Descriptors III

CSE 576 Ali Farhadi

Many slides from Larry Zitnick, Steve Seitz

How can we find corresponding points?

How can we find correspondences?

SIFT descriptor

Full version

- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe

Local Descriptors: Shape Context

Belongie & Malik, ICCV 2001

K. Grauman, B. Leibe

Bag of Words

codewords

Another Representation: Filter bank

Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution

What about Scenes?

Demo : Rapid image understanding By Aude Oliva

Instructions: 9 photographs will be shown for half a second each. Your task is to memorize these pictures

Which of the following pictures have you seen ?

If you have seen the image clap your hands once

If you have not seen the image do nothing

You have seen these pictures

You were tested with these pictures

In a glance, we remember the meaning of an image and its global layout but some objects and details are forgotten

Which are the important elements?

Different content (i.e. objects), different spatial layout

Which are the important elements?

cabinets ^{ceiling} cabinets	cabinets ceiling cabinets	ceiling
window window window seat seat seat seat seat seat seat seat seat seat	window seat seat windo seat seat seat seat seat seat seat seat	wall screen w seat seat seat seat seat seat seat seat seat seat seat seat seat seat seat seat seat seat seat

Similar objects, and similar spatial layout

Different lighting, different materials, different "stuff"

Holistic scene representation: Shape of a scene

- Finding a low-dimensional "scene space"
- Clustering by humans
 - Split images into groups
 - ignore objects, categories

Table	1.	Spatial	envelope	properties	of
enviro	nme	ntal scer	nes.		

Property	S1	S2	S 3	Total
Naturalness	65	12	0	77
Openness	6	53	24	83
Perspective	6	18	29	53
Size	0	0	47	47
Diagonal plane	0	12	29	41
Depth	18	12	29	59
Symmetry	0	0	29	29
Contrast	0	0	18	18

Results are in %, for each of the three experimental steps. The total represents the percent of times the attribute has been used regardless of the stage of the experiment.

- Naturalness
 - natural vs. man-made environments

- Openness
 - decreases as number of boundary elements increases

- Roughness
 - size of elements at each spatial scale, related to fractal dimension

- Expansion (man-made environments)
 - depth gradient of the space

- Ruggedness (natural environments)
 - deviation of ground relative to horizon

Scene statistics

- DFT (energy spectrum)
 - throw out phase function (represents local properties)
- Windowed DFT (spectrogram)
 - Coarse local information
 - 8x8 grid for these results

Scene statistics

Figure 2. The first eight principal components for energy spectra of real-world scenes. The frequency $f_x = f_y = 0$ is located at the center of each image.

Figure 3. The first six principal components of the spectrogram of real-world scenes. The spectrogram is sampled at 4×4 spatial location for a better visualization. Each subimage corresponds to the local energy spectrum at the corresponding spatial location.

Scene classification from statistics

- Different scene categories have different spectral signatures
 - Amplitude captures roughness
 - Orientation captures dominant edges

Scene classification from statistics

- Open environments have non-stationary second-order statistics
 - support surfaces
- Closed environments exhibit stationary second-order statistics

b) a) C ď e \odot \odot \odot 0 0 0 ۲ (。) (•) (•) (•) ତ \otimes 0 \odot 0 0 $\langle \circ \rangle$ \odot 0 ତ 6 0 0 $\langle \circ \rangle$ $\langle \circ \rangle$ 0 0 0 0 0 0 0 0 \odot \odot \otimes \otimes 0 0 ୭ 6 f) h) g) i) 1)

a) man-made open environments
b) urban vertically structured
environments
c) perspective views of streets
d) far view of city-center buildings
e) close-up views of urban structures
f) natural open environments
g) natural closed environments
h) mountainous landscapes
i) enclosed forests
j) close-up views of non-textured scenes

Learning the spatial envelope

- Use linear regression to learn
 - DST (discriminant spectral template)
 - WDST (windowed discriminant spectral template)
- Relate spectral representation to each spatial envelope feature

Learning the spatial envelope

- Primacy of Man-made vs. Natural distinction
 - Linear Discriminant analysis
 - 93.5% correct classification
- Role of spatial information
 - WDST not much better than DST
 - Loschky, et al., scene inversion

Learning the spatial envelope

• Other properties calculated separately for natural, man-made environments

Table 2. Correlation between orderings of natural scenes made by observers and the two templates for each spatial envelope property.

Table 3. Correlation between orderings of urban scenes made by observers and the two templates for each spatial envelope property.

	Openness	Ruggedness	Roughness		Openness	Expansion	Roughness
DST	m = 0.82	0.73	0.82	Energy spectrum	m = 0.87	0.77	0.83
WDST	m = 0.88	0.79	0.86	Spectrogram	m = 0.90	0.88	0.85
Agreement	0.92	0.82	0.87	Agreement	0.92	0.91	0.88

Agreement measures the concordance between subjects.

Agreement measures the concordance between subjects.

Spatial envelope and categories

- Choose random scene and seven neighbors in scene space
- If >= 4 neighbors have same semantic category, image is "correctly recognized"
 - WDST: 92%
 - DST: 86%

Applications

• Depth Estimation (Torralba & Oliva)

Gist descriptor

Oliva and Torralba, 2001

- 8 orientations
- 4 scales
- <u>x 16</u> bins
 - 512 dimensions

Similar to SIFT (Lowe 1999) applied to the entire image

M. Gorkani, R. Picard, ICPR 1994; Walker, Malik. Vision Research 2004; Vogel et al. 2004; Fei-Fei and Perona, CVPR 2005; S. Lazebnik, et al, CVPR 2006; ...

Gist descriptor

Gist descriptor

Example visual gists

Oliva & Torralba (2001)

Features

- Where:
 - Interest points
 - Corners
 - Blobs
 - Grid
 - Spatial Pyramids
 - Global
- What: (Descriptors)
 - Sift, HOG
 - Shape Context
 - Bag of words
 - Filter banks

