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Today’s lecture

Computational Photography
• photometric camera calibration
• high-dynamic range imaging & tone mapping
• flash photography
• PhotoMontage
• object cutouts and matting
• Poisson blending
• inpainting and texture synthesis
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Readings
• Debevec and Malik, Recovering High Dynamic Range 

Radiance Maps from Photographs. In SIGGRAPH 97.
• S. B. Kang et al. High dynamic range video.

SIGGRAPH 2003.
• D. Lischinski. Interactive local adjustment of tonal 

values. SIGGRAPH 2006.
• G. Petschnigg et al. Digital photography with flash and 

no-flash image pairs. SIGGRAPH 2004.
• P. Pérez et al. Poisson image editing. SIGGRAPH 2003
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Sources

Some of my slides are from:

Bill Freeman and Frédo Durand
http://groups.csail.mit.edu/graphics/classes/CompPhoto06/
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Sources

Some of my slides are from:

Alexei (Alyosha) Efros
http://graphics.cs.cmu.edu/courses/15-463/

But first, …

… for something (a little) different …
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Panography - http://www.flickr.com/search/?q=panography
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Panography - http://www.flickr.com/search/?q=panograph
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Panography

What kind of motion model?

What kind of compositing?

Can you do “global alignment”?

High Dynamic Range Imaging 
(HDR)

slides borrowed from
15-463: Computational Photography

Alexei Efros, CMU, Fall 2007,
Paul Debevec, and my talks
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Problem: Dynamic Range

1500

1

25,000

400,000

2,000,000,000

The real world is
high dynamic range.
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Problem: Dynamic Range

Typical cameras have limited dynamic range

What can we do?
Solution: merge multiple exposures
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Varying Exposure
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HDR images — multiple inputs

Radiance

Pixel count
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HDR images — merged

Radiance

Pixel count
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Camera is not a photometer!

Limited dynamic range
⇒Use multiple exposures?

Unknown, nonlinear response 
⇒ Not possible to convert pixel values to radiance

Solution:
• Recover response curve from multiple exposures, 

then reconstruct the radiance map



log Exposure = Exposure = log (Radiance(Radiance * * ΔΔtt))

Imaging system response function

PixelPixel
valuevalue

0

255
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Camera Calibration

Geometric
• How pixel coordinates relate to directions in the 

world

Photometric
• How pixel values relate to radiance amounts in the 

world
• Per-pixel transfer and blur
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Camera sensing pipeline
Camera

Irradiance

DSP

  RAW

Sensor chip

Camera Body

Optics Aperture

Sensor
(CCD/CMOS) A / D

Demosaic (Sharpen)

White 
Balance Gamma/curve Compress

Shutter

Gain
(ISO)

    JPEG
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Camera sensing pipeline

  RAW

DSP

Sensor chip

Camera Body

Camera
Irradiance Optics Aperture

Sensor
(CCD/CMOS) A / D

Demosaic (Sharpen)

White 
Balance Gamma/curve Compress

Shutter

Gain
(ISO)

    JPEG

Blur kern. & RD F-stop & Vignette Exposure T

AA CFA Noise ISO Gain Q1

? ?

RGB Gain Q2



Recovering High Dynamic Range
Radiance Maps from Photographs

Paul Debevec
Jitendra Malik

SIGGRAPH’97, August 1997

Computer Science Division
University of California at Berkeley
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Ways to vary exposure

Shutter Speed (*)

F/stop (aperture, iris)

Neutral Density (ND) Filters
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Shutter Speed

Ranges: Canon D30: 30 to 1/4,000 sec.
(1997) Sony VX2000: ¼ to 1/10,000 sec.

Pros:
Directly varies the exposure
Usually accurate and repeatable

Issues:
Noise in long exposures
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Shutter Speed

Note: shutter times usually obey a power series –
each “stop” is a factor of 2

¼, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000 sec

Usually really is:

¼, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024 sec
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The Algorithm

ΔΔtt ==
1 sec1 sec

ΔΔtt ==
1/16 sec1/16 sec

ΔΔtt ==
4 sec4 sec

ΔΔtt ==
1/64 sec1/64 sec

ΔΔtt ==
1/4 sec1/4 sec

Exposure = Radiance × Δt
log Exposure = log Radiance + log Δt

Pixel Value Z = f(Exposure)
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Response Curve

log Exposure

Assuming unit radiance
for each pixel

After adjusting radiances to 
obtain a smooth response 
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The Math

Let g(z) be the discrete inverse response function
For each pixel site i in each image j, want:

Solve the over-determined linear system:

fitting term smoothness term

ln Radiancei + lnΔtj − g(Zij )[ ]2

j=1

P

∑
i=1

N

∑ +λ ′ ′ g (z)2

z =Zmin

Zmax

∑

ln Radiancei +ln Δt j = g(Zij )
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MatLab code
function [g,lE]=gsolve(Z,B,l,w)

n = 256;
A = zeros(size(Z,1)*size(Z,2)+n+1,n+size(Z,1));
b = zeros(size(A,1),1);

k = 1;                %% Include the data-fitting equations
for i=1:size(Z,1)

for j=1:size(Z,2)
wij = w(Z(i,j)+1);
A(k,Z(i,j)+1) = wij; A(k,n+i) = -wij; b(k,1) = wij * B(i,j);
k=k+1;

end
end

A(k,129) = 1;         %% Fix the curve by setting its middle value to 0
k=k+1;

for i=1:n-2           %% Include the smoothness equations
A(k,i)=l*w(i+1); A(k,i+1)=-2*l*w(i+1); A(k,i+2)=l*w(i+1);
k=k+1;

end

x = A\b;              %% Solve the system using SVD

g = x(1:n);
lE = x(n+1:size(x,1));
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Results: digital camera
Recovered response Recovered response 

curvecurve
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Kodak DCS460
1/30 to 30 sec
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Reconstructed Radiance Map
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Results: Color Film

Kodak Gold ASA 100, PhotoCD

Richard Szeliski Computational Photography 32

Recovered Response Curves

Red Green

RGBBlue
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The Radiance Map
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The Radiance Map

Linearly scaled toLinearly scaled to
display devicedisplay device
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Portable FloatMap (.pfm)
12 bytes per pixel, 4 for each channel

sign exponent mantissa

PF
768 512
1
<binary image data>Floating Point TIFF similar

Text header similar to Jeff Poskanzer’s .ppm
image format:
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Radiance Format (.pic, .hdr)

(145, 215, 87, 149)  =

(145, 215, 87) * 2^(149-128)  =

(1190000, 1760000, 713000)

Red               Green               Blue             Exponent

32 bits / pixel

(145, 215, 87, 103)  =

(145, 215, 87) * 2^(103-128)  =

(0.00000432, 0.00000641, 0.00000259)

Ward, Greg. "Real Pixels," in Graphics Gems IV, edited by James Arvo, Academic Press, 1994
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ILM’s OpenEXR (.exr)
6 bytes per pixel, 2 for each channel, compressed

sign exponent mantissa

• Several lossless compression options, 2:1 typical
• Compatible with the “half” datatype in NVidia's Cg
• Supported natively on GeForce FX and Quadro FX
• Available at http://www.openexr.net/

High Dynamic Range Video

Sing Bing Kang, Matt Uyttendaele, 
Simon Winder, Rick Szeliski

[SIGGRAPH’2003]
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High dynamic range photography

Typical cameras have limited dynamic range

Solution: merge multiple exposures
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HDR images — multiple inputs

Radiance

Pixel count
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HDR images — merged

Radiance

Pixel count
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What about scene motion?

Inputs Tonemapped output
(no compensation or 
consistency check)
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With motion compensation

Inputs Tonemapped output
(global+local compensation)
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Registration (global)

After global registration
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Registration (local)

After local 
registration
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HDR image viewing

Interactively adjust exposure in window

DEMO
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HDR Merge Application

Launch from
MSR Batch Stitcher
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Now What?



Tone Mapping
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Tone Mapping

10-6 106

10-6 106

Real World
Ray Traced 
World (Radiance)

Display/
Printer

0 to 255

High dynamic range

How can we do this?
Linear scaling?, thresholding?  Suggestions?
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Simple Global Operator
Compression curve needs to

• Bring everything within range
• Leave dark areas alone

In other words

• Asymptote at 255
• Derivative of 1 at 0
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Global Operator (Reinhart et al)

world

world
display L

LL
+

=
1
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Global Operator Results
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Darkest 0.1% scaledDarkest 0.1% scaled
to display deviceto display device

Reinhart OperatorReinhart Operator
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What do we see?

Vs.
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What does the eye sees?

The eye has a huge dynamic range
Do we see a true radiance map?
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Metamores

Can we use this for range compression?

Fast bilateral filtering for the 
display of high-dynamic-range 
images

Frédo Durand and Julie Dorsey 
SIGGRAPH 2002.
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Naïve: Gamma compression
X −> Xγ, colors are washed-out.  Why?

Input Gamma
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Gamma compression on intensity
Colors are OK, details are blurred

Gamma on intensityIntensity

Color
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Oppenheim 1968, Chiu et al. 1993
Reduce contrast of low-frequencies, keep high

Reduce low frequencyLow-freq.

High-freq.

Color
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Halos
Strong edges contain high frequency

Reduce low frequencyLow-freq.

High-freq.

Color
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Our approach
Do not blur across edges: non-linear filtering

OutputLarge-scale

Detail

Color
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Bilateral filter

Tomasi and Manduci 1998
http://www.cse.ucsc.edu/~manduchi/Papers/ICCV98.pdf

Related to 
• SUSAN filter [Smith and Brady 95] 

http://citeseer.ist.psu.edu/smith95susan.html
• Digital-TV [Chan, Osher and Chen 2001]

http://citeseer.ist.psu.edu/chan01digital.html
• sigma filter 

http://www.geogr.ku.dk/CHIPS/Manual/f187.htm
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Start with Gaussian filtering

Output is blurred

output input

=J f I⊗
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Bilateral filtering is non-linear

The weights are different for each output pixel

=)(xJ ),( ξxf ))()(( xIIg −ξ )(ξI∑
ξ)(

1
xk

output input

x x
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Other view

The bilateral filter uses the 3D distance
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Contrast reduction

Detail

Color

Intensity Large scale

Fast
Bilateral 
Filter

Reduce
contrast

Detail

Large scale

Color

Preserve!

OutputInput HDR image
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Dynamic range reduction

• To reduce contrast of base layer
• scale in the log domain γ exponent in linear

• Set a target range: log10 (5)
• Compute range in the log layer: (max-min)
• Deduce γ using division
• Normalize so that the biggest value in the 

(linear) base is 1 (0 in log):
• offset the compressed based by its max
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Summary of approach
Do not blur base/gain layer: non-linear filtering

OutputLarge-scale

Detail

Color

Gradient domain high dynamic 
range compression

Raanan Fattal, Dani Lischinski, and 
Michael Werman
SIGGRAPH 2002.
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Slide from Siggraph 2005 by Raskar (Graphs by Fattal et al.) 

Gradient Tone Mapping
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Gradient attenuation

From Fattal et al.

Interactive Local Adjustment    
of Tonal Values

Dani Lischinski
Zeev Farbman

The Hebrew University

Matt Uyttendaele
Rick Szeliski

Microsoft Research

SIGGRAPH 2006
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Tonal Manipulation
•brightness
•exposure
•contrast
•saturation
•color temperature
•…
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Interpretation 1:
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Interpretation 2:
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Interpretation 3:
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This Work is About:

New tool for interactive tonal manipulation: 
developing negatives in the digital darkroom.

Target material:
• HDR images: the ultimate digital negative.
• Camera RAW images: the most common digital 

negative.
• Ordinary snapshots.
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Existing Tools

Automatic tone mapping algorithms
• Why do we need yet another tone mapping 

approach?
• Why interactive rather than automatic?

Image manipulation and editing packages, e.g., 
Adobe Photoshop.
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Tone Reproduction Operators

Bilateral Filtering

Durand & Dorsey 2002

Gradient Domain

Fattal et al. 2002

Photographic

Reinhard et al. 2002
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Automatic vs. Interactive

Bilateral Filtering

Durand & Dorsey 2002

Interactive Tone 
Mapping

Photographic

Reinhard et al. 2002
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Automatic vs. Interactive

Existing automatic TM operators are
“black boxes”
• No direct control over the outcome
• No local adjustment
• Not suitable for creative/artistic work
• Results do not always look “photographic”
• Most operators not really automatic
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But What About Photoshop?

You can do just about everything …
Adjustment Layers
Layer Masks

• Select regions
• Paint blending weights

… but you need a lot of experience, patience, 
and time!
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Our approach

Example
15 minutes in Photoshop: 3 minutes:
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Approach

User indicates regions using scribbles.
User adjusts tonal values using sliders.

Scribbles + tonal values are interpreted as soft 
constraints.

Optimization framework “propagates” the 
constraints to the entire image.
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User interface
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Input: constraints
+0.5 f-stops

-1.0 f-stops

+2.0 f-stops

+1.2 f-stops
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Result: adjustment map
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Approximate constraints with a function whose 
smoothness is determined by underlying image:

Our smoothness term:

Constraint Propagation

data term
smoothness 

term
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Linear System
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Solving the System
Sparse symmetric positive definite system:

• Use preconditioned conjugate gradients (PCG)
• Which preconditioner?

Matrix L depends on the image, only W depends on 
constraints.

Idea: use incomplete Cholesky decomposition of    I - L.



Richard Szeliski Computational Photography 93

Multi-resolution Solver

Solve a coarse version of the problem using a 
direct solver.

Repeat:
• Upsample solution to next level, perform a few 

PCG iterations.
Stop once desired preview resolution has been 

reached.
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Influence Functions
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Influence Functions
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Rapid Solution Update
When a single constraint’s value is modified:

The new solution f’ is given as a linear combination:
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Automatic Initialization

Inspired by Ansel Adams’ “Zone System”.
• Segment image (very crudely) into brightness 

“zones”
• Determine the desired exposure for each 

zone
• Let the image-guided optimization produce a 

piecewise smooth exposure map
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Results – Automatic mode
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Results – Automatic Mode
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Results – Automatic mode
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Snapshot Enhancement
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Snapshot Enhancement
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Spatially Variant White Balance
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Fake Depth of Field
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Comparison of tone mappers

Durand and Dorsey. Fast bilateral filtering for the 
display of high-dynamic-range images. 
SIGGRAPH 2002.

Fattal, Lischinski, and Werman. Gradient domain 
high dynamic range compression. SIGGRAPH 
2002.

Li, Sharan, and Adelson. Compressing and 
Companding High Dynamic Range Images with 
Subband Architectures.  SIGGRAPH 2005.
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Fattal et al. 2002

Reinhard et al. 2002

Li et al. 2005

Durand & Dorsey 2002

Lischinski et al. 2006

Merging flash and
non-flash images

Georg Petschnigg, Maneesh Agrawala, 
Hugues Hoppe, Rick Szeliski, 

Michael Cohen, Kentaro Toyama
[SIGGRAPH’2004]
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Flash + non-flash images

Flash photos have less noise, more detail
Non-flash photos have better color
Idea:  merge them together

• But how?

+ =

non-flash flash merged
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Flash + non-flash images

Smooth non-flash photo using flash photo’s 
edge information

Add high-frequency details from flash image

+ =

non-flash flash merged
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Joint bilateral filter
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Bilateral detail filter
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Final result

flashnon-flashmerged
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Today’s lecture

Computational Photography
• photometric camera calibration
• high-dynamic range imaging & tone mapping
• flash photography
• PhotoMontage
• object cutouts and matting
• Poisson blending
• inpainting and texture synthesis



Interactive Digital Photomontage

Aseem Agarwala, Mira Dontcheva,
Maneesh Agrawala, Steven Drucker,

Alex Colburn, Brian Curless,
David Salesin, Michael Cohen

(U. Washington & Microsoft Research)
[SIGGRAPH’2004]
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PhotoMontage

Goal: select pieces to form the “best” composite
Q: How can we formulate this?

A Comparative Study of
Energy Minimization Methods for 

Markov Random Fields
Richard Szeliski, Ramin Zabih, Daniel Scharstein, 

Olga Veksler, Vladimir Kolmogorov, Aseem Agarwala, 
Marshall Tappen, and Carsten Rother

ECCV 2006

Mathematical “Diversion”
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Markov Random Fields

Used a lot in computer vision and graphics:
• stereo matching
• image segmentation
• image blending
• texture synthesis
• image restoration
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Markov Random Fields

We want to minimize the energy function E(f)

with spatially varying 
smoothness/interaction
potentials  Vpq(fp,fq)

443442143421
costs separation

,

costs assignment

),(),(  min arg ∑∑
∈

+
Nqp

qp
p

pf
ffVfpD

a cut C
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MRF labels

• Ordered labels
• depth map (stereo)
• gray levels (image restoration)

• Unordered labels
• image id (quilting / PhotoMontage)

• Binary labels
• segmentation (GrabCut)
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Sequence of binary
sub-problems solved
by max-flow algorithm:
[Boykov, Veksler & Zabih,
PAMI 2001]

•α-β swap: optimize
pair of labels

•α expansion: change
all pixels to one value

Graph cuts
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PhotoMontage

Interaction potentials not symmetric:
measures similarity
between neighboring
pixels in two
different images

Interaction potential may
not be symmetric

May violate sub-modularity:
some algorithms don’t work
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Photomontage: input
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Photomontage: output
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GroupShot application

Richard Szeliski Computational Photography 128

Cutout-based compositing

Interactively blend different images:
focus settings
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Cutout-based compositing

Interactively blend different images:
people’s faces
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Cutout-based de-ghosting
•Select only one image 
per output pixel, using 
spatial continuity 
•Blend across seams 
using gradient continuity 
(“Poisson blending”)

GrabCut:
Cut & Paste Images Easily

Carsten Rother
Andrew Blake

Vladimir Kolmogorov
[SIGGRAPH’2004]
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GrabCut

User draws a rectangle or lasso around an object
Object edges are detected and feathered
Approach: binary graph cut w/ color statistics

User Input Segmentation New composed Image
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GrabCut example
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Magic 
Wand, 
Photoshop 7         

Intelligent 
Scissors, 
Photoshop 7

GrabCut

GrabCut — Comparison
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Results — No User Interaction
User Input                              First Iteration         Output
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Results — Little User Interaction
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Results — More User Interaction

Richard Szeliski Computational Photography 138

Today’s lecture

Computational Photography
• photometric camera calibration
• high-dynamic range imaging & tone mapping
• flash photography
• PhotoMontage
• object cutouts and matting
• Poisson blending
• inpainting and texture synthesis

Poisson Image Editing

Patrick Pérez, Michel Gangnet, Andrew Blake
SIGGRAPH 2003
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Poisson Image Editing

Blend the gradients of the two images, then integrate
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Seamless Poisson cloning

Given vector field v (pasted gradient), find the 
value of f in unknown region that optimizes: 

Pasted gradient Mask

Background

unknown
region
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Discrete Poisson solver

Two approaches: 
• Minimize variational problem
• Solve Euler-Lagrange equation
In practice, variational is best

In both cases, need to discretize derivatives
• Finite differences over 4 pixel neighbors
• We are going to work using pairs

– Partial derivatives are easy on pairs 

p q
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Discrete Poisson solver

Minimize variational problem

Rearrange and call Np the neighbors of p
Big yet sparse linear system
Similar to MRF, but continuous variables

(all pairs that 
are in Ω)

Discretized 
gradient

Discretized 
v: g(p)-g(q) Boundary condition
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Face cloning
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Texture swapping

Image Quilting for Texture 
Synthesis & Transfer

Alexei Efros (UC Berkeley)
Bill Freeman (MERL)

Jump to their Slide Deck

++ ==

Object Removal by 
Exemplar-Based Inpainting

A. Criminisi, P. Pérez, K. Toyama
CVPR 2003
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Original

Object removal step by step

Object removal step by step
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Object removal step by step

Original photograph, Kirkland Marina Park Object removal step by step

Removing people
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Removing text

Original images courtesy of Bertalmio et al.
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Completing panoramas
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Summary of today’s lecture

Computational Photography
• photometric camera calibration
• high-dynamic range imaging & tone mapping
• flash photography
• PhotoMontage
• object cutouts and matting
• Poisson blending
• inpainting and texture synthesis

Questions?


