Detecting and Tracking Moving Objects for Video Surveillance

Isaac Cohen and Gerard Medioni
University of Southern California
Their application sounds familiar.

- Video surveillance
- Sensors with pan-tilt and zoom
- Sensors mounted on moving airborne platforms
- Requirement for detection and tracking of moving objects and the relationship of their trajectories
- Requirement for high-level description of the whole video sequence
Approach

• First find **optical flow** and perform motion compensation to **stabilize**.

• Find large numbers of moving regions.
• Use the **residual flow field and its normal component** to detect errors.

• Define a **attributed graph** whose nodes are detected regions and edges are possible matches between two regions detected in two different frames.

• Use the graph as a **dynamic template** for tracking moving objects.
Their Idea

- Detection after stabilization doesn’t work well.

- So integrate the detection into the stabilization algorithm by locating regions of the image where a residual motion occurs using the normal component of the optical flow field.
What is “Normal Flow”?

• The optical flow equation constrains the image velocity in the direction of the local image gradient, but not the tangential velocity.

• **Normal flow** corresponds to the image velocity along the image gradient.

• It is computed from both image gradients and temporal gradients of the stabilized sequence.

• The amplitude is large near moving regions.

• The amplitude is near zero near stationary regions.
Computation of Normal Flow

Let τ_{ij} denote the warping of image to reference frame j.

$$\mathcal{T}_{ij} = \prod_{k=i,\ldots,j+1} \mathcal{T}_{k,k-1}$$

The stabilized image sequence is defined by $I_i(\tau_{ij})$.

Given reference image I_0 and target I_1, image stabilization consists of registering the two images and computing the geometric transform τ that warps I_1 so it aligns with I_0.
Parameter Estimation of the Geometric Transform

- Minimize the least squares equation

\[E = \sum \left\{ I_0(x_i, y_i) - I_1(T(x_i, y_i)) \right\}^2 \]

- Detect and remove outliers through an iterative process.
Definition of Normal Flow

\[w_\perp = -\frac{(I_{i+1}(\mathcal{T}_{i+1,j}) - I_i(\mathcal{T}_{i,j}))}{\|\nabla \mathcal{T}_{ij} \nabla I_i(\mathcal{T}_{ij})\|} \cdot \frac{\nabla \mathcal{T}_{ij} \nabla I_i(\mathcal{T}_{ij})}{\|\nabla \mathcal{T}_{ij} \nabla I_i(\mathcal{T}_{ij})\|} \]

- The warping function is integrated into the formula so that the image gradients are computed on the original image grids and not the warped ones.

- This simplifies the computation and allows for a more accurate estimation of the residual normal flow.
Finding Moving Objects

• Given a pair of image frames, find the moving objects by thresholding the normal flow.

• Does this overcome problems of other approaches?
Graph Representation of Moving Objects

• Nodes are the moving regions.

• Edges are the relationships between 2 moving regions detected in 2 separate frames.

• Each new frame generates a set of regions corresponding to the moving objects.

• We want to know which moving objects in the new frame are the same as those in the old.
Why is this Difficult?

- Little information about the objects is known.

- Objects tend to be of small size in aerial imagery.

- Large changes in object size are possible.
Sample Detection
Detection Videos

• seq1.avi
• seq1_det.avi

• seq6.avi
• seq6_det.avi
Example Graph: What’s going on?

Figure 2: Detected regions and associated graph.
Attributes of a Node

Figure 3: Description of the attributes associated to each node of the graph. Each color represents a moving region.
Keeping Track of Moving Regions

• Among the detected regions, some small ones should be merged into a larger one.

• They cluster the detected regions in the graph, instead of using single images.

• Use a median shape template to keep track of the different moving regions.
Moving objects that don’t appear in some frames can be hypothesized.
Extraction of Object Trajectories

• The graph representation changes as new frames are acquired and processed.

• The goal is to find the full trajectory of each moving object.

• But we don’t know where each one starts or where it ends.

• So we have to consider each node with no predecessor a possible start and each with no successor a possible end.
Optimal Path

- Assign each edge of the graph a cost, which is the similarity between the connected nodes.

\[
c_{ij} = \frac{C_{ij}}{1 + d_{ij}^2}
\]

c_{ij} is the gray-level and shape correlation between i and j. d_{ij} is the distance between their centroids.
Optimal Path

• This formulation does not lead to the optimal solution.

• Instead they define the length l_j of node j as the maximal length of the path starting at that node.

• Then the modified cost function $C_{ij} = l_j c_{ij}$ is used to find the optimal paths from each node without predecessor, using a greedy search method.
Quantitative Evaluation

• TP = true positives of moving objects
• FP = false positives of moving objects
• FN = false negatives (not detected)

Metrics:

\[DR = \frac{TP}{TP + FN} \quad \text{Detection Ratio} \]
\[FAR = \frac{FP}{TP + FP} \quad \text{False Alarm Ratio} \]
Evaluation Results on 5 Shots

<table>
<thead>
<tr>
<th>video stream</th>
<th>Moving Objects</th>
<th>Detection</th>
<th>Tracking</th>
<th>Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>detected regions</td>
<td>mean</td>
<td>σ</td>
<td>Regions</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>9</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>29</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>34</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>22</td>
<td>8</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 1: Quantitative analysis of the detection/tracking modules
Tracking Demos

- seq1_mos_track.avi
- seq6_track.avi
Questions/Comments

- Have they solved our problem?

- Has anyone done better? No one seems to use the metrics. But a 2005 paper by Nicolescu and Medioni compares results of 4 methods on fake sequences (and beats them, of course)

- Another recent paper by Xiao and Shah says they compared their results to those of Ke and Kanade, Wang and Adelson, and Ayer and Sawhney, but no numbers are given.

- Can we beat these people?