Image filtering

Images by Pawan Sinha
What is an image?

We can think of an image as a function, \(f \), from \(\mathbb{R}^2 \) to \(\mathbb{R} \):

- \(f(x, y) \) gives the intensity at position \((x, y) \)
- Realistically, we expect the image only to be defined over a rectangle, with a finite range:
 - \(f: [a, b] \times [c, d] \rightarrow [0, 1] \)

A color image is just three functions pasted together. We can write this as a “vector-valued” function:

\[
\begin{bmatrix}
 r(x, y) \\
 g(x, y) \\
 b(x, y)
\end{bmatrix}
\]

\[f(x, y) = \]

2
Images as functions

\[f(x, y) \]
What is a digital image?

In computer vision we usually operate on digital (discrete) images:

- **Sample** the 2D space on a regular grid
- **Quantize** each sample (round to nearest integer)

If our samples are Δ apart, we can write this as:

$$f[i, j] = \text{Quantize}(f(i \Delta, j \Delta))$$

The image can now be represented as a matrix of integer values

$$
\begin{array}{cccccccc}
i & 62 & 79 & 23 & 119 & 120 & 105 & 4 & 0 \\
10 & 10 & 9 & 62 & 12 & 78 & 34 & 0 & \\
10 & 58 & 197 & 46 & 46 & 0 & 0 & 48 & \\
176 & 135 & 5 & 188 & 191 & 68 & 0 & 49 & \\
2 & 1 & 1 & 29 & 26 & 37 & 0 & 77 & \\
0 & 89 & 144 & 147 & 187 & 102 & 62 & 208 & \\
255 & 252 & 0 & 166 & 123 & 62 & 0 & 31 & \\
166 & 63 & 127 & 17 & 1 & 0 & 99 & 30 & \\
\end{array}
$$
Filtering Operations Use Masks

- Masks operate on a neighborhood of pixels.
- A mask of coefficients is centered on a pixel.
- The mask coefficients are multiplied by the pixel values in its neighborhood and the products are summed.
- The result goes into the corresponding pixel position in the output image.

3x3 Mask

Input Image

Output Image
Noise

Image processing is useful for noise reduction...

Common types of noise:

- **Salt and pepper noise**: contains random occurrences of black and white pixels
- **Impulse noise**: contains random occurrences of white pixels
- **Gaussian noise**: variations in intensity drawn from a Gaussian normal distribution
Practical noise reduction

How can we “smooth” away noise in a single image?

\[
\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 100 & 130 & 110 & 120 & 110 & 0 & 0 \\
0 & 0 & 0 & 110 & 90 & 100 & 90 & 100 & 0 & 0 \\
0 & 0 & 0 & 130 & 100 & 90 & 130 & 110 & 0 & 0 \\
0 & 0 & 0 & 120 & 100 & 130 & 110 & 120 & 0 & 0 \\
0 & 0 & 0 & 90 & 110 & 80 & 120 & 100 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Mean filtering

\[F[x, y] \]

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 90 & 90 & 90 & 90 & 0 \\
0 & 0 & 0 & 90 & 90 & 90 & 90 & 0 \\
0 & 0 & 0 & 90 & 90 & 90 & 90 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 90 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[G[x, y] \]
Mean filtering

$$F[x, y]$$

$$G[x, y]$$
Effect of mean filters

Gaussian noise

Salt and pepper noise

3x3

5x5

7x7
Cross-correlation filtering

Let’s write this down as an equation. Assume the averaging window is \((2k+1) \times (2k+1)\):

\[
G[i, j] = \frac{1}{(2k + 1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i + u, j + v]
\]

We can generalize this idea by allowing different weights for different neighboring pixels:

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
\]

This is called a **cross-correlation** operation and written:

\[
G = H \otimes F
\]

\(H\) is called the “filter,” “kernel,” or “mask.”

The above allows negative filter indices. When you implement need to use: \(H[u+k,v+k]\) instead of \(H[u,v]\)
Mean kernel

What’s the kernel for a 3x3 mean filter?

$$F'[x, y]$$

$$H[u, v]$$
Gaussian Filtering

A Gaussian kernel gives less weight to pixels further from the center of the window.

This kernel is an approximation of a Gaussian function:

\[
 h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}
\]
Mean vs. Gaussian filtering
Convolution

A **convolution** operation is a cross-correlation where the filter is flipped both horizontally and vertically before being applied to the image:

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
\]

It is written: \(G = H \ast F \)

Suppose \(H \) is a Gaussian or mean kernel. How does convolution differ from cross-correlation?
Median filters

A **Median Filter** operates over a window by selecting the median intensity in the window.

What advantage does a median filter have over a mean filter?

Is a median filter a kind of convolution?
Comparison: salt and pepper noise

Mean	Gaussian	Median
3x3 | ![3x3 Mean](image1) | ![3x3 Gaussian](image2) | ![3x3 Median](image3)
5x5 | ![5x5 Mean](image4) | ![5x5 Gaussian](image5) | ![5x5 Median](image6)
7x7 | ![7x7 Mean](image7) | ![7x7 Gaussian](image8) | ![7x7 Median](image9)
Comparison: Gaussian noise

Mean Gaussian Median

3x3

5x5

7x7