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The Goal of Texture Synthesis

input image

True (ln'flnlte) texture generated image

. Given a finite sample of some texture, the
goal is to synthesize other samples from that

same texture
— The sample needs to be "large enough*

The Challenge

* Need to model the whole
spectrum: from repeated to
stochastic texture

Texture Synthesis for Graphics

 Inspired by Texture Analysis and
Psychophysics
— [Heeger & Bergen,’95]
— [DeBonet,’97]
— [Portilla & Simoncelli,’98]

..but didn’t work well for structured textures

— [Efros & Leung,’99]
* (originally proposed by [Garber,’81])




Efros & Leung '99

» [Shannon,’48] proposed a way to generate
English-looking text using N-grams:
— Assume a generalized Markov model

— Use a large text to compute prob. distributions
of each letter given N-1 previous letters

— Starting from a seed repeatedly sample this
Markov chain to generate new letters

— Also works for whole words

WE NEED TO EAT CAKE

Mark V. Shaney (Bell Labs)

* Results (using alt.singles corpus):

— “As I've commented before, really relating to
someone involves standing next to impossible.”

— ““One morning | shot an elephant in my arms and

kissed him.”
— ““I spent an interesting evening recently with a
grain of salt”
» Notice how well local structure is
preserved!

— Now, instead of letters let’s try pixels...
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Input image

Synthesizing a pixel
« Assuming Markov property, compute P(p|N(p))

— Building explicit probability tables infeasible

— Instead, let’s search the input image for all similar
neighborhoods — that’s our histogram for p

» To synthesize p, just pick one match at random

Efros & Leung '99

* The algorithm
— Very simple
— Surprisingly good results
— Synthesis is easier than analysis!
— ...but very slow

» Optimizations and Improvements
— [Wei & Levoy,’00] (based on [Popat & Picard,’93])
— [Harrison,’01]
— [Ashikhmin,’01]




Chaos Mosaic [Xu, Guo &

ihput

result

Process: 1) tile input image; 2) pick
random blocks and place them in

random locations g’s)adﬁmz%gem&glgseﬁraun et.al,’00]

Chaos Mosaic [Xu, Guo &
Shum. ‘00]

result

o Of course, doesn’t work for structured
textures

Image Quilting

* |dea:

— let’'s combine random block placement of
Chaos Mosaic with spatial constraints of Efros &
Leung

Related Work (concurrent):

— Real-time patch-based sampling [Liang et.al.
'01]

— Image Analogies [Hertzmann et.al. '01]
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Input image

» Observation: neighbor pixels are highly correlated
Idea: unit of synthesis = block
e Exactly the same but now we want P(B|N(B))

* Much faster: synthesize all pixels in a block at once

* Not the same as multi-scale!
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Input texture
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Random placement Neighboring blocks Minimal error
of blocks constrained by overlap boundary cut
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Our Philosophy

* The “Corrupt Professor’s Algorithm”:

— Plagiarize as much of the source image as you
can

— Then try to cover up the evidence

» Rationale:
— Texture blocks are by definition correct samples
of texture so problem only connecting them
together

Algorithm

— Pick size of block and size of overlap
— Synthesize blocks in raster order

— Search input texture for block that satisfies
overlap constraints (above and left)
» Easy to optimize using NN search [Liang et.al., '01]
— Paste new block into resulting texture

* use dynamic programming to compute minimal error
boundary cut
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Texture Transfer

e Take the texture from one
object and “paint” it onto
another object

— This requires separating
texture and shape

— That’s HARD, but we can
cheat

— Assume we can capture shape
by boundary and rough

shadin . .
Then, justgadd another constraint when sampling:

Similarity to underlying image at that spot
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Image Quilting

Wei & Levoy

Xu, Guo & Shum
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Homage to
Shannon!
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Image Quilting

Conclusion

Quilt together patches of input image
— randomly (texture synthesis)
— constrained (texture transfer)
* Image Quilting
— No filters, no multi-scale, no one-pixel-at-a-time!
— fast and very simple
— Results are not bad




