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History:

Heileges
Crunchy

single object recognition

History:

Aeileges
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® Lowe, et al. 1999, 2003

 Mahamud and Herbert, 2000

* Ferrari, Tuytelaars, and Van Gool, 2004
* Rothganger, Lazebnik, and Ponce, 2004
» Moreels and Perona, 2005




History: early object categorization
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Object categorization:
the statistical viewpoint
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» Bayes rule:
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Object categorization:
the statistical viewpoint
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» Discriminative methods model posterior

 Generative methods model likelihood and
prior




Discriminative

« Direct modeling of p(zebra | image)

p(no zebra | image)

Generative
» Model p(image|zebra) and p(image | no zebra)
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Three main issues

* Representation
— How to represent an object category

* Learning
— How to form the classifier, given training data

» Recognition
— How the classifier is to be used on novel data

Representation

— Generative /
discriminative / hybrid




Representation

— Generative /
discriminative / hybrid

— Appearance only or

location and
appearance
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Representation

— Generative /
discriminative / hybrid

— Appearance only or
location and
appearance

— Invariances

* View point

e lllumination
* Occlusion

» Scale

» Deformation
* Clutter

. etc.

Representation

— Generative /
discriminative / hybrid

— Appearance only or
location and
appearance

— invariances

— Part-based or global
w/sub-window

Representation

— Generative /
discriminative / hybrid

— Appearance only or
location and
appearance

— invariances

— Parts or global w/sub-
window

— Use set of features or
each pixel in image
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Learning

— Unclear how to model categories, so we
learn what distinguishes them rather than
manually specify the difference -- hence
current interest in machine learning

Learning

— Unclear how to model categories, so we
learn what distinguishes them rather than
manually specify the difference -- hence
current interest in machine learning)

— Methods of training: generative vs.
discriminative
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Learning

— Unclear how to model categories, so we
learn what distinguishes them rather than
manually specify the difference -- hence
current interest in machine learning)

— What are you maximizing? Likelihood
(Gen.) or performances on train/validation
set (Disc.)

— Level of supervision

¢ Manual segmentation; bounding box; image
labels; noisy labels

Contains a motorbike

Learning

— Unclear how to model categories, so we
learn what distinguishes them rather than
manually specify the difference -- hence
current interest in machine learning)

— What are you maximizing? Likelihood
(Gen.) or performances on train/validation
set (Disc.)

— Level of supervision

» Manual segmentation; bounding box; image
labels; noisy labels

— Batch/incremental (on category and image
level; user-feedback )




Recognition

— Scale / orientation range to search over

— Speed
— Context
(d) P(person | geometry)
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Part 1: Bag-of-words models

by Li Fei-Fei (Princeton)




Related works

« Early “bag of words” models: mostly texture

recognition

— Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik,
2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik,

Schmid & Ponce, 2003;

 Hierarchical Bayesian models for documents

(PLSA, LDA, etc.)

— Hoffman 1999; Blei, Ng & Jordan, 2004; Teh, Jordan, Beal &

Blei, 2004
* Object categorization

— Csurka, Bray, Dance & Fan, 2004, Sivic, Russell, Efros,
Freeman & Zisserman, 2005; Sudderth, Torralba, Freeman &

Willsky, 2005;

» Natural scene categorization
— Vogel & Schiele, 2004; Fei-Fei & Perona, 2005; Bosch,

Zisserman & Munoz, 2006

A 4

Object Bag of ‘words’

Analogy to documents

Of all the sensory impressions proceeding to
the brain, the visual experiences are the
dominant ones. Our perception of the world
around us is based essentially on the

image i €tinal, cerebral corte
discove eye, cell, optical
perceptia nerve, image

Hubel and Wiesel 173

demonstrate that the message abo
image falling on the retina undergoes
wise analysis in a system of nerve cel
stored in columns. In this system each
has its specific function and is responsibld
a specific detail in the pattern of the retinal
image.

China is forecasting a trade surplus of $90bn
(E51bn) to $100bn this year, a threefold
increase on 2004's $32bn. The Commerce
Ministry said the surplus would be created by

China'y )
deliberf [€XpoOTrts, imports, US,

foreign, increase,
> trade, value .

freely. However, Beijing has made it ¢
it will take its time and tread carefully béj
allowing the yuan to rise further in value.

A clarification: definition of “BoW”

» Looser definition
— Independent features

3 i i




A clarification: definition of “BoW”

« Stricter definition
— Independent features
— histogram representation
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1.Feature detection

* Regular grid
— Vogel & Schiele, 2003
— Fei-Fei & Perona, 2005 Ll A
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1.Feature detection

* Regular grid
— Vogel & Schiele, 2003
— Fei-Fei & Perona, 2005

* Interest point detector
— Csurka, et al. 2004 !
— Fei-Fei & Perona, 2005
— Sivic, et al. 2005

1.Feature detection

* Regular grid
— Vogel & Schiele, 2003
— Fei-Fei & Perona, 2005
* Interest point detector
— Csurka, Bray, Dance & Fan, 2004
— Fei-Fei & Perona, 2005
— Sivic, Russell, Efros, Freeman & Zisserman, 2005

» Other methods
— Random sampling (Vidal-Naquet & Uliman, 2002)

— Segmentation based patches (Barnard, Duygulu,
Forsyth, de Freitas, Blei, Jordan, 2003)

1.Feature representation
{E <
Compute
SIFT Normalize
descriptor patch

[Lowe’99]

Detect patches
[Mikojaczyk and Schmid '02]
[Mata, Chum, Urban & Pajdla, '02]

[Sivic & Zisserman, '03]

Slide credit: Josef Sivic




1.Feature

representation

EE

2. Codewords dictionary formation
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2. Codewords dictionary formation

SR

Vector quantization

Slide credit: Josef Sivic

2. Codewords dictionary formation
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Image patch examples of codewords
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Sivic et al. 2005

3. Image representation

frequency
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Learning and Recognition

codewords dictionary

category mo@gls , Category
(and/or) classifiers decision




Learning and Recognition

2. Discriminative method:
- SVM

category models
(and/or) classifiers

Learning and Recognition

1. Generative method:
- graphical models

2. Discriminative method:
- SVM

category models
(and/or) classifiers

Discriminative methods based on
‘bag of words’ representation

Discriminative methods based on
‘bag of words’ representation

e Grauman & Darrell, 2005, 2006:
— SVM w/ Pyramid Match kernels

» Others
— Csurka, Bray, Dance & Fan, 2004
— Serre & Poggio, 2005




Summary: Pyramid match kernel
]
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é g optimal partial
matching between
b sets of features

Ka (¥(X), U(Y))

Grauman & Darrell, 2005, Slide credit: Kristen Grauman

Pyramid Match (Grauman & Darrell 2005)
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Pyramid Match (Grauman & Darrell 2005)

HSOgram  T(H(X). H(Y)) = 2 min (H(X);, H(Y);)

matches at this level matches at previous level

A —
~ — =~

N; = T (Hi(X), Hi(Y)) = T (H; 1 (X), Hi_1(Y))

Difference in histogram intersections across
levels counts number of new pairs matched

Slide credit: Kristen Grauman

Pyramid match kernel

histogram pyramids

Ka (‘I’(X)a‘I’(Y)) =

L 1
> 5 (2 (H(X), Hi(¥)) 1

=0

Hi1(X), Hiea (Y)))

I number of newly matched pairs at level i

measure of difficulty of
a match at level i

» Weights inversely proportional to bin size

» Normalize kernel values to avoid favoring large sets

Slide credit: Kristen Grauman




Example pyramid match
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Slide credit: Kristen Grauman

Example pyramid match
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Slide credit: Kristen Grauman

Example pyramid match

Level 2

Slide credit: Kristen Grauman

Example pyramid match

pyramid match
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Summary: Pyramid match kernel
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Object recognition results

» Caltech objects database
101 object classes

AR AL W / » Features:
optimal partial — SIFT detector
mat?:llwing Igetvxlleen — PCA-SIFT descriptor, d=10
sets of features « 30 training images / class
* 43% recognition rate
L 4 ‘I'(Y) (1% chance performance)
> 5 (I (H%-(X), i(Y)) ~T(H;—1(X), Hi_, (Y))) - 0.002 seconds per match
=0
difficulty of a match at level i number of new matches at level i
Slide credit: Kristen Grauman Slide credit: Kristen Grauman
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What about spatial info?

* Feature level

— Spatial influence through correlogram features:

Savarese, Winn and Criminisi, CVPR 2006

kamel Py
kemel Py
kerned P,

(@) Circular kernels
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corrwlation labsd

What about spatial info?

» Generative models
— Sudderth, Torralba, Freeman & Willsky, 2005, 2006
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What about spatial info?

» Generative models

— Niebles & Fei-Fei, CVPR 2007

What about spatial info?

» Discriminative methods
— Lazebnik, Schmid & Ponce, 2006




Weakness of the model

* No rigorous geometric information
of the object components

e It's intuitive to most of us that
objects are made of parts — no
such information

* Not extensively tested yet for

— View point invariance Part 2: part-based models
— Scale invariance
» Segmentation and localization by Rob Fergus (MIT)
unclear
Problem with bag-of-words Overview of section
L3Q = ) S i - Representation
i.." —C tational lexit
RS - . m I - u = _Lomsu ational complexity
_ u ' ocation
- _ @ = — Appearance
> — Occlusion, Background clutter

» All have equal probability for bag-of-words methods - Recoghnition

» Location information is important




Model: Parts and Structure

Representation

* Object as set of parts
— Generative representation

* Model:
— Relative locations between parts
— Appearance of part

e |ssues:
— How to model location
— How to represent appearance
— Sparse or dense (pixels or regions)
— How to handle occlusion/clutter

Figure from [Fischler & Elschlager 73]

History of Parts and Structure
approaches

Fischler & Elschlager 1973

Yuille ‘91

Brunelli & Poggio ‘93

Lades, v.d. Malsburg et al. ‘93
Cootes, Lanitis, Taylor et al. ‘95
Amit & Geman ‘95, ‘99

Perona et al. ‘95, ‘96, '98, '00, '03, ‘04, ‘05
Felzenszwalb & Huttenlocher '00, '04
Crandall & Huttenlocher '05, '06

Leibe & Schiele '03, '04

Many papers since 2000

Sparse representation

+ Computationally tractable (105 pixels = 10! -- 102 parts)
+ Generative representation of class

+ Avoid modeling global variability

+ Success in specific object recognition

- Throw away most image information
- Parts need to be distinctive to separate from other classes




Region operators

— Local maxima of

interest operator
: e
function :
P
— Can give i =
scale/orientation .
invariance

MultiScale Harris Difference-of-Ganssian Saliency
Figures from [Kadir, Zisserman and Brady 04]

The correspondence problem

* Model with P parts
* Image with N possible assignments for each part
» Consider mapping to be 1-1

NP combinations!!!

The correspondence problem
« 1 -1 mapping
— Each part assigned to unique feature

As opposed to:

e 1 - Many

— Bag of words approaches
— Sudderth, Torralba, Freeman '05
— Loeff, Sorokin, Arora and Forsyth ‘05

e Many — 1

- Quattoni, Collins
and Darrell, 04

Connectivity of parts

» Complexity is given by size of maximal clique in graph
» Consider a 3 part model
— Each part has set of N possible locations in image
— Location of parts 2 & 3 is independent, given location of L
— Each part has an appearance term, independent between parts.

Shape Model Factor graph

Variables

Factors




Different connectivity structures

Fergus et al. '03 Crandall et al. ‘05 Crandall et al. ‘05 Felzenszwalb‘&
Fei-Fei et al. ‘03 Fergus et al. '05 : Huttenlocher ‘00
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Csurka '04

Bouchard & Triggs ‘05
Vasconcelos ‘00

Carneiro & Lowe ‘06

from Sparse Flexible Models of Local Features
Gustavo Carneiro and David Lowe, ECCV 2006

How much does shape help?

e Crandall, Felzenszwalb, Huttenlocher CVPR’05
« Shape variance increases with increasing model complexity
» Do get some benefit from shape

RSt T

(a) Airplane, 1-fan
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False positive rate

Hierarchical representations

* Pixels - Pixel groupings - Parts - Object

* Multi-scale approach
increases number of
low-level features

* Amit and Geman ‘98
* Bouchard & Triggs ‘05

LR
BB By By By

Images from [Amit98,Bouchard05]

Some class-specific graphs

» Articulated motion
— People
— Animals

» Special parameterisations

;
A1
\

— Limb angles

Images from [Kumar, Torr and Zisserman 05, Felzenszwalb & Huttenlocher 05]




Dense layout of parts

Layout CRF: Winn & Shotton, CVPR ‘06

[P

Part labels (color-coded)

How to model location?

» Explicit: Probability density functions
 Implicit: Voting scheme

* Invariance
— Translation
— Scaling [] —
— Similarity/affine
— Viewpoint

Explicit shape model

» Cartesian
— E.g. Gaussian distribution
— Parameters of model, p and X
— Independence corresponds to zeros in X
— Burl et al. '96, Weber et al. ‘00, Fergus et al. ‘03
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Mikolajczyk et al., CVPR ‘06

Implicit shape model

« Use Hough space voting to find object
* Leibe and Schiele '03,'05

Learning

» Learn appearance codebook

— Cluster over interest points on
training images

B

3 &
» Learn spatial distributions - ->
— Match codebook to training images “ x ‘

— Record matching positions on object S S
— Centroid is given

X X
Spatial occurrence distributions

Matched Codebook
Entries

Probabilistic

Recognition  |nterest Points

l-"-_l




Multiple view points

Thomas, Ferrari, Leibe,
Tuytelaars, Schiele, and L. Van
Gool. Towards Multi-View Object
Class Detection, CVPR 06

Hoiem, Rother, Winn, 3D LayoutCRF for
Multi-View Object Class Recognition and
Segmentation, CVPR ‘07

Representation of appearance

* Needs to handle intra-class variation

— Task is no longer matching of
descriptors

— Implicit variation (VQ to get discrete
appearance)

— Explicit model of appearance (e.g.
Gaussians in SIFT space)

» Dependency structure
— Often assume each part’s
appearance is independent

— Common to assume
independence with location

Representation of appearance

* |nvariance needs to match that of
shape model

 Insensitive to small shifts in
translation/scale
— Compensate for jitter of features
—e.g. SIFT

¢ |llumination invariance
— Normalize out

Appearance representation

« SIFT « Decision trees
/,,rr-—-\.\ - —— [Lepetit and Fua CVPR 2005]
i), (X T
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« PCA
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Background clutter

« Explicit model

— Generative model for clutter as well as foreground
object

e Use a sub-window

— At correct position,
no clutter is present

What task?

 Classification
— Object present/absent in image
— Background may be correlated with object

e Localization/
Detection

— Localize object
within the frame

— Bounding box or
pixel-level
segmentation

i S ST 3 C3
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Learning situations

» Varying levels of supervision
— Unsupervised

Image labels

Obiject centroid/bounding box

Segmented object

Manual correspondence
(typically sub-optimal)

Contains a motorbike

» Generative models naturally incorporate labelling
information (or lack of it)

» Discriminative schemes require labels for all data points




Learning using EM

e Task: Estimation of model parameters
* Chicken and Egg type problem, since we initially know neither:
- Model parameters

- Assignment of regions to parts

* Let the assignments be a hidden variable and use EM algorithm to
learn them and the model parameters

Example scheme, using EM for
maximum likelihood learning

1. Current estimate of 6 2. Assign probabilities to constellations

3. Use probabilities as weights to re-estimate parameters. Example: p

® o
® O 0) -
B -°, -EER-c. - -
new estimate of p

Learning Shape & Appearance

Fergus et al 03 simultaneously
Log parameler change Likelihood Ratio Probab. of detection
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Last part: datasets and object
collections




Links to datasets

The next tables summarize some of the available datasets for training and testing
object detection and recognition algorithms. These lists are far from exhaustive.

Databases for object localization

CMU/MIT frontal faces vasc.ri.cmu.edu/idb/html/face/frontal_images Patches Frontal faces
chcl.mit.edu/software-datasets/FaceData2.html

Graz-02 Database www.emt.tugraz.at/~pinz/data/GRAZ_02/ Segmentation masks | Bikes, cars, people
UIUC Image Database 12r.cs.uiuc.edu/~cogcomp/Data/Car/ Bounding boxes Cars

TU Darmstadt Database www.vision.ethz.ch/leibe/data/ Segmentation masks | Motorbikes, cars, cows
LabelMe dataset people.csail.mit.edu/br /LabelMe/intro.html Polygonal boundary | >500 Categories

Databases for object recognition

Caltech 101 www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html | Segmentation masks | 101 categories
COIL-100 www1.cs.columbia.edu/CAVE/research/softlib/coil-100.html Patches 100 instances
NORB www.cs.nyu.edu/~ylclab/data/norb-v1.0/ Bounding box 50 toys

On-line annotation tools

ESP game www.espgame.org Global image descriptions | Web images

LabelMe people.csail.mit.edu/brussell/research/LabelMe/intro.html Polygonal boundary High resolution images
Collections
I PASCAL http://www.pascal-network.org/challenges/VOC/ Segmentation, boxes various I

Collecting datasets
(towards 1087 examples)

« ESP game (CMU)

Luis Von Ahn and Laura Dabbish 2004

* LabelMe (MIT)

Russell, Torralba, Freeman, 2005

« StreetScenes (CBCL-MIT)
Bileschi, Poggio, 2006

«  WhatWhere (Caltech)
Perona et al, 2007

e PASCAL challenge
2006, 2007

» Lotus Hill Institute
Song-Chun Zhu et al 2007

Labeling with games

Figere 1 Bartrer: agreving on o image e 5P Gure. Nestfiar player com s e

alh i g

=
A
a =
=
g Y, Pl pliernpates, Pl ™10 008 i n i st ol g4 pabaria Pl sl o

revemadt by “Boom

L. von Ahn, L. Dabbish, 2004; L. von Ahn, R. Liu and M. Blum, 2006

Lotus Hill Research Institute image
corpus

- | —
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-
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. ‘ta e
Fignine 55t Two exnigsbos of the psarse Eroos (ent aemd onr ) in the Lotus WL Research Instituto inage corgais. From |87

Z.Y.Yao, X. Yang, and S.C. Zhu, 2007




The PASCAL Visual Object
Classes Challenge 2007

The twenty object classes that have been selected are:

Person: person

Animal: bird, cat, cow, dog, horse, sheep

Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train
Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor
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How to evaluate datasets?
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How many labeled examples? How many classes? Segments or bounding
boxes? How many instances per image? How small are the targets? Variability
across instances of the same classes (viewpoint, style, illumination). How
different are the images?

How representative of the visual world is? ~ What happens if you nail it?




Summary

* Methods reviewed here
— Bag of words
— Parts and structure
— Discriminative methods
— Combined Segmentation and recognition

* Resources online
— Slides
— Code
— Links to datasets

List properties of ideal recognition
system

* Representation
— 1000’s categories,
— Handle all invariances (occlusions, view point, ...)

— Explain as many pixels as possible (or answer as many
guestions as you can about the object)

— fast, robust
» Learning
— Handle all degrees of supervision
— Incremental learning
— Few training images

Thank you




