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Camera parameters 
A camera is described by several parameters 
•  Translation T of the optical center from the origin of world coords 
•  Rotation R of the image plane 
•  focal length f, principle point (x’c, y’c), pixel size (sx, sy) 
•  blue parameters are called “extrinsics,”  red are “intrinsics” 

•  The definitions of these parameters are not completely standardized 
–  especially intrinsics—varies from one book to another 

Projection equation 
 
 
 
•  The projection matrix models the cumulative effect of all parameters 
•  Useful to decompose into a series of operations 

projection intrinsics rotation translation 

identity matrix 



Extrinsics	  

How	  do	  we	  get	  the	  camera	  to	  “canonical	  form”?	  
•  (Center	  of	  projecHon	  at	  the	  origin,	  x-‐axis	  points	  right,	  y-‐axis	  points	  up,	  z-‐

axis	  points	  backwards)	  

0	  

Step	  1:	  Translate	  by	  -‐c	  
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How	  do	  we	  represent	  
translaHon	  as	  a	  matrix	  
mulHplicaHon?	  
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3x3	  rotaHon	  matrix	  
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PerspecHve	  projecHon	  

(intrinsics)	  

in	  general,	  	  

:	  aspect	  ra+o	  (1	  unless	  pixels	  are	  not	  square)	  

:	  skew	  (0	  unless	  pixels	  are	  shaped	  like	  rhombi/parallelograms)	  

:	  principal	  point	  ((0,0)	  unless	  opHcal	  axis	  doesn’t	  intersect	  projecHon	  plane	  at	  origin)	  

(upper	  triangular	  
matrix)	  

(converts	  from	  3D	  rays	  in	  camera	  
coordinate	  system	  to	  pixel	  coordinates)	  



ProjecHon	  matrix	  

translaHon	  rotaHon	  projecHon	  
intrinsics	  



ProjecHon	  matrix	  

0	  

=	  

(in	  homogeneous	  image	  coordinates)	  
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x x’ 

Epipolar constraint: Calibrated case 

•  Assume that the intrinsic and extrinsic parameters of the 
cameras are known 

•  We can multiply the projection matrix of each camera (and the 
image points) by the inverse of the calibration matrix to get 
normalized image coordinates 

•  We can also set the global coordinate system to the coordinate 
system of the first camera. Then the projection matrices of the 
two cameras can be written as [I | 0] and [R | t] 



X 

x x’ = Rx+t 

Epipolar constraint: Calibrated case 

R 
t 

The vectors Rx, t, and x’ are coplanar  

= (x,1)T 



Essential Matrix 
(Longuet-Higgins, 1981) 

Epipolar constraint: Calibrated case 

0])([ =×⋅ʹ′ xRtx RtExEx T ][with0 ×==ʹ′

X 

x x’ 

The vectors Rx, t, and x’ are coplanar  



X 

x x’ 

Epipolar constraint: Calibrated case 

•  E x is the epipolar line associated with x (l' = E x) 
•  ETx' is the epipolar line associated with x' (l = ETx') 
•  E e = 0   and   ETe' = 0 
•  E is singular (rank two) 
•  E has five degrees of freedom  

0])([ =×⋅ʹ′ xRtx RtExEx T ][with0 ×==ʹ′



Epipolar constraint: Uncalibrated case 

•  The calibration matrices K and K’ of the two cameras 
are unknown 

•  We can write the epipolar constraint in terms of 
unknown normalized coordinates: 

X 

x x’ 

0ˆˆ =ʹ′ xEx T xKxxKx ʹ′ʹ′=ʹ′= −− ˆˆ,ˆ 11



Epipolar constraint: Uncalibrated case 

X 

x x’ 

Fundamental Matrix 
(Faugeras and Luong, 1992) 
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Epipolar constraint: Uncalibrated case 

•  F x  is the epipolar line associated with x (l' = F x) 
•  FTx'  is the epipolar line associated with x' (l' = FTx') 
•  F e = 0   and   FTe' = 0 
•  F is singular (rank two) 
•  F has seven degrees of freedom 

X 

x x’ 

0ˆˆ =ʹ′ xEx T 1with0 −−ʹ′==ʹ′ KEKFxFx TT



The eight-point algorithm 

Minimize: 

under the constraint 
||F||2=1 
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The eight-point algorithm 

•  Meaning of error 
 
sum of squared algebraic distances between points 
x’i and epipolar lines F xi (or points xi and epipolar 
lines FTx’i)  

•  Nonlinear approach: minimize sum of squared 
geometric distances 
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Problem with eight-point algorithm 
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Problem with eight-point algorithm 

Poor numerical conditioning 
Can be fixed by rescaling the data 



The normalized eight-point algorithm 

•  Center the image data at the origin, and scale it so 
the mean squared distance between the origin and 
the data points is 2 pixels 

•  Use the eight-point algorithm to compute F from the 
normalized points 

•  Enforce the rank-2 constraint (for example, take SVD 
of F and throw out the smallest singular value) 

•  Transform fundamental matrix back to original units: if 
T and T’ are the normalizing transformations in the 
two images, then the fundamental matrix in original 
coordinates is T’T F T 

(Hartley, 1995) 



Comparison of estimation algorithms 

8-point Normalized 8-point Nonlinear least squares 

Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel 

Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel 



Moving on to stereo… 
 Fuse a calibrated binocular stereo pair to produce a 
depth image 

image 1 image 2 

Dense depth map 

Many of these slides adapted from 
Steve Seitz and Lana Lazebnik 



Depth from disparity 
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Basic stereo matching algorithm 

•  If necessary, rectify the two stereo images to transform 
epipolar lines into scanlines 

•  For each pixel x in the first image 
•  Find corresponding epipolar scanline in the right image 
•  Search the scanline and pick the best match x’ 
•  Compute disparity x-x’ and set depth(x) = fB/(x-x’) 



Basic stereo matching algorithm 

•  For each pixel in the first image 
•  Find corresponding epipolar line in the right image 
•  Search along epipolar line and pick the best match 
•  Triangulate the matches to get depth information 

 
•  Simplest case: epipolar lines are scanlines 

•  When does this happen? 



Simplest Case: Parallel images 
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Stereo image rectification 



Stereo image rectification 

•  Reproject image planes 
onto a common plane 
parallel to the line 
between camera centers 

•  Pixel motion is horizontal 
after this transformation 

•  Two homographies (3x3 
transform), one for each 
input image reprojection 

!  C. Loop and Z. Zhang. 
Computing Rectifying 
Homographies for Stereo Vision. 
IEEE Conf. Computer Vision and 
Pattern Recognition, 1999. 



Example 
Unrectified 

Rectified 



Matching cost 

disparity 

Left Right 

scanline 

Correspondence search 

•  Slide a window along the right scanline and compare 
contents of that window with the reference window in 
the left image 

•  Matching cost: SSD or normalized correlation 



Left Right 

scanline 

Correspondence search 

SSD 



Left Right 

scanline 

Correspondence search 

Norm. corr 



Effect of window size 

W = 3 W = 20 
•  Smaller window 

+  More detail 
–  More noise 

•  Larger window 
+  Smoother disparity maps 
–  Less detail 
–  Fails near boundaries 



Failures of correspondence search 

Textureless surfaces Occlusions, repetition 

Non-Lambertian surfaces, specularities 



Results with window search 

Window-based matching Ground truth 

Data 



How can we improve window-based matching? 

 
So far, matches are independent for each point 
 
What constraints or priors can we add? 



Stereo constraints/priors 
•  Uniqueness  

•  For any point in one image, there should be at most one 
matching point in the other image 
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•  Ordering 
•  Corresponding points should be in the same order in both views 



Stereo constraints/priors 
•  Uniqueness  

•  For any point in one image, there should be at most one 
matching point in the other image 

•  Ordering 
•  Corresponding points should be in the same order in both views 

Ordering constraint doesn’t hold 



Priors and constraints 
•  Uniqueness  

•  For any point in one image, there should be at most one 
matching point in the other image 

•  Ordering 
•  Corresponding points should be in the same order in both views 

•  Smoothness 
•  We expect disparity values to change slowly (for the most part) 



Stereo as energy minimization 

What defines a good stereo correspondence? 
1.  Match quality 

–  Want each pixel to find a good match in the other image 
2.  Smoothness 

–  If two pixels are adjacent, they should (usually) move about 
the same amount  



Stereo as energy minimization 
Better objective function 

{	   {	  

match	  cost	   smoothness	  cost	  

Want	  each	  pixel	  to	  find	  a	  good	  
match	  in	  the	  other	  image	  

Adjacent	  pixels	  should	  (usually)	  
move	  about	  the	  same	  amount	  



Stereo as energy minimization 

match	  cost:	  

smoothness	  cost:	  

4-‐connected	  
neighborhood	  

8-‐connected	  
neighborhood	  

:	  set	  of	  neighboring	  pixels	  

SSD	  distance	  between	  windows	  
I(x,	  y)	  and	  J(x,	  y	  +	  d(x,y))	  =	  



Smoothness cost 

“Po`s	  model”	  

L1	  distance	  



Dynamic programming 

Can minimize this independently per scanline using 
dynamic programming (DP) 

:	  minimum	  cost	  of	  soluHon	  such	  that	  d(x,y)	  =	  d	  



Energy minimization via graph cuts 

Labels	  	  
(dispariHes)	  

d1	  

d2	  

d3	  

edge	  weight	  

edge	  weight	  



d1	  

d2	  

d3	  

•  Graph Cut 
–  Delete enough edges so that 

•  each pixel is connected to exactly one label node  
–  Cost of a cut:  sum of deleted edge weights 
–  Finding min cost cut equivalent to finding global minimum of 

energy function 

Energy minimization via graph cuts 



Stereo as energy minimization 

I(x,	  y)	  	   J(x,	  y)	  	  

y	  =	  141	  

C(x,	  y,	  d);	  the	  disparity	  space	  image	  (DSI)	  x	  

d	  



Stereo as energy minimization 

y	  =	  141	  

x	  

d	  

Simple	  pixel	  /	  window	  matching:	  choose	  the	  minimum	  of	  each	  
column	  in	  the	  DSI	  independently:	  



Matching windows 
Similarity Measure Formula 

Sum of Absolute Differences (SAD) 

Sum of Squared Differences (SSD) 

Zero-mean SAD 

Locally scaled SAD 

Normalized Cross Correlation (NCC) 

http://siddhantahuja.wordpress.com/category/stereo-vision/  

SAD SSD NCC Ground truth 



Before & After 

Graph cuts Ground truth 

For the latest and greatest:  http://www.middlebury.edu/stereo/  

Y. Boykov, O. Veksler, and R. Zabih, 
Fast Approximate Energy Minimization via Graph Cuts,  PAMI 2001 

Before 



Real-time stereo 

Used for robot navigation (and other tasks) 
•  Several software-based real-time stereo techniques have 

been developed (most based on simple discrete search) 

Nomad robot searches for meteorites in Antartica 
http://www.frc.ri.cmu.edu/projects/meteorobot/index.html 
 



Why does stereo fail? 
Fronto-Parallel Surfaces: Depth is constant within the region of local support  



Why does stereo fail? 
Monotonic Ordering - Points along an epipolar scanline appear in the same order in both stereo images 
Occlusion – All points are visible in each image 



Why does stereo fail? 
Image Brightness Constancy: Assuming Lambertian surfaces, the brightness of corresponding 
points in stereo images are the same. 



Why does stereo fail? 
Match Uniqueness: For every point in one stereo image, there is at most one corresponding 
point in the other image. 



 
•  Camera calibration errors 
•  Poor image resolution 
•  Occlusions 
•  Violations of brightness constancy (specular reflections) 
•  Large motions 
•  Low-contrast image regions 

Stereo reconstruction pipeline 
Steps 

•  Calibrate cameras 
•  Rectify images 
•  Compute disparity 
•  Estimate depth 

What will cause errors? 



width of  
a pixel 

Choosing the stereo baseline 

What’s the optimal baseline? 
•  Too small:  large depth error 
•  Too large:  difficult search problem 

Large Baseline Small Baseline 

all of these 
points project 
to the same  
pair of pixels 



Multi-view stereo ? 



The third view can be used for verification 

Beyond two-view stereo 



Using more than two images 

Multi-View Stereo for Community Photo Collections 
M. Goesele, N. Snavely, B. Curless, H. Hoppe, S. Seitz 
Proceedings of ICCV 2007,  


