i}(\mathbf{x}_t) = (\mathbf{x}_i + \mathbf{x}_t) - \mathbf{x}'_i$$

$$r_{\mathbf{y}_i}(\mathbf{y}_t) = (\mathbf{y}_i + \mathbf{y}_t) - \mathbf{y}'_i$$

Least squares formulation

• Goal: minimize sum of squared residuals $C(\mathbf{x}_t, \mathbf{y}_t) = \sum_{i=1}^n \left(r_{\mathbf{x}_i}(\mathbf{x}_t)^2 + r_{\mathbf{y}_i}(\mathbf{y}_t)^2 \right)$

- "Least squares" solution
- For translations, is equal to mean displacement

Least squares

At = b

• Find **t** that minimizes

$$||\mathbf{At} - \mathbf{b}||^2$$

• To solve, form the *normal equations*

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{t} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$$
$$\mathbf{t} = \left(\mathbf{A}^{\mathrm{T}}\mathbf{A}\right)^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{b}$$

Solving for translations

Using least squares

 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ \vdots \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_t \\ y_t \end{bmatrix} = \begin{bmatrix} x'_1 - x_1 \\ y'_1 - y_1 \\ x'_2 - x_2 \\ y'_2 - y_2 \\ \vdots \\ x'_n - x_n \\ y'_n - y_n \end{bmatrix}$ 2*n* x 2 2 x 1 2*n* x 1

Affine transformations

$$\begin{bmatrix} x'\\y'\\1 \end{bmatrix} = \begin{bmatrix} a & b & c\\d & e & f\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$$

- How many unknowns?
- How many equations per match?
- How many matches do we need?

Affine transformations

• Residuals:

 $r_{x_i}(a, b, c, d, e, f) = (ax_i + by_i + c) - x'_i$ $r_{y_i}(a, b, c, d, e, f) = (dx_i + ey_i + f) - y'_i$

• Cost function:

$$C(a, b, c, d, e, f) = \sum_{i=1}^{n} \left(r_{x_i}(a, b, c, d, e, f)^2 + r_{y_i}(a, b, c, d, e, f)^2 \right)$$

Affine transformations

Matrix form

Solving for homographies

$$\begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

$$\begin{aligned} x'_i &= \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}} \\ y'_i &= \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}} \end{aligned}$$

 $\begin{aligned} x_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{00}x_i + h_{01}y_i + h_{02} \\ y_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{10}x_i + h_{11}y_i + h_{12} \end{aligned}$

Solving for homographies

 $\begin{aligned} x_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{00}x_i + h_{01}y_i + h_{02} \\ y_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{10}x_i + h_{11}y_i + h_{12} \end{aligned}$

Direct Linear Transforms

Defines a least squares problem: minimize $\|\mathbf{A}\mathbf{h} - \mathbf{0}\|^2$

- Since \mathbf{h} is only defined up to scale, solve for unit $\mathbf{v}\mathbf{h}$:tor
- Solution: $\hat{\mathbf{h}}$ = eigenvector $\mathbf{A}^T \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

Matching features

<u>RA</u>ndom <u>SA</u>mple <u>C</u>onsensus

<u>RA</u>ndom <u>SA</u>mple <u>C</u>onsensus

Least squares fit

RANSAC for estimating homography

- RANSAC loop:
- 1. Select four feature pairs (at random)
- 2. Compute homography H (exact)
- 3. Compute inliers where $||p_i', Hp_i|| < \varepsilon$
- Keep largest set of inliers
- Re-compute least-squares *H* estimate using all of the inliers

 Rather than homography H (8 numbers) fit y=ax+b (2 numbers a, b) to 2D pairs

- Pick 2 points
- Fit line
- Count inliers

- Pick 2 points
- Fit line
- Count inliers

- Pick 2 points
- Fit line
- Count inliers

- Pick 2 points
- Fit line
- Count inliers

- Use biggest set of inliers
- Do least-square fit

RANSAC

Red:

rejected by 2nd nearest neighbor criterion Blue:

Ransac outliers Yellow:

inliers

Computing homography

 Assume we have four matched points: How do we compute homography H?

Normalized DLT

- 1. Normalize coordinates for each image
 - a) Translate for zero mean
 - b) Scale so that average distance to origin is ~sqrt(2)

 $\widetilde{\mathbf{x}} = \mathbf{T}\mathbf{x}$ $\widetilde{\mathbf{x}}' = \mathbf{T}'\mathbf{x}'$ This makes problem better behaved numerically

- 2. Compute \approx using DLT in normalized coordinates 3. Unnormalize:

$$\mathbf{H} = \mathbf{T}'^{-1} \widetilde{\mathbf{H}} \mathbf{T}$$

$$\mathbf{x}_i' = \mathbf{H}\mathbf{x}_i$$

Computing homography

• Assume we have matched points with outliers: How do we compute homography H?

Automatic Homography Estimation with RANSAC

- 1. Choose number of samples N
- 2. Choose 4 random potential matches
- 3. Compute H using normalized DLT
- 4. Project points from x to x' for each potentially matching pair: $\mathbf{x}'_i = \mathbf{H}\mathbf{x}_i$
- 5. Count points with projected distance < t
 - E.g., t = 3 pixels
- 6. Repeat steps 2-5 N times
 - Choose H with most inliers

Automatic Image Stitching

- 1. Compute interest points on each image
- 2. Find candidate matches
- 3. Estimate homography H using matched points and RANSAC with normalized DLT
- 4. Project each image onto the same surface and blend

RANSAC for Homography

Initial Matched Points

RANSAC for Homography

Final Matched Points

RANSAC for Homography

Image Blending

Feathering

Effect of window (ramp-width) size

Effect of window size

0

Good window size

"Optimal" window: smooth but not ghosted

• Doesn't always work...

Pyramid blending

Create a Laplacian pyramid, blend each level

• Burt, P. J. and Adelson, E. H., <u>A multiresolution spline with applications to image mosaics</u>, ACM Transactions on Graphics, 42(4), October 1983, 217-236.

Laplacian image blend

- 1. Compute Laplacian pyramid
- 2. Compute Gaussian pyramid on *weight* image
- 3. Blend Laplacians using Gaussian blurred weights
- 4. Reconstruct the final image

Multiband Blending with Laplacian Pyramid

- At low frequencies, blend slowly
- At high frequencies, blend quickly

Left pyramid

blend

Right pyramid

Multiband blending

Laplacian pyramids

- 1.Compute Laplacian pyramid of images and mask
- 2.Create blended image at each level of pyramid
- 3. Reconstruct complete image

(a) Original images and blended result

(b) Band I (scale 0 to $\sigma)$

(c) Band 2 (scale σ to 2σ)

(d) Band 3 (scale lower than 2σ)

Blending comparison (IJCV 2007)

(a) Linear blending

(b) Multi-band blending

Poisson Image Editing

sources/destinations

- seamless cloning
- For more info: Perez et al, SIGGRAPH 2003

http://research.microsoft.com/vision/cambridge/papers/perez_siggraph03.pdf

Alpha Blending

Encoding blend weights: $I(x,y) = (\alpha R, \alpha G, \alpha B, \alpha)$

color at p = $\frac{(\alpha_1 R_1, \ \alpha_1 G_1, \ \alpha_1 B_1) + (\alpha_2 R_2, \ \alpha_2 G_2, \ \alpha_2 B_2) + (\alpha_3 R_3, \ \alpha_3 G_3, \ \alpha_3 B_3)}{\alpha_1 + \alpha_2 + \alpha_3}$

Implement this in two steps:

- 1. accumulate: add up the (α premultiplied) RGB α values at each pixel
- 2. normalize: divide each pixel's accumulated RGB by its $\boldsymbol{\alpha}$ value
Choosing seams

- Easy method
 - Assign each pixel to image with nearest

Choosing seams

- Easy method
 - Assign each pixel to image with nearest center
 - Create a mask:
 - Smooth boundaries ("feathering"):
 - Composite

Choosing seams

 Better method: dynamic program to find seam along well-matched regions

Illustration: <u>http://en.wikipedia.org/wiki/File:Rochester_NY.j</u>

Gain compensation

- Simple gain adjustment
 - Compute average RGB intensity of each image in overlapping region
 - Normalize intensities by ratio of averages

Blending Comparison

(b) Without gain compensation

(c) With gain compensation

(d) With gain compensation and multi-band blending

Recognizing Panoramas

Some of following material from Brown and Lowe 2003 talk

Brown and Lowe 2003, 2007

Recognizing Panoramas

Input: N images

- 1. Extract SIFT points, descriptors from all images
- 2. Find K-nearest neighbors for each point (K=4)
- 3. For each image
 - a) Select M candidate matching images by counting matched keypoints (m=6)
 - b) Solve homography H_{ij} for each matched image

Recognizing Panoramas

Input: N images

- 1. Extract SIFT points, descriptors from all images
- 2. Find K-nearest neighbors for each point (K=4)
- 3. For each image
 - a) Select M candidate matching images by counting matched keypoints (m=6)
 - b) Solve homography H_{ii} for each matched image
 - c) Decide if match is valid ($n_i > 8 + 0.3 n_f$)

inliers

keypoints in overlapping area

Recognizing Panoramas (cont.)

(now we have matched pairs of images)4. Find connected components

Finding the panoramas

Finding the panoramas

Finding the panoramas

Recognizing Panoramas (cont.)

(now we have matched pairs of images)

- 4. Find connected components
- 5. For each connected component
 - a) Solve for rotation and f
 - b) Project to a surface (plane, cylinder, or sphere)
 - c) Render with multiband blending