# Interest points

**CSE 576** 

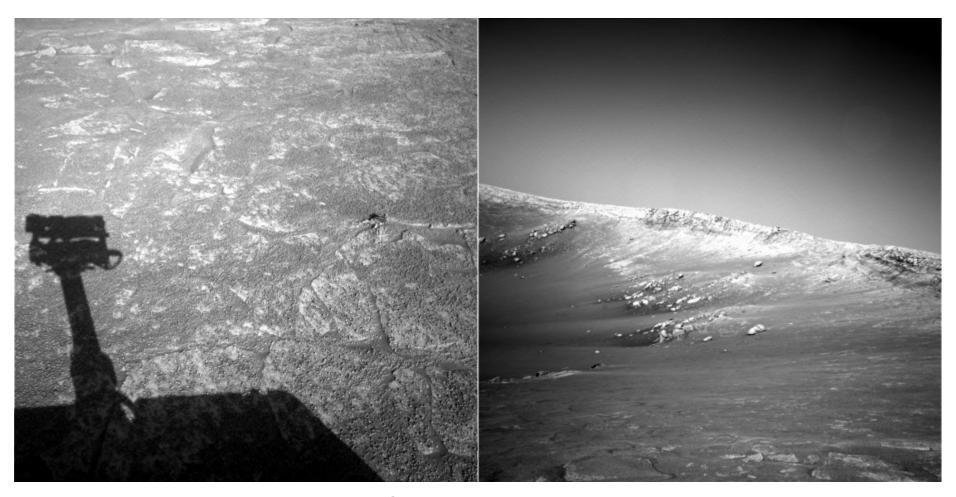
Ali Farhadi

# How can we find corresponding points?



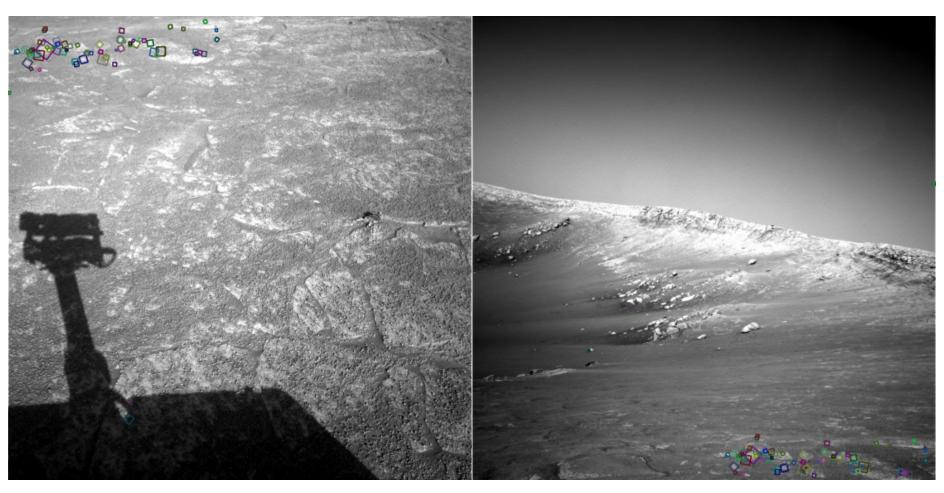


# Not always easy



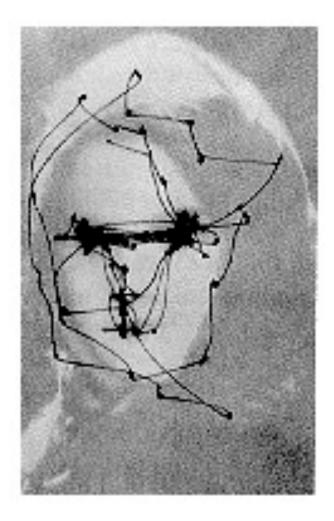
NASA Mars Rover images

## Answer below (look for tiny colored squares...)



NASA Mars Rover images with SIFT feature matches Figure by Noah Snavely

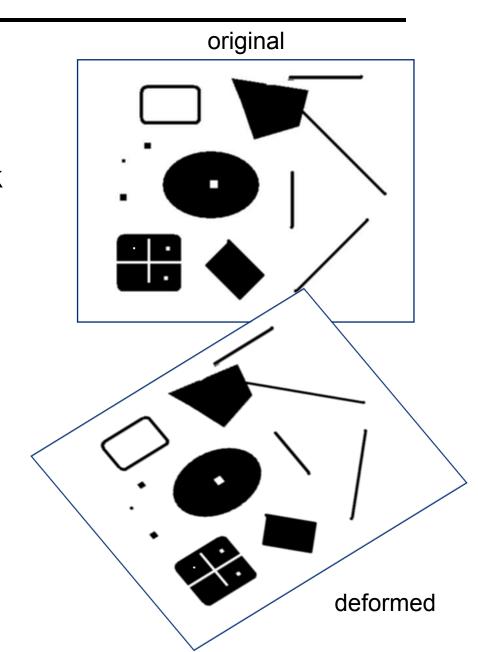
## Human eye movements



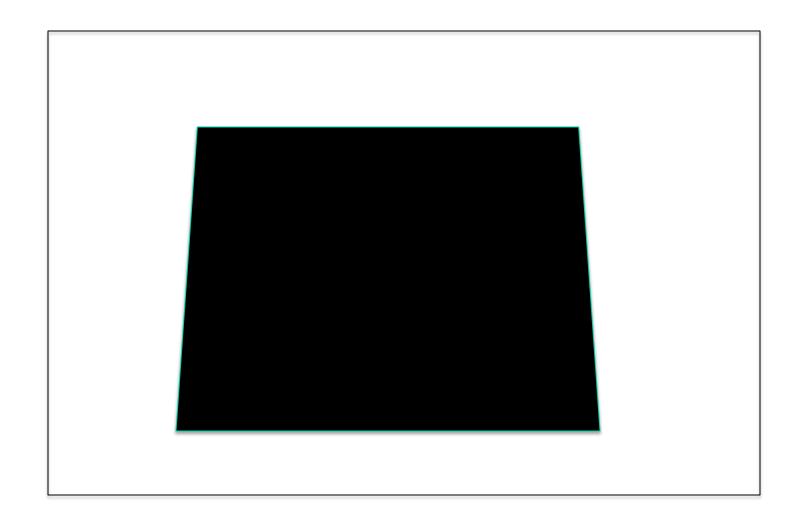
Yarbus eye tracking

### Interest points

- Suppose you have to click on some point, go away and come back after I deform the image, and click on the same points again.
  - Which points would you choose?

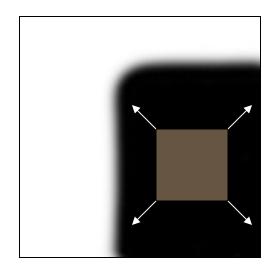


## Intuition

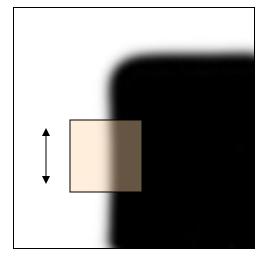


#### Corners

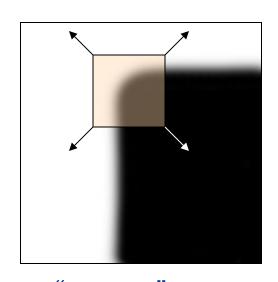
- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity



"flat" region: no change in all directions



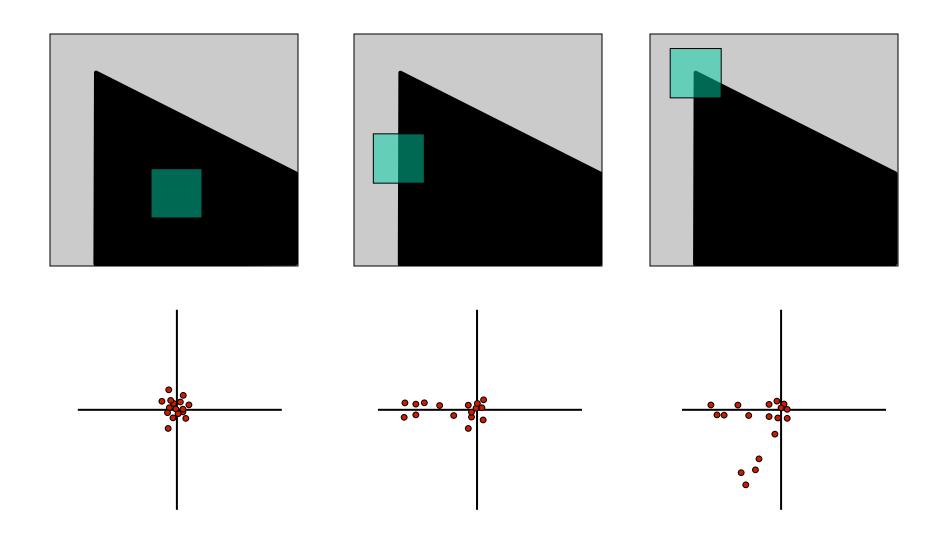
"edge": no change along the edge direction



"corner":
significant
change in all
directions

Source: A. Efros

## Let's look at the gradient distributions



## Principle Component Analysis

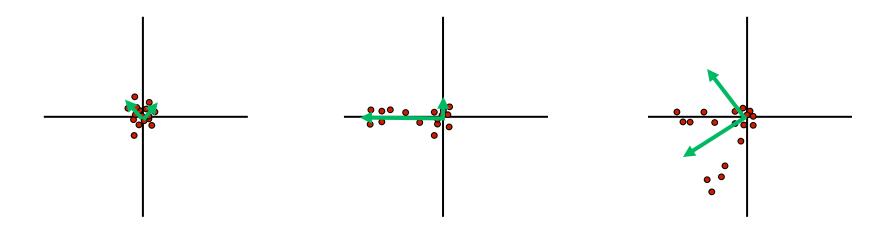
Principal component is the direction of highest variance.

Next, highest component is the direction with highest variance *orthogonal* to the previous components.

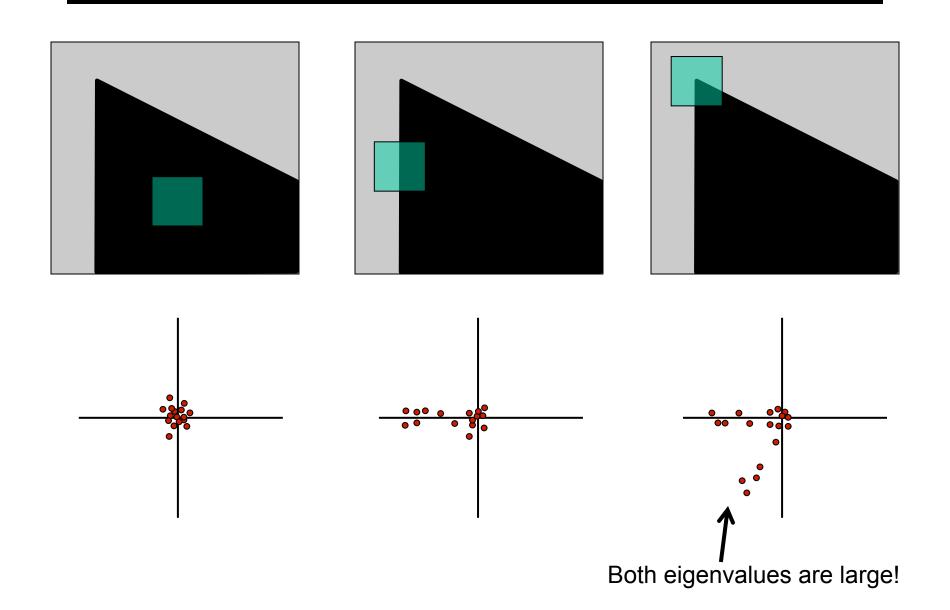
How to compute PCA components:

- 1. Subtract off the mean for each data point.
- 2. Compute the covariance matrix.
- 3. Compute eigenvectors and eigenvalues.
- 4. The components are the eigenvectors ranked by the eigenvalues.

$$Hx = \lambda x$$



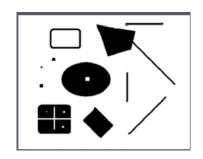
## Corners have ...



#### Second Moment Matrix

$$M = \sum_{x,y} w(x,y) \begin{vmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{vmatrix}$$

2 x 2 matrix of image derivatives (averaged in neighborhood of a point).



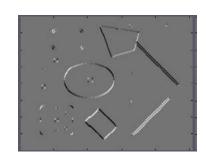




$$I_x \Leftrightarrow \frac{\partial I}{\partial x}$$



$$I_y \Leftrightarrow \frac{\partial I}{\partial y}$$



$$I_y \Leftrightarrow \frac{\partial I}{\partial y} \quad I_x I_y \Leftrightarrow \frac{\partial I}{\partial x} \frac{\partial I}{\partial y}$$

#### The math

To compute the eigenvalues:

1. Compute the covariance matrix.

$$H = \sum_{(u,v)} w(u,v) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \qquad I_x = \frac{\partial f}{\partial x}, I_y = \frac{\partial f}{\partial y}$$
 Typically Gaussian weights

2. Compute eigenvalues.

$$H = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \lambda_{\pm} = \frac{1}{2} \left( (a+d) \pm \sqrt{4bc + (a-d)^2} \right)$$

## Corner Response Function

- Computing eigenvalues are expensive
- Harris corner detector uses the following alternative

$$R = det(M) - \alpha \cdot trace(M)^2$$

#### Reminder:

$$det \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = ad - bc \qquad trace \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = a + d$$

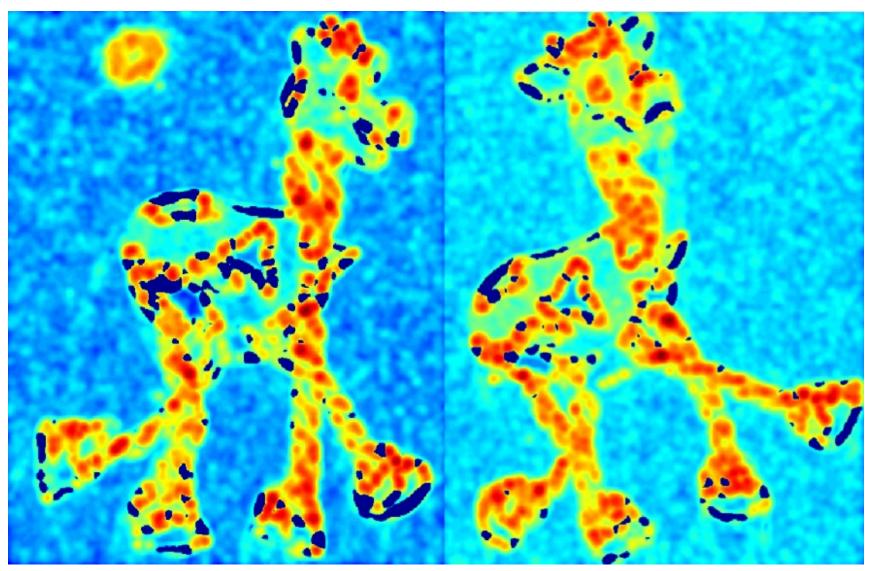
- 1. Compute Gaussian derivatives at each pixel
- Compute second moment matrix M in a Gaussian window around each pixel
- 3. Compute corner response function *R*
- 4. Threshold R
- Find local maxima of response function (nonmaximum suppression)

C.Harris and M.Stephens.

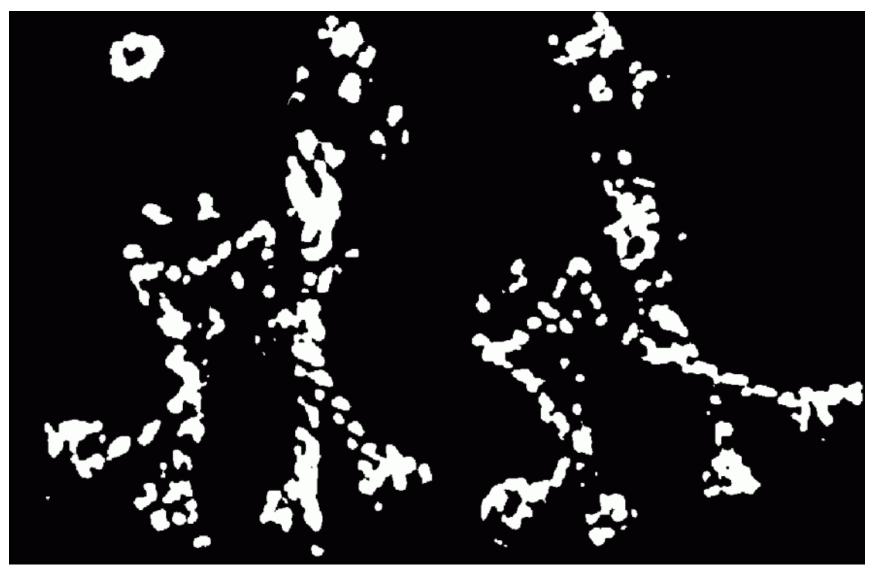
"A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.



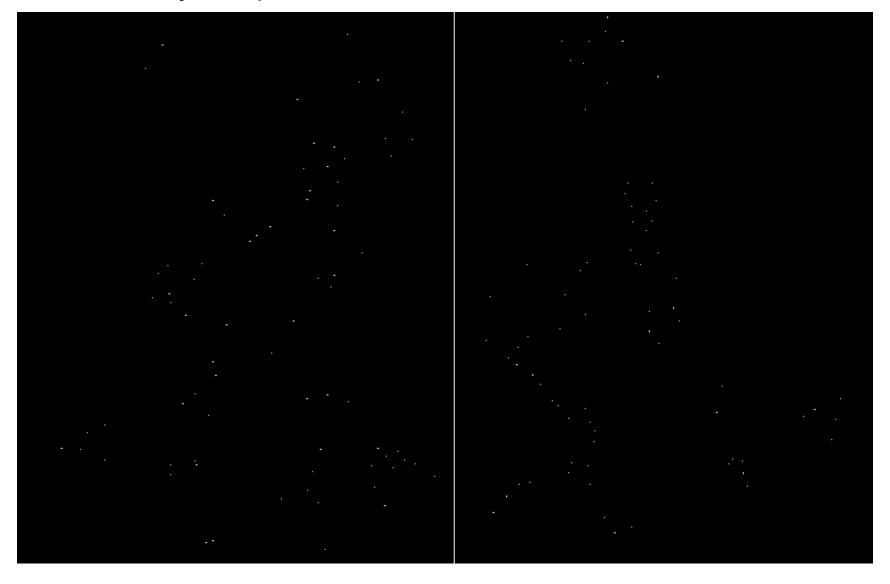
Compute corner response R



Find points with large corner response: R>threshold



Take only the points of local maxima of R





## Simpler Response Function

$$R = det(M) - \alpha \cdot trace(M)^2$$

$$f = \frac{1}{\frac{1}{\lambda_1} + \frac{1}{\lambda_2}} = \frac{Det(H)}{Tr(H)}$$

### Properties of the Harris corner detector

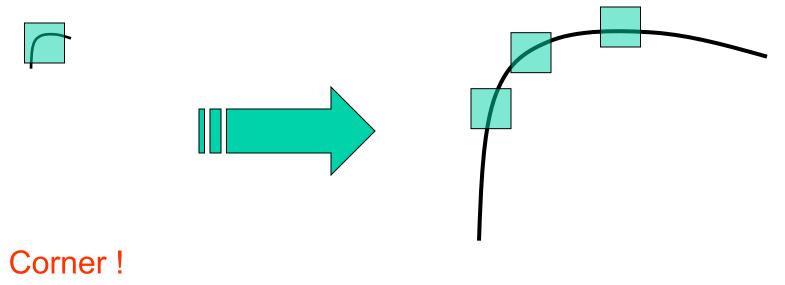
Translation invariant? Yes

Rotation invariant?

Scale invariant?

Yes

No



All points will be classified as edges

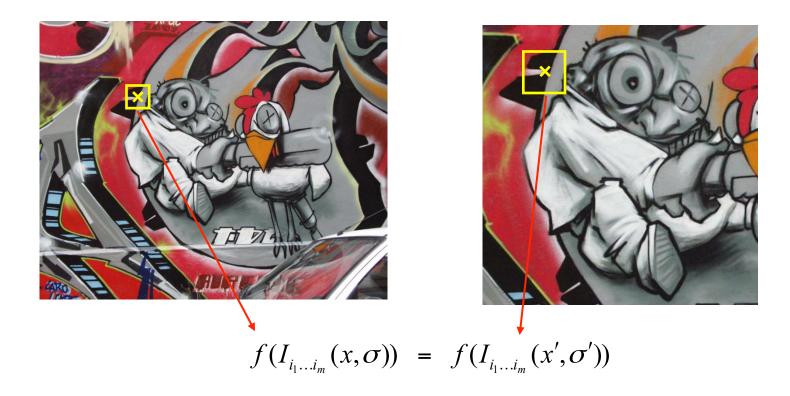
#### Scale

#### Let's look at scale first:



What is the "best" scale?

#### Scale Invariance

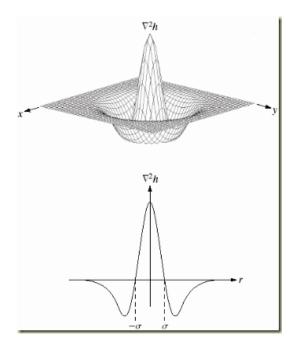


How can we independently select interest points in each image, such that the detections are repeatable across different scales?

## Differences between Inside and Outside





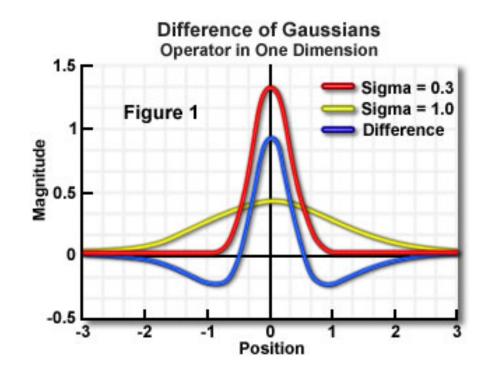


#### Scale

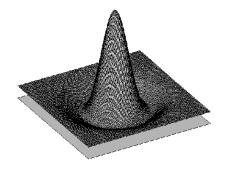
#### Why Gaussian?

It is invariant to scale change, i.e.,  $f*\mathcal{G}_{\sigma}*\mathcal{G}_{\sigma'}=f*\mathcal{G}_{\sigma''}$  and has several other nice properties. Lindeberg, 1994

In practice, the Laplacian is approximated using a Difference of Gaussian (DoG).

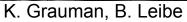


## Difference-of-Gaussian (DoG)











# DoG example



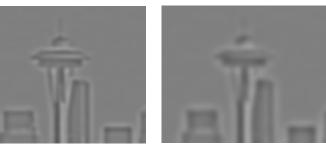








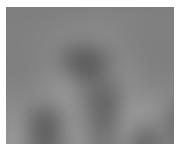


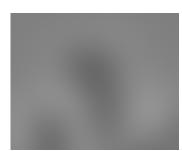








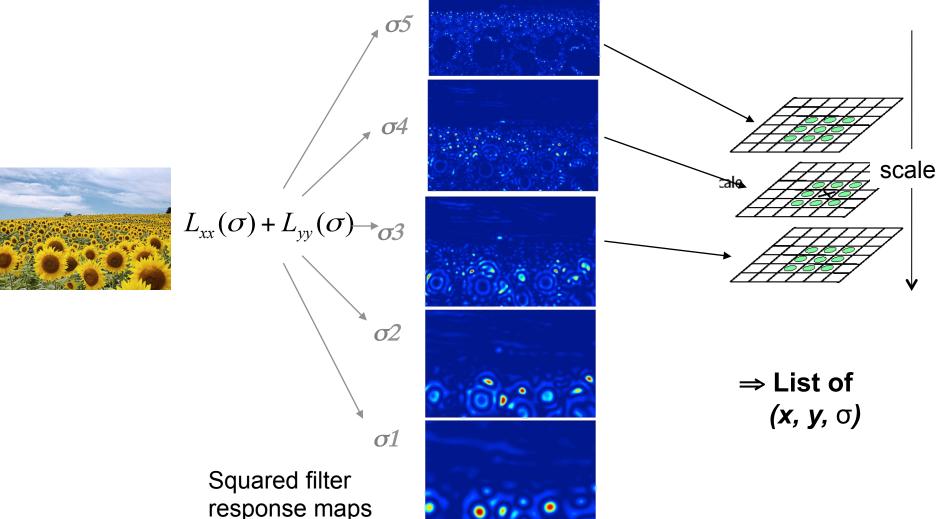




## Scale invariant interest points

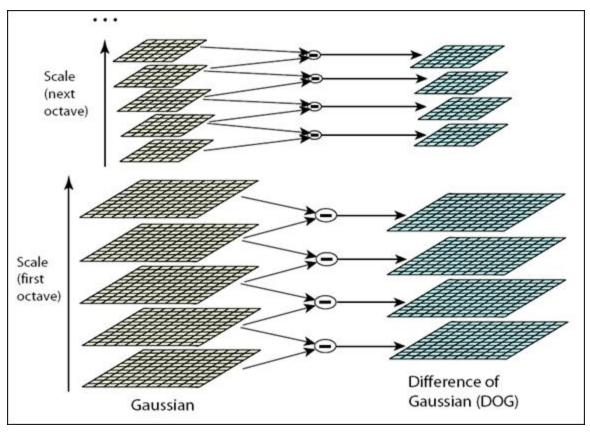
Interest points are local maxima in both position

and scale.



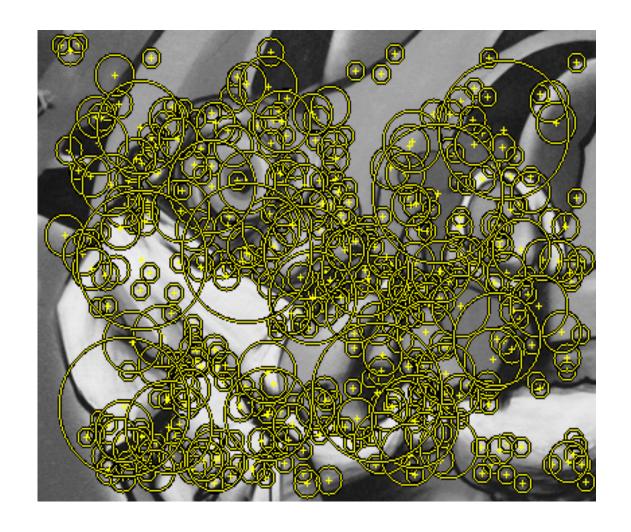
#### Scale

In practice the image is downsampled for larger sigmas.

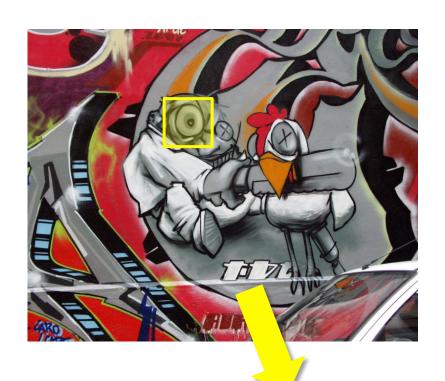


Lowe, 2004.

## Results: Difference-of-Gaussian



## How can we find correspondences?



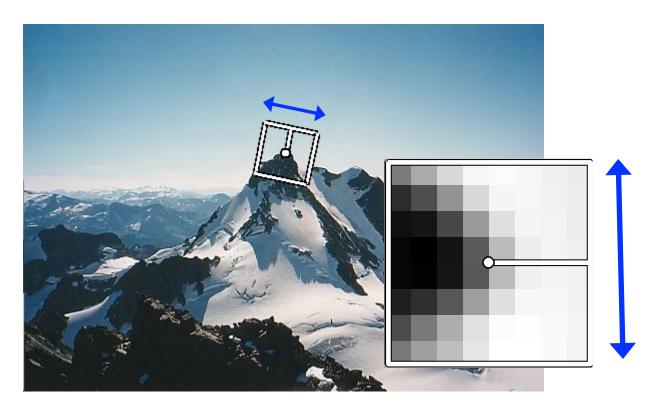






Similarity transform

#### Rotation invariance



- Rotate patch according to its dominant gradient orientation
- This puts the patches into a canonical orientation.

#### **Orientation Normalization**

- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation

[Lowe, SIFT, 1999]

