
Announcements
Project 1

• Out today
• Help session at the end of class

Image matching

by Diva Sian

by swashford

Harder case

by Diva Sian by scgbt

Even harder case

“How the Afghan Girl was Identified by Her Iris Patterns” Read the story

Harder still?

NASA Mars Rover images NASA Mars Rover images
with SIFT feature matches
Figure by Noah Snavely

Answer below (look for tiny colored squares…)

Features

All is Vanity, by C. Allan Gilbert, 1873-1929
Readings

• Szeliski, Ch 4.1
• (optional) K. Mikolajczyk, C. Schmid, A performance evaluation of local

descriptors. In PAMI 27(10):1615-1630
- http://www.robots.ox.ac.uk/~vgg/research/affine/det_eval_files/mikolajczyk_

Image Matching

Image Matching Invariant local features

Find features that are invariant to transformations
• geometric invariance: translation, rotation, scale
• photometric invariance: brightness, exposure, …

Feature Descriptors

Advantages of local features
Locality

• features are local, so robust to occlusion and clutter

Distinctiveness:
• can differentiate a large database of objects

Quantity
• hundreds or thousands in a single image

Efficiency
• real-time performance achievable

Generality
• exploit different types of features in different situations

More motivation…
Feature points are used for:

• Image alignment (e.g., mosaics)
• 3D reconstruction
• Motion tracking
• Object recognition
• Indexing and database retrieval
• Robot navigation
• … other

What makes a good feature?

Snoop demo

Want uniqueness
Look for image regions that are unusual

• Lead to unambiguous matches in other images

How to define “unusual”?

Local measures of uniqueness
Suppose we only consider a small window of pixels

• What defines whether a feature is a good or bad candidate?

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

Feature detection

“flat” region:
no change in all
directions

“edge”:
no change along
the edge direction

“corner”:
significant change
in all directions

Local measure of feature uniqueness
• How does the window change when you shift it?
• Shifting the window in any direction causes a big change

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

Consider shifting the window W by (u,v)
• how do the pixels in W change?
• compare each pixel before and after by

summing up the squared differences (SSD)
• this defines an SSD “error” of E(u,v):

Feature detection: the math

W

Taylor Series expansion of I:

If the motion (u,v) is small, then first order approx is good

Plugging this into the formula on the previous slide…

Small motion assumption

Consider shifting the window W by (u,v)
• how do the pixels in W change?
• compare each pixel before and after by

summing up the squared differences
• this defines an “error” of E(u,v):

Feature detection: the math

W

Feature detection: the math
This can be rewritten:

For the example above
• You can move the center of the green window to anywhere on the

blue unit circle
• Which directions will result in the largest and smallest E values?
• We can find these directions by looking at the eigenvectors of H

Quick eigenvalue/eigenvector review
The eigenvectors of a matrix A are the vectors x that satisfy:

The scalar λ is the eigenvalue corresponding to x
• The eigenvalues are found by solving:

• In our case, A = H is a 2x2 matrix, so we have

• The solution:

Once you know λ, you find x by solving

Feature detection: the math
This can be rewritten:

Eigenvalues and eigenvectors of H
• Define shifts with the smallest and largest change (E value)
• x+ = direction of largest increase in E.
• λ+ = amount of increase in direction x+

• x- = direction of smallest increase in E.
• λ- = amount of increase in direction x+

x-

x+

Feature detection: the math
How are λ+, x+, λ-, and x+ relevant for feature detection?

• What’s our feature scoring function?

Feature detection: the math
How are λ+, x+, λ-, and x+ relevant for feature detection?

• What’s our feature scoring function?

Want E(u,v) to be large for small shifts in all directions
• the minimum of E(u,v) should be large, over all unit vectors [u v]
• this minimum is given by the smaller eigenvalue (λ-) of H

Feature detection summary
Here’s what you do

• Compute the gradient at each point in the image
• Create the H matrix from the entries in the gradient
• Compute the eigenvalues.
• Find points with large response (λ- > threshold)
• Choose those points where λ- is a local maximum as features

Feature detection summary
Here’s what you do

• Compute the gradient at each point in the image
• Create the H matrix from the entries in the gradient
• Compute the eigenvalues.
• Find points with large response (λ- > threshold)
• Choose those points where λ- is a local maximum as features

The Harris operator
λ- is a variant of the “Harris operator” for feature detection

• The trace is the sum of the diagonals, i.e., trace(H) = h11 + h22

• Very similar to λ- but less expensive (no square root)
• Called the “Harris Corner Detector” or “Harris Operator”
• Lots of other detectors, this is one of the most popular

The Harris operator

Harris
operator

Harris detector example f value (red high, blue low)

Threshold (f > value) Find local maxima of f

Harris features (in red) Invariance
Suppose you rotate the image by some angle

• Will you still pick up the same features?

What if you change the brightness?

Scale?

Scale invariant detection
Suppose you’re looking for corners

Key idea: find scale that gives local maximum of f
• f is a local maximum in both position and scale
• Common definition of f: Laplacian

(or difference between two Gaussian filtered images with different sigmas)

Slide from Tinne Tuytelaars

Lindeberg et al, 1996

Slide from Tinne Tuytelaars

Lindeberg et al., 1996

Feature descriptors
We know how to detect good points
Next question: How to match them?

?

Feature descriptors
We know how to detect good points
Next question: How to match them?

Lots of possibilities (this is a popular research area)
• Simple option: match square windows around the point
• State of the art approach: SIFT

– David Lowe, UBC http://www.cs.ubc.ca/~lowe/keypoints/

?

Invariance
Suppose we are comparing two images I1 and I2

• I2 may be a transformed version of I1
• What kinds of transformations are we likely to encounter in

practice?

Invariance
Suppose we are comparing two images I1 and I2

• I2 may be a transformed version of I1
• What kinds of transformations are we likely to encounter in

practice?

We’d like to find the same features regardless of the
transformation
• This is called transformational invariance
• Most feature methods are designed to be invariant to

– Translation, 2D rotation, scale
• They can usually also handle

– Limited 3D rotations (SIFT works up to about 60 degrees)
– Limited affine transformations (some are fully affine invariant)
– Limited illumination/contrast changes

How to achieve invariance
Need both of the following:
1. Make sure your detector is invariant

• Harris is invariant to translation and rotation
• Scale is trickier

– common approach is to detect features at many scales using a
Gaussian pyramid (e.g., MOPS)

– More sophisticated methods find “the best scale” to represent
each feature (e.g., SIFT)

2. Design an invariant feature descriptor
• A descriptor captures the information in a region around the

detected feature point
• The simplest descriptor: a square window of pixels

– What’s this invariant to?
• Let’s look at some better approaches…

Find dominant orientation of the image patch
• This is given by x+, the eigenvector of H corresponding to λ+

– λ+ is the larger eigenvalue
• Rotate the patch according to this angle

Rotation invariance for feature descriptors

Figure by Matthew Brown

Take 40x40 square window around detected feature
• Scale to 1/5 size (using prefiltering)
• Rotate to horizontal
• Sample 8x8 square window centered at feature
• Intensity normalize the window by subtracting the mean, dividing by

the standard deviation in the window

CSE 576: Computer Vision

Multiscale Oriented PatcheS descriptor

8 pixels40 pixels

Adapted from slide by Matthew Brown

Detections at multiple scales
Basic idea:

• Take 16x16 square window around detected feature
• Compute edge orientation (angle of the gradient - 90°) for each pixel
• Throw out weak edges (threshold gradient magnitude)
• Create histogram of surviving edge orientations

Scale Invariant Feature Transform

Adapted from slide by David Lowe

0 2π
angle histogram

SIFT descriptor
Full version

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
• Compute an orientation histogram for each cell
• 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe

Properties of SIFT
Extraordinarily robust matching technique

• Can handle changes in viewpoint
– Up to about 60 degree out of plane rotation

• Can handle significant changes in illumination
– Sometimes even day vs. night (below)

• Fast and efficient—can run in real time
• Lots of code available

– http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

Maximally Stable Extremal Regions

• Maximally Stable Extremal Regions
• Threshold image intensities: I > thresh

for several increasing values of thresh
• Extract connected components

(“Extremal Regions”)
• Find a threshold when region is

“Maximally Stable”, i.e. local minimum
of the relative growth

• Approximate each region with
an ellipse

J.Matas et.al. “Distinguished Regions for Wide-baseline Stereo”. BMVC 2002.

Feature matching
Given a feature in I1, how to find the best match in I2?

1. Define distance function that compares two descriptors
2. Test all the features in I2, find the one with min distance

Feature distance
How to define the difference between two features f1, f2?

• Simple approach is SSD(f1, f2)
– sum of square differences between entries of the two descriptors
– can give good scores to very ambiguous (bad) matches

I1 I2

f1 f2

Feature distance
How to define the difference between two features f1, f2?

• Better approach: ratio distance = SSD(f1, f2) / SSD(f1, f2’)
– f2 is best SSD match to f1 in I2
– f2’ is 2nd best SSD match to f1 in I2
– gives small values for ambiguous matches

I1 I2

f1 f2f2'

Evaluating the results
How can we measure the performance of a feature matcher?

50
75

200

feature distance

True/false positives

The distance threshold affects performance
• True positives = # of detected matches that are correct

– Suppose we want to maximize these—how to choose threshold?
• False positives = # of detected matches that are incorrect

– Suppose we want to minimize these—how to choose threshold?

50
75

200

feature distance

false match

true match

0.7

Evaluating the results
How can we measure the performance of a feature matcher?

0 1

1

false positive rate

true
positive

rate

true positives
matching features (positives)

0.1
false positives

unmatched features (negatives)

0.7

Evaluating the results
How can we measure the performance of a feature matcher?

0 1

1

false positive rate

true
positive

rate

true positives
matching features (positives)

0.1
false positives

unmatched features (negatives)

ROC curve (“Receiver Operator Characteristic”)

ROC Curves
• Generated by counting # current/incorrect matches, for different threholds
• Want to maximize area under the curve (AUC)
• Useful for comparing different feature matching methods
• For more info: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

More on feature detection/description Lots of applications
Features are used for:

• Image alignment (e.g., mosaics)
• 3D reconstruction
• Motion tracking
• Object recognition
• Indexing and database retrieval
• Robot navigation
• … other

Object recognition (David Lowe) Sony Aibo

SIFT usage:

Recognize
charging
station

Communicate
with visual
cards

Teach object
recognition

