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Today’s lecture
Geometric camera calibration
• camera matrix (Direct Linear Transform)

• non-linear least squares
• separating intrinsics and extrinsics
• focal length and optic center
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Today’s lecture
Structure from Motion
• triangulation and pose
• two-frame methods
• factorization
• bundle adjustment
• robust statistics

Photo Tourism
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Parameterizing rotations

How do we parameterize R and ΔR?
• Euler angles:  bad idea
• quaternions: 4-vectors on unit sphere
• use incremental rotation R(I + ΔR)

• update with Rodriguez formula



Camera Calibration
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Camera calibration

Determine camera parameters from known 3D 
points or calibration object(s)

1. internal or intrinsic parameters such as focal 
length, optical center, aspect ratio:
what kind of camera?

2. external or extrinsic (pose)
parameters:
where is the camera?

How can we do this?
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Camera calibration – approaches

Possible approaches:
1. linear regression (least squares)
2. non-linear optimization
3. vanishing points
4. multiple planar patterns
5. panoramas (rotational motion)
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Image formation equations

u

(Xc,Yc,Zc)

ucf
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Calibration matrix

Is this form of K good enough?
• non-square pixels (digital video)
• skew
• radial distortion
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Camera matrix

Fold intrinsic calibration matrix K and extrinsic
pose parameters (R,t) together into a
camera matrix

M = K [R | t ]

(put 1 in lower r.h. corner for 11 d.o.f.)
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Camera matrix calibration

Directly estimate 11 unknowns in the M matrix 
using known 3D points (Xi,Yi,Zi) and 
measured feature positions (ui,vi)
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Camera matrix calibration
Linear regression:

• Bring denominator over, solve set of (over-
determined) linear equations.  How?

• Least squares (pseudo-inverse)
• Is this good enough?
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Optimal estimation

Feature measurement equations

Likelihood of M given {(ui,vi)}
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Optimal estimation

Log likelihood of M given {(ui,vi)}

How do we minimize C?
Non-linear regression (least squares), because 

ûi and vi are non-linear functions of M
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Levenberg-Marquardt

Iterative non-linear least squares [Press’92]
• Linearize measurement equations

• Substitute into log-likelihood equation:  quadratic 
cost function in Δm
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Iterative non-linear least squares [Press’92]
• Solve for minimum

Hessian:

error:

Levenberg-Marquardt



CSE 576, Spring 2008 Structure from Motion 17

What if it doesn’t converge?
• Multiply diagonal by (1 + λ), increase λ until it does
• Halve the step size Δm
• Use line search
• Other ideas?

Uncertainty analysis:  covariance Σ = A-1

Is maximum likelihood the best idea?
How to start in vicinity of global minimum?

Levenberg-Marquardt
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Camera matrix calibration

Advantages:
• very simple to formulate and solve

• can recover K [R | t] from M using QR 
decomposition [Golub & VanLoan 96]

Disadvantages:
• doesn't compute internal parameters

• more unknowns than true degrees of freedom

• need a separate camera matrix for each new view
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Separate intrinsics / extrinsics

New feature measurement equations

Use non-linear minimization
Standard technique in photogrammetry, 

computer vision, computer graphics
• [Tsai 87] – also estimates κ1 (freeware @ CMU)

http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/v-source.html

• [Bogart 91] – View Correlation
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Intrinsic/extrinsic calibration

Advantages:
• can solve for more than one camera pose at a 

time

• potentially fewer degrees of freedom

Disadvantages:
• more complex update rules

• need a good initialization (recover K [R | t] from M)
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Vanishing Points

Determine focal length f and 
optical center (uc,vc) from 
image of cube’s
(or building’s) 
vanishing points
[Caprile ’90][Antone & Teller ’00]

uu00 uu11

uu22
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Vanishing Points

X, Y, and Z directions, Xi = (1,0,0,0) … (0,0,1,0) 
correspond to vanishing points that are scaled 
version of the rotation matrix:

uu00 uu11

uu22
u

(Xc,Yc,Zc)ucf
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Vanishing Points

Orthogonality conditions on rotation matrix R,
ri ·rj = δij

Determine (uc,vc) from orthocenter of vanishing 
point triangle

Then, determine f2 from two
equations
(only need 2 v.p.s if (uc,vc) known)

uu00 uu11
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Vanishing point calibration

Advantages:
• only need to see vanishing points

(e.g., architecture, table, …)

Disadvantages:
• not that accurate

• need rectihedral object(s) in scene
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Single View Metrology

A. Criminisi, I. Reid and A. Zisserman (ICCV 99)
Make scene measurements from a single image

• Application:  3D from a single image

Assumptions
1 3 orthogonal sets of parallel lines
2 4 known points on ground plane
3 1 height in the scene

Can still get an affine reconstruction without 2 and 3
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Criminisi et al., ICCV 99

Complete approach
• Load in an image
• Click on parallel lines defining X, Y, and Z 

directions
• Compute vanishing points
• Specify points on reference plane, ref. height
• Compute 3D positions of several points
• Create a 3D model from these points
• Extract texture maps
• Output a VRML model
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3D Modeling from a Photograph
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3D Modeling from a Photograph
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Multi-plane calibration

Use several images of planar target held at 
unknown orientations [Zhang 99]
• Compute plane homographies

• Solve for K-TK-1 from Hk’s
– 1plane if only f unknown
– 2 planes if (f,uc,vc) unknown
– 3+ planes for full K

• Code available from Zhang and OpenCV
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Rotational motion

Use pure rotation (large scene) to estimate f
1. estimate f from pairwise homographies
2. re-estimate f from 360º “gap”
3. optimize over all {K,Rj} parameters

[Stein 95; Hartley ’97; Shum & Szeliski ’00; Kang & Weiss ’99]

Most accurate way to get f, short of surveying 
distant points

f=510 f=468

Pose estimation and triangulation

CSE 576, Spring 2008 Structure from Motion 32

Pose estimation
Once the internal camera parameters are 

known, can compute camera pose

[Tsai87] [Bogart91]

Application: superimpose 3D graphics onto 
video

How do we initialize (R,t)?
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Pose estimation

Previous initialization techniques:
• vanishing points [Caprile 90]
• planar pattern [Zhang 99]

Other possibilities
• Through-the-Lens Camera Control [Gleicher92]: 

differential update
• 3+ point “linear methods”:

[DeMenthon 95][Quan 99][Ameller 00]
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Pose estimation

Solve orthographic problem, iterate
[DeMenthon 95]

Use inter-point distance constraints
[Quan 99][Ameller 00]

Solve set of polynomial equations in xi
2p

u

(Xc,Yc,Zc)
ucf
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Triangulation

Problem:  Given some points in 
correspondence across two or more images 
(taken from calibrated cameras), {(uj,vj)}, 
compute the 3D location X
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Triangulation

Method I: intersect viewing rays in 3D, 
minimize:

• X is the unknown 3D point
• Cj is the optical center of camera j
• Vj is the viewing ray for pixel (uj,vj)
• sj is unknown distance along Vj

Advantage: geometrically intuitive

Cj

Vj

X
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Triangulation

Method II: solve linear equations in X
• advantage: very simple

Method III: non-linear minimization
• advantage: most accurate (image plane error)

Structure from Motion
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Today’s lecture
Structure from Motion
• two-frame methods
• factorization
• bundle adjustment
• robust statistics
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Structure from motion
Given many points in correspondence across 

several images, {(uij,vij)}, simultaneously 
compute the 3D location xi and camera (or 
motion) parameters (K, Rj, tj)

Two main variants: calibrated, and uncalibrated 
(sometimes associated with Euclidean and 
projective reconstructions)
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Structure from motion

How many points do we need to match?
• 2 frames:

(R,t): 5 dof + 3n point locations ≤
4n point measurements ⇒
n ≥ 5

• k frames:
6(k–1)-1 + 3n ≤ 2kn

• always want to use many more
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Two-frame methods

Two main variants:
1. Calibrated: “Essential matrix” E

use ray directions (xi, xi’ )
2. Uncalibrated: “Fundamental matrix” F

[Hartley & Zisserman 2000]
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Essential matrix

Co-planarity constraint:
x’ ≈ R x + t

[t]× x’ ≈ [t]× R x
x’T [t]× x’ ≈ x’ T [t]× R x

x’ T E x = 0  with E =[t]× R
• Solve for E using least squares (SVD)
• t is the least singular vector of E
• R obtained from the other two sing. vectors
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Fundamental matrix

Camera calibrations are unknown
x’ F x = 0 with F  = [e]× H = K’[t]× R K-1

• Solve for F using least squares (SVD)
• re-scale (xi, xi’ ) so that |xi|≈1/2  [Hartley]

• e (epipole) is still the least singular vector of F
• H obtained from the other two s.v.s
• “plane + parallax” (projective) reconstruction
• use self-calibration to determine K [Pollefeys]
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Three-frame methods

Trifocal tensor
[Hartley & Zisserman 2000]

Multi-frame Structure from Motion

Factorization

[Tomasi & Kanade, IJCV 92]
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Structure [from] Motion

Given a set of feature tracks,
estimate the 3D structure and 3D (camera) 
motion.

Assumption: orthographic projection
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Structure [from] Motion

Given a set of feature tracks,
estimate the 3D structure and 3D (camera) 
motion.

Assumption: orthographic projection

Tracks:  (ufp,vfp), f: frame, p: point
Subtract out mean 2D position…

ufp = if
T sp if: rotation, sp: position

vfp = jf
T sp
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Measurement equations

Measurement equations
ufp = if

T sp if: rotation, sp: position
vfp = jf

T sp

Stack them up…
W = R S
R = (i1,…,iF, j1,…,jF)T

S = (s1,…,sP)
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Factorization

W = R2F×3 S3×P

SVD
W = U Λ V Λ must be rank 3
W’ = (U Λ 1/2)(Λ1/2 V) = U’ V’

Make R orthogonal
R = QU’ ,  S = Q-1V’
if

TQTQif = 1 …
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Results
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Results
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Extensions
Paraperspective
[Poelman & Kanade, PAMI 97]
Sequential Factorization
[Morita & Kanade, PAMI 97]
Factorization under perspective
[Christy & Horaud, PAMI 96]
[Sturm & Triggs, ECCV 96]
Factorization with Uncertainty
[Anandan & Irani, IJCV 2002]
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Bundle Adjustment

What makes this non-linear minimization hard?
• many more parameters: potentially slow
• poorer conditioning (high correlation)
• potentially lots of outliers
• gauge (coordinate) freedom
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Levenberg-Marquardt

Iterative non-linear least squares [Press’92]
• Linearize measurement equations

• Substitute into log-likelihood equation:  quadratic 
cost function in Δm
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Iterative non-linear least squares [Press’92]
• Solve for minimum

Hessian:

error:

Levenberg-Marquardt
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What if it doesn’t converge?
• Multiply diagonal by (1 + λ), increase λ until it does
• Halve the step size Δm
• Use line search
• Other ideas?

Uncertainty analysis:  covariance Σ = A-1

Is maximum likelihood the best idea?
How to start in vicinity of global minimum?

Levenberg-Marquardt
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Lots of parameters: sparsity

Only a few entries in Jacobian are non-zero
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Sparse Cholesky (skyline)

First used in finite element analysis
Applied to SfM by [Szeliski & Kang 1994]

structure | motion fill-in
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Conditioning and gauge freedom

Poor conditioning:
• use 2nd order method
• use Cholesky decomposition

Gauge freedom
• fix certain parameters (orientation)  or
• zero out last few rows in Cholesky decomposition
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Robust error models

Outlier rejection
• use robust penalty applied

to each set of joint
measurements

• for extremely bad data, use random sampling 
[RANSAC, Fischler & Bolles, CACM’81]
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Correspondences

Can refine feature matching after a structure 
and motion estimate has been produced

• decide which ones obey the epipolar 
geometry

• decide which ones are geometrically 
consistent

• (optional) iterate between correspondences 
and SfM estimates using MCMC
[Dellaert et al., Machine Learning 2003]
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Structure from motion: limitations
Very difficult to reliably estimate metric

structure and motion unless:
• large (x or y) rotation or
• large field of view and depth variation

Camera calibration important for Euclidean 
reconstructions

Need good feature tracker
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