Content-based Image Retrieval (CBIR)

Searching a large database for images that *match* a query:

- What kinds of databases?
- What kinds of queries?
- What constitutes a match?
- How do we make such searches efficient?

Applications

- Art Collections
 - e.g. Fine Arts Museum of San Francisco
- Medical Image Databases
 CT, MRI, Ultrasound, The Visible Human
- Scientific Databases
 - e.g. Earth Sciences
- General Image Collections for Licensing Corbis, Getty Images
- The World Wide Web

What is a Query?

an image you already have
 How did you get it?

a rough sketch you draw
 How might you draw it?

a symbolic description of what you want
 What's an example?

Some Systems You Can Try

Corbis Stock Photography and Pictures

http://pro.corbis.com/

- Corbis sells high-quality images for use in advertising, marketing, illustrating, etc.
- Search is entirely by keywords.
- Human indexers look at each new image and enter keywords.
- A thesaurus constructed from user queries is used.

QBIC

IBM's QBIC (Query by Image Content)

http://wwwqbic.almaden.ibm.com

- The first commercial system.
- Uses or has-used color percentages, color layout, texture, shape, location, and keywords.

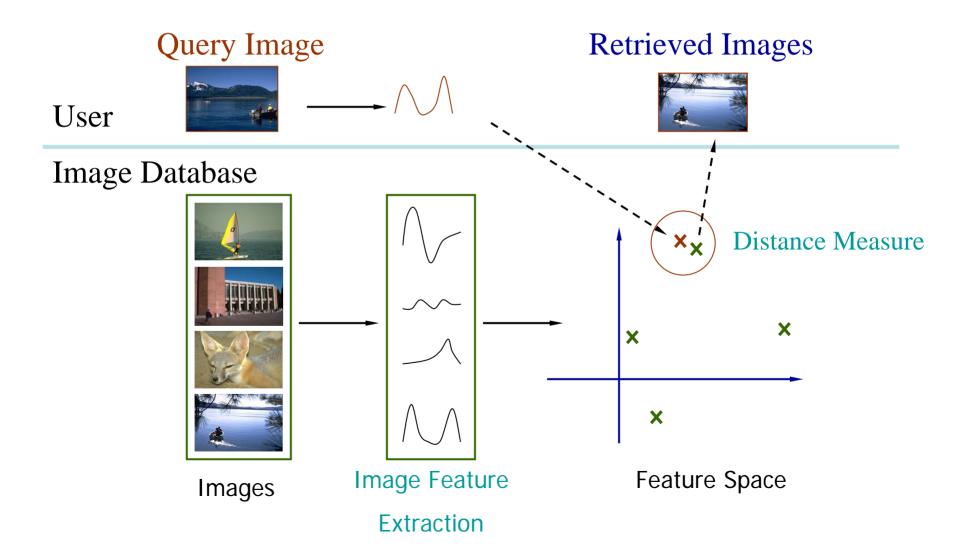
Blobworld

UC Berkeley's Blobworld

http://elib.cs.berkeley.edu/blobworld

- Images are segmented on color plus texture
- User selects a region of the query image
- System returns images with similar regions
- Works really well for tigers and zebras

Like.com

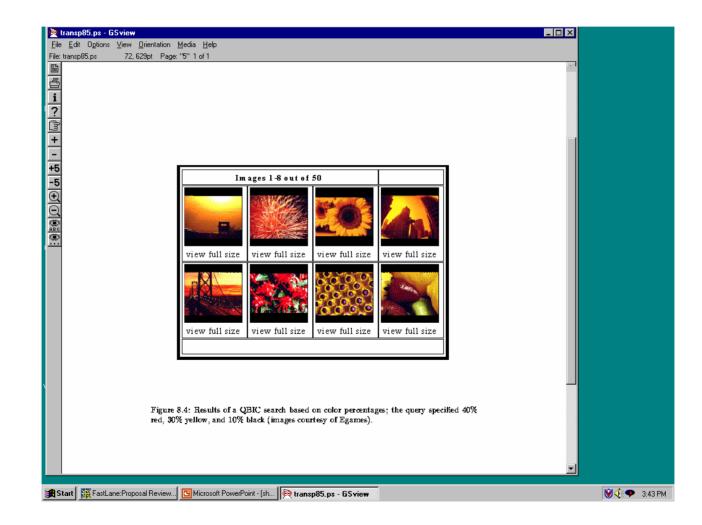


http://www.like.com

- Small company
- Search for products similar to a selected one

Purses, shoes, sunglasses, jewelry.....

Image Features / Distance Measures

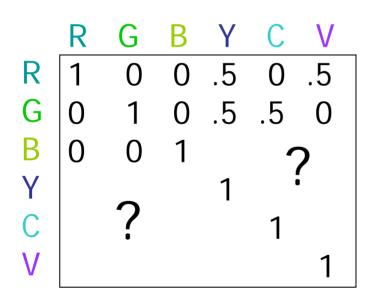


Features

- Color (histograms, gridded layout, wavelets)
- Texture (Laws, Gabor filters, LBP, polarity)
- Shape (What preprocessing must occur to get shape?)
- Objects and their Relationships

This is the most powerful, but you have to be able to recognize the objects!

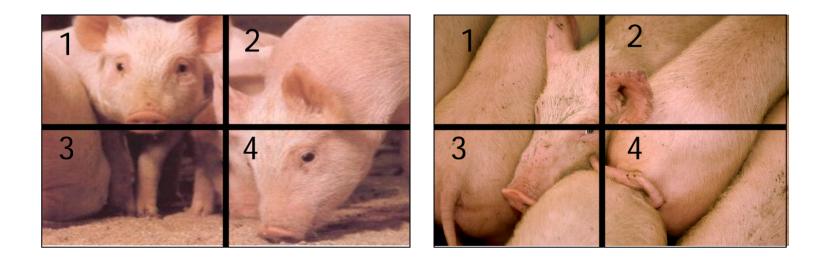
Color Histograms


QBIC's Histogram Similarity

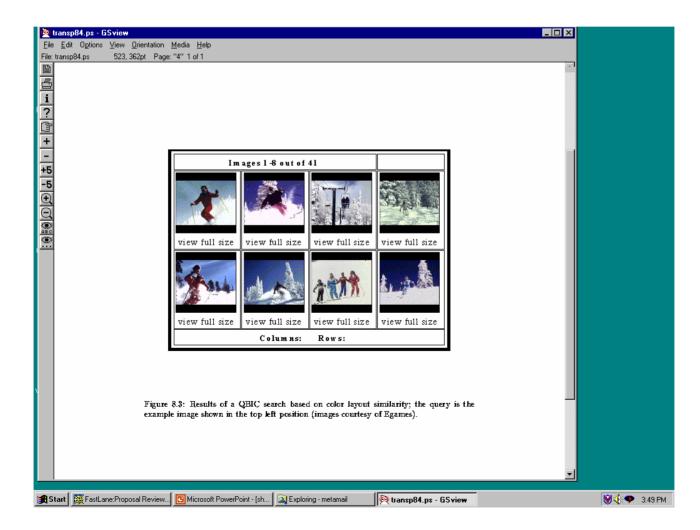
The QBIC color histogram distance is:

dhist(I,Q) = $(h(I) - h(Q))^{T} A (h(I) - h(Q))$

- h(I) is a K-bin histogram of a database image
- h(Q) is a K-bin histogram of the query image
- A is a K x K similarity matrix

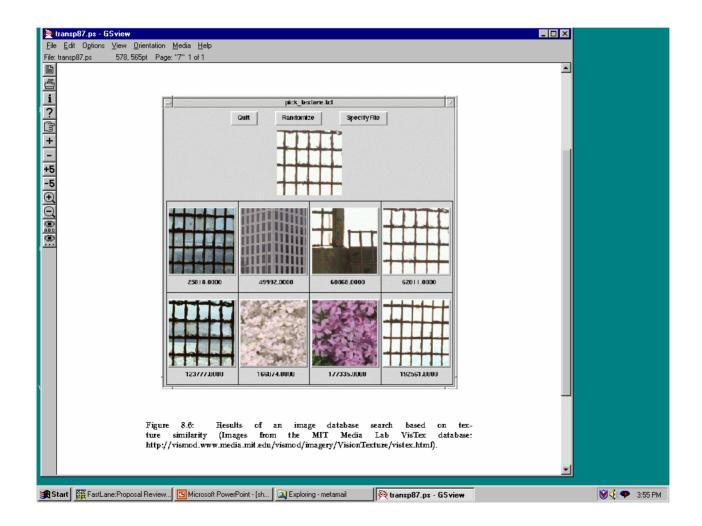

Similarity Matrix

How similar is blue to cyan?


Gridded Color

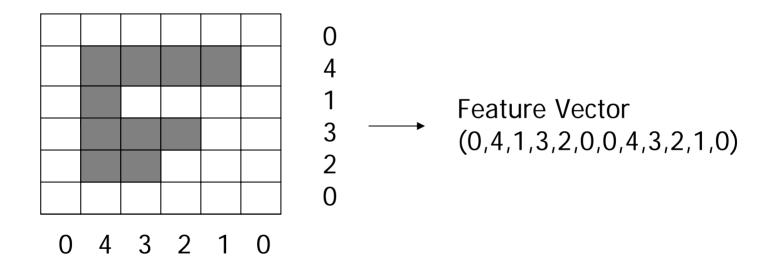
Gridded color distance is the sum of the color distances in each of the corresponding grid squares.

What color distance would you use for a pair of grid squares?


Color Layout (IBM's Gridded Color)

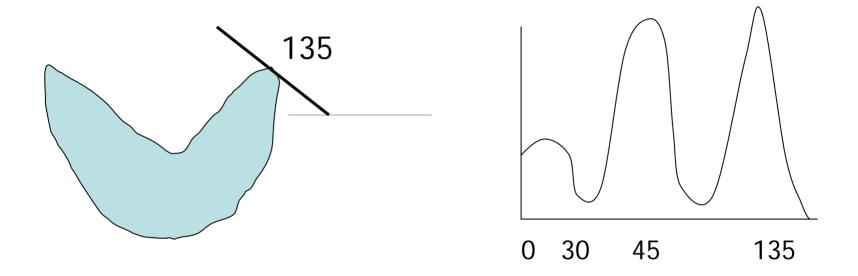
Texture Distances

- Pick and Click (user clicks on a pixel and system retrieves images that have in them a region with similar texture to the region surrounding it.
- Gridded (just like gridded color, but use texture).
- Histogram-based (e.g. compare the LBP histograms).


Laws Texture

Shape Distances

- Shape goes one step further than color and texture.
- It requires identification of regions to compare.
- There have been many shape similarity measures suggested for pattern recognition that can be used to construct shape distance measures.

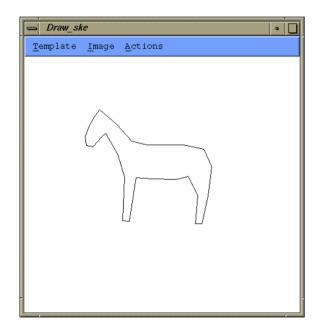

Global Shape Properties: Projection Matching

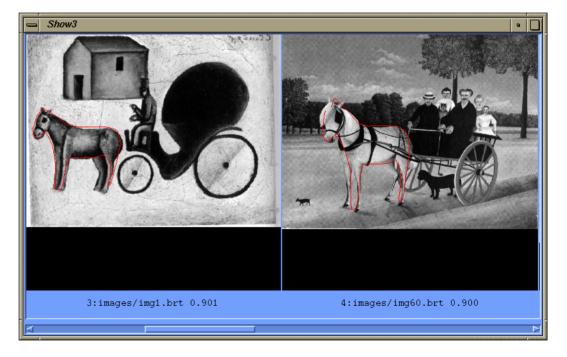
In projection matching, the horizontal and vertical projections form a histogram.

What are the weaknesses of this method? strengths?

Global Shape Properties: Tangent-Angle Histograms

Is this feature invariant to starting point? Is it invariant to size, translation, rotation?


Boundary Matching


- Fourier Descriptors
- Sides and Angles
- Elastic Matching

The distance between query shape and image shape has two components:

- 1. energy required to deform the query shape into one that best matches the image shape
- 2. a measure of how well the deformed query matches the image

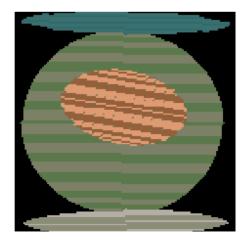
Del Bimbo Elastic Shape Matching

query

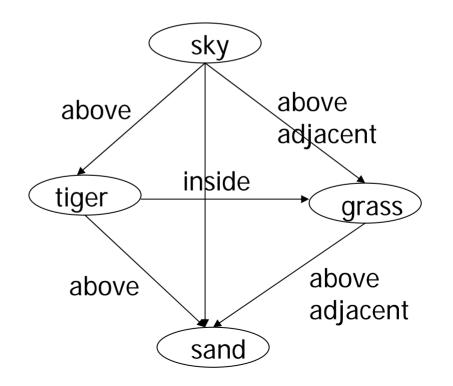
retrieved images

Regions and Relationships

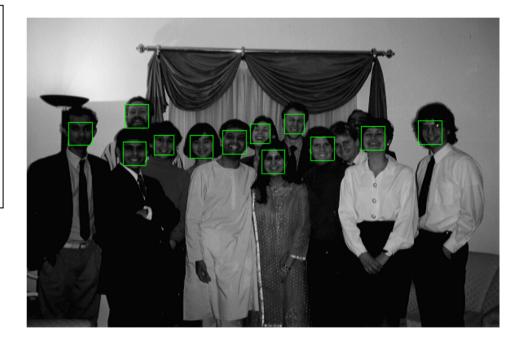
- Segment the image into regions
- Find their properties and interrelationships


Like what?

- Construct a graph representation with nodes for regions and edges for spatial relationships
- Use graph matching to compare images


Tiger Image as a Graph

image


abstract regions

Object Detection: Rowley's Face Finder

 convert to gray scale
 normalize for lighting*
 histogram equalization
 apply neural net(s) trained on 16K images

What data is fed to the classifier?

32 x 32 windows in a pyramid structure

* Like first step in Laws algorithm, p. 220

Fleck and Forsyth's Flesh Detector

The "Finding Naked People" Paper

- Convert RGB to HSI
- Use the intensity component to compute a texture map texture = med2 (| I - med1(I) |)
 median filters of radii 4 and 6
- If a pixel falls into either of the following ranges, it's a potential skin pixel

texture < 5, 110 < hue < 150, 20 < saturation < 60 texture < 5, 130 < hue < 170, 30 < saturation < 130

Look for LARGE areas that satisfy this to identify pornography.

Wavelet Approach

Idea: use a wavelet decomposition to represent images

What are wavelets?

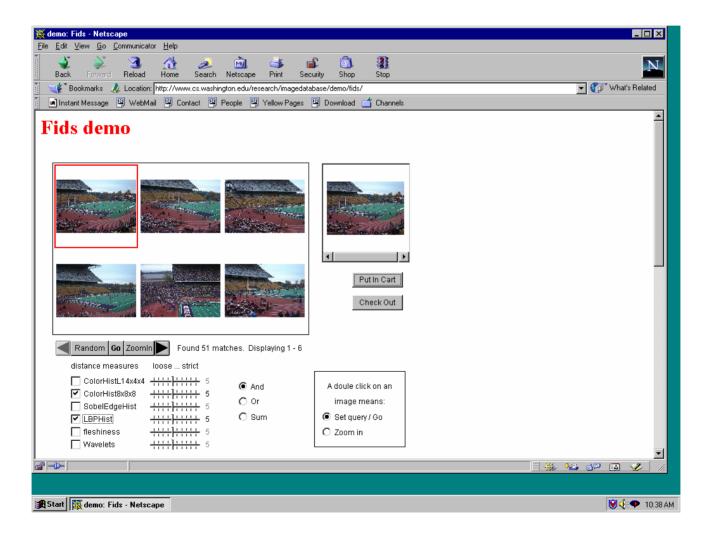
- compression scheme
- uses a set of 2D basis functions
- representation is a set of coefficients, one for each basis function

Jacobs, Finkelstein, Salesin Method for Image Retrieval (1995)

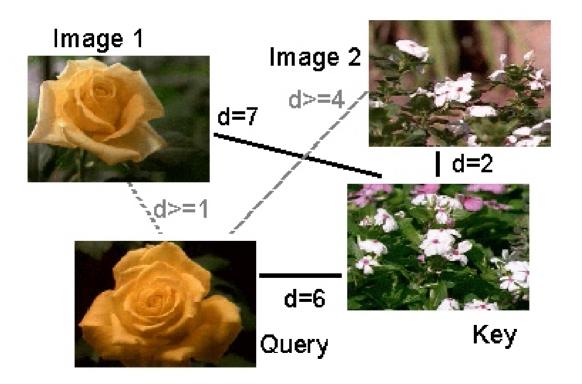
- 1. Use YIQ color space
- 2. Use Haar wavelets
- 3. 128 x 128 images yield 16,384 coefficients x 3 color channels
- 4. Truncate by keeping the 40-60 largest coefficients (make the rest 0)

5. Quantize to 2 values (+1 for positive, -1 for negative)

Experiments


20,558 image database of paintings

20 coefficients used


User "paints" a rough version of the painting he /she wants on the screen.

See Video

- multiple distance measures
- Boolean and linear combinations
- efficient indexing using images as keys

Use of key images and the triangle inequality for efficient retrieval.

Bare-Bones Triangle Inequality Algorithm


Offline

- 1. Choose a small set of key images
- 2. Store distances from database images to keys

Online (given query Q)

- 1. Compute the distance from Q to each key
- 2. Obtain lower bounds on distances to database images
- 3. Threshold or return all images in order of lower bounds

Flexible Image Database System: Example

An example from our system using a simple color measure. # images in system: 37,748 threshold: 100 out of 1000 # images eliminated: 37,729

Bare-Bones Algorithm with Multiple Distance Measures

Offline

- 1. Choose key images for each measure
- 2. Store distances from database images to keys for all measures

Online (given query Q)

- 1. Calculate lower bounds for each measure
- 2. Combine to form lower bounds for composite measures
- 3. Continue as in single measure algorithm

Performance on a Pentium Pro 200-mHz

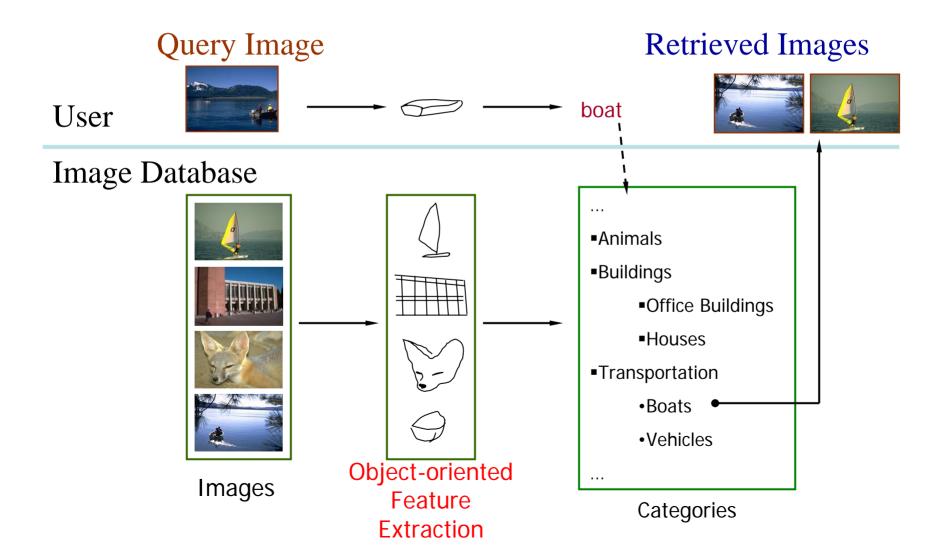
Step 1. Extract features from query image. ($.02s \le t \le .25s$)

Step 2. Calculate distance from query to key images. ($1\mu s \le t \le .8ms$)

Step 3. Calculate lower bound distances. (t \approx 4ms per 1000 images using 35 keys, which is about 250,000 images per second.)

Step 4. Return the images with smallest lower bound distances.

Demo of FIDS


• <u>http://www.cs.washington/research/image</u> <u>database/demo</u>

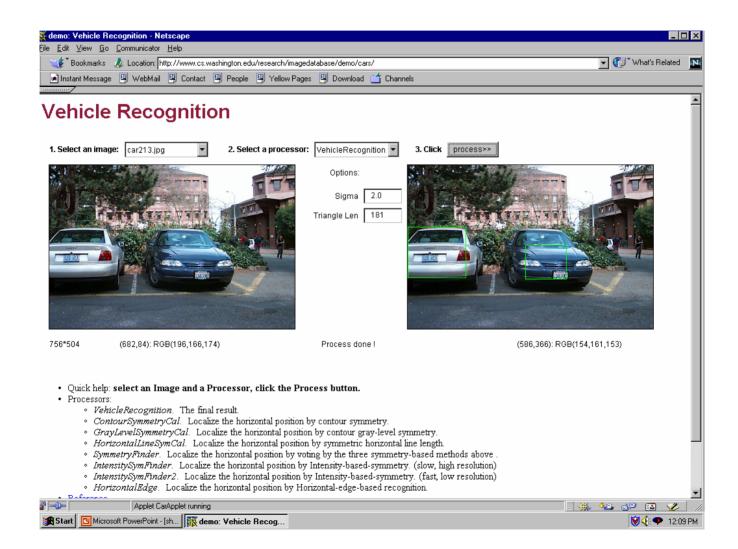
Weakness of Low-level Features

Can't capture the high-level concepts

Research Objective

Overall Approach

• Develop object recognizers for common objects


 Use these recognizers to design a new set of both low- and mid-level features

• Design a learning system that can use these features to recognize classes of objects

Boat Recognition

🙀 demo: boat recognition - Netscape				_ 🗆 ×
<u> E</u> ile <u>E</u> dit <u>V</u> iew <u>G</u> o <u>C</u> ommunicator <u>H</u> elp				
🛛 🍑 Bookmarks 🛛 🙏 Location: http://www.cs.washington.edu/research/imag	edatabase/demo/boat/		💌 🍘 What's Rel	ated N
🖻 Instant Message 🖳 WebMail 🖳 Contact 🖳 People 🖳 Yellow Pag	es 🖳 Download 📹 Chanr	els		
Boat Recognition				
1. Select an image: boat/Q7180237.jpg	2. Select a processor:	DR_sailboat • 3. Click pro)cess>>	
	Options:			
320*240	Process done !	(300,12): RGB(0,0,0)		
 Quick help: select an Image and a Processor, click the Pr Processors: OR_sky. Sky recognition OR_sea. Sea recognition OR_boat. Boat recognition OR_satlboat. Sailboat recognition 	ocess button.			
[comments to <u>yi@cs.washington.edu]</u> Last Modified:Wednesday, December 31, 1969 16:00:00				
			- 🔤 🚽 🖬 ·	🧶 //.
🔀 Start 🖸 Microsoft PowerPoint - [sh 🐺 demo: boat recognitio			👿 🍕 < 🌩	12:03 PM

Vehicle Recognition

Building Recognition

👹 demo: building I	recognition - Netscape			
<u>File E</u> dit <u>V</u> iew <u>G</u>	o <u>C</u> ommunicator <u>H</u> elp			
🛛 😻 🕈 Bookmarks	🛛 🎄 Location: http://www.cs.washington.edu/research/ima	gedatabase/demo/clc_br/	• (🗊 🖤 What's Related 🛛 🚺
📕 🌬 İnstant Messag	ge 🖳 WebMail 🖳 Contact 🖳 People 🖳 Yellow Pa	ages 🖳 Download 📹 Chanr	iels	
Buildin	g Recognition			
1. Select an ima	age: images/bp06.JPG	2. Select a processor:	CSOSSM_br 3. Click process>>	
		Options:		
640*428	(507,1): RGB(54,146,219)	Process done !	(1,310): RGB(255,255,255)	
 Processor CS [comments to yii] Last Modified: T 	e: select an Image and a Processor, click the F s: <i>OSSM_br</i> : Building recognition by consistent line <u>@cs.washington.edu]</u> Wednesday, December 31, 1969 16:00:00			
₽ =0= .			🗏 🔆 🐸	🚽 🖬 🌽 //
Start 🖸 Mici	rosoft PowerPoint · [sh) 💥 demo: building recog			👿 🍕 🌩 🛛 12:12 PM

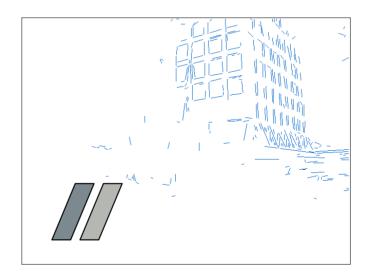
Building Features: Consistent Line Clusters (CLC)

A **Consistent Line Cluster** is a set of lines that are homogeneous in terms of some line features.

Color-CLC: The lines have the same color feature.

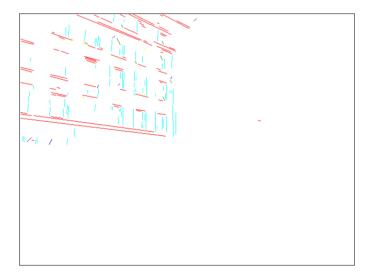
Orientation-CLC: The lines are parallel to each other or converge to a common vanishing point.

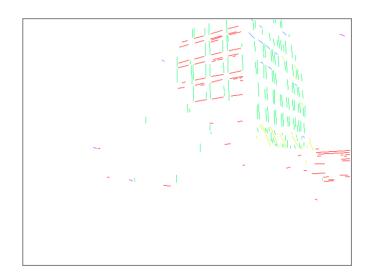
Spatially-CLC: The lines are in close proximity to each other.


Color-CLC

- Color feature of lines: color pair (c_1, c_2)
- Color pair space: RGB (256^{3*}256³) Too big! Dominant colors (20*20)
- Finding the color pairs:
 One line → Several color pairs
- Constructing Color-CLC: use clustering

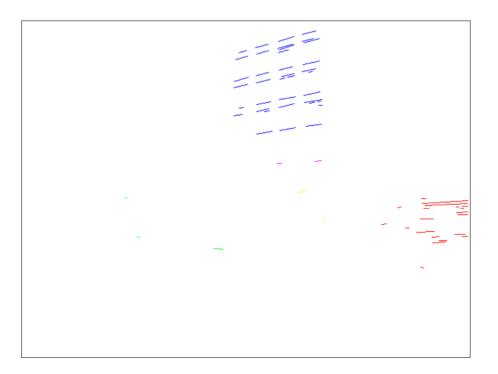
Color-CLC





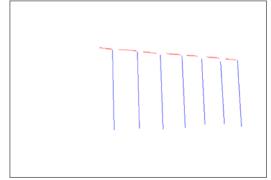
Orientation-CLC

- The lines in an Orientation-CLC are parallel to each other in the 3D world
- The parallel lines of an object in a 2D image can be:
 - Parallel in 2D
 - Converging to a vanishing point (perspective)


Orientation-CLC

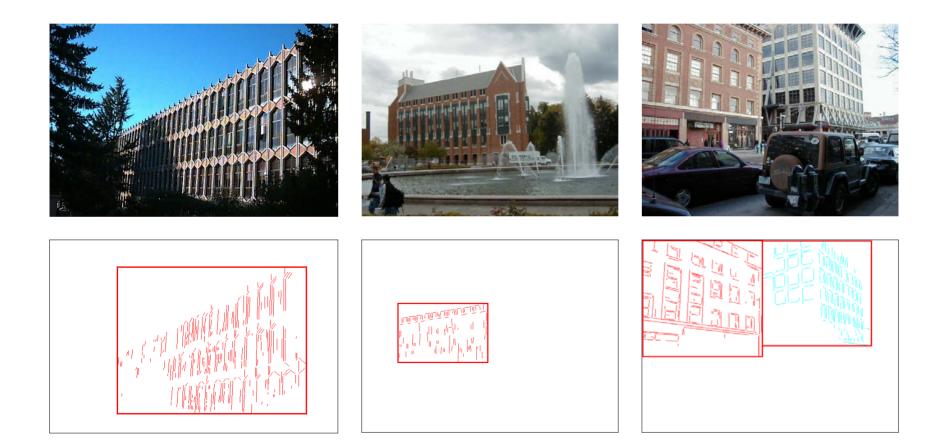
Spatially-CLC

- Vertical position clustering
- Horizontal position clustering



Building Recognition by CLC

- Two types of buildings \rightarrow Two criteria
- Inter-relationship criterion
- Intra-relationship criterion



Experimental Evaluation

- Object Recognition
 - 97 well-patterned buildings (bp): 97/97
 - 44 not well-patterned buildings (bnp): 42/44
 - 16 not patterned non-buildings (nbnp): 15/16 (one false positive)
 - 25 patterned non-buildings (nbp): 0/25
- CBIR

Experimental Evaluation Well-Patterned Buildings

Experimental Evaluation Non-Well-Patterned Buildings

Experimental Evaluation Non-Well-Patterned Non-Buildings

Experimental Evaluation Well-Patterned Non-Buildings (false positives)

Experimental Evaluation

	Total Positive Classification (#)	Total Negative Classification (#)	False positive (#)	False negative (#)	Accuracy (%)
Arborgreens	0	47	0	0	100
Campusinfall	27	21	0	5	89.6
Cannonbeach	30	18	0	6	87.5
Yellowstone	4	44	4	0	91.7

Experimental Evaluation (CBIR) False positives from Yellowstone

