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Abstract. Local feature approaches to vision geometry and object recognition are
based on selecting and matching sparse sets of visually salient image points, known
as ‘keypoints’ or ‘points of interest’. Their performance depends critically on the
accuracy and reliability with which corresponding keypoints can be found in sub-
sequent images. Among the many existing keypoint selection criteria, the popular
Förstner-Harris approach explicitly targets geometric stability, defining keypoints
to be points that have locally maximal self-matching precision under translational
least squares template matching. However, many applications require stability in
orientation and scale as well as in position. Detecting translational keypoints and
verifying orientation/scale behaviour post hoc is suboptimal, and can be misleading
when different motion variables interact. We give a more principled formulation,
based on extending the Förstner-Harris approach to general motion models and
robust template matching. We also incorporate a simple local appearance model to
ensure good resistance to the most common illumination variations. We illustrate
the resulting methods and quantify their performance on test images.

Keywords: keypoint, point of interest, corner detection, feature based vision,
Förstner-Harris detector, template matching, vision geometry, object recognition.

Local-feature-based approaches have proven successful in many vision problems, in-
cluding scene reconstruction [16,5], image indexing and object recognition [20,21,32,
33,23,24,25]. The basic idea is that focusing attention on comparatively sparse sets of
especially salient image points — usually called keypoints or points of interest — both
saves computation (as most of the image is discarded) and improves robustness (as there
are many simple, redundant local cues rather than a few powerful but complex and deli-
cate global ones) [37]. However, local methods must be able to find ‘the same’ keypoints
again in other images, and their performance depends critically on the reliability and
accuracy with which exactly corresponding points can be found. Many approaches to
keypoint detection exist, including ‘corners’ [2,17,38,28,4], parametric image models
[3,31,1], local energy / phase congruency [27,29,30,18], and morphology [35,19]. One
of the most popular is that developed by Förstner & Gülch [7,9] and Harris & Stephens
[15] following earlier work by Hannah [14] and Moravec [26]. This approach brings
the accuracy issue to the fore by defining keypoints to be points at which the predicted
precision of local least squares image matching is locally maximal [14,22,6,10,12,11].
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Detecting Keypoints with Stable Position, Orientation, and Scale 101

Notionally, this is implemented by matching the local image patch against itself under
small translations, using one of a range of criteria to decide when the ‘sharpness’ of the
resulting correlation peak is locally optimal. Moravec did this by explicit single-pixel
translations [26]; Hannah by autocorrelation [14]; and Förstner by implicit least squares
matching, using Taylor expansion to re-express the accuracy in terms of the eigenval-
ues of the scatter matrix or normal matrix of the local image gradients,

∫ ∇I�∇I dx
[7,9,8]. All of these methods use rectangular patches, usually with a scale significantly
larger than that of the image gradients used. This is problematic for patches that con-
tain just one strong feature, because the self-matching accuracy for these is the same
wherever the feature is in the patch, i.e. the matching-based approach guarantees good
self-matching accuracy, but not necessarily accurate centring of the patch on a visible
feature. Working independently of Förstner, Harris & Stephens improved the localization
performance by replacing the rectangular patches with Gaussian windows (convolutions)
with a scale similar to that of the derivatives used [15]. With Gaussian-based derivative
calculations and more careful attention to aliasing, the method has proven to be one of
the most reliable keypoint detectors, especially in cases where there are substantial image
rotations, scalings or perspective deformations [33,24].

One problem with the Förstner-Harris approach is that it optimizes keypoints only for
good translational precision, whereas many applications need keypoints that are stable
not only under translations, but also under rotations, changes of scale, perspective defor-
mations, and changes of illumination (c.f . [34]). In particular, many local feature based
object recognition / matching methods calculate a vector of local image descriptors at
each keypoint, and later try to find keypoints with corresponding descriptors in other im-
ages [20,21,32,23,24,25]. This usually requires the extraction of a dominant orientation
and scale at each keypoint, and keypoints that have poorly defined orientations or scales
tend to produce descriptors that vary too much over re-detections to be useful. Hence, it
seems useful to develop keypoint detectors that explicitly guarantee good orientation and
scale stability, and also good stability under local illumination variations. This is the goal
of the current paper, which generalizes the Förstner-Harris self-matching argument to
include non-translational motions, and also provides improved resistance to illumination
variations by replacing simple least squares matching with an illumination-compensated
matching method related to Hager & Belhumeur’s [13].

Much of the paper focuses on the low-level task of characterizing the local stability
of matching under geometric transformations and illumination variations. The Förstner-
Harris approach shows that such analysis is a fruitful route to practical keypoint detection
in the translational case, and we argue that this continues to hold for more general
transformations. Also note the relationship to invariance: if we use image descriptors
based at the keypoints for matching, the more invariant the descriptors are to a given type
of transformation, the less accurate the keypoint detection needs to be with respect to
these transformations. But exactly for this reason, it is useful to develop detectors whose
performance under different types of transformations is quantifiable and controllable,
and our approach explicitly does this. We adopt the following basic philosophy:

(i) There is no such thing as generic keypoints. They should be selected specifically for
the use to which they will be put, using a purpose-designed detector and parameters.
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(ii) Keypoints are not just positions. Stability in orientation and scale and resistance to
common types of appearance variations are also needed.
(iii) Each image (template) matching method defines a corresponding self-matching based
keypoint detector. If the keypoints will be used as correspondence hypotheses that are
later verified by inter-image template matching, the keypoint detector and parameters
corresponding to the matching method should be used.

Contents: Section 1 describes our matching based framework for keypoint detection.
Section 2 gives some specific examples and implementation details. Section 3 gives a
few experimental results.

Notation: x stands for image coordinates, ∇ for x-derivatives, I, R for the images being
matched (treated as functions of x), t for the image motion/warping model, c for the pixel
comparison functional. Derivatives are always row vectors, e.g. δI ≈ ∇I δx. For most
of the paper we assume continuous images and ignore sampling issues.

1 General Framework

This section develops a general framework for robust image (template) matching under
analytical image deformation and appearance variation models, uses it to derive stability
estimates for locally optimal matches, and applies this to characterize keypoint stability
under self-matching.

Template Matching Model: We will use the following generalized error model for
template matching, explained element-by-element below:

Q(µ,λ) ≡
∫

c
(
I(t(x,µ),λ), R(x), x

)
dx (1)

I is the image patch being matched, R is the reference patch it is being matched against,
x is a set of 2D image coordinates centred on R, and c ≥ 0 (discussed further below) is a
weighted image pixel comparison functional that is integrated over the patch to find the
overall matching quality metric Q. x′ = t(x,µ) is an image motion / warping model that
maps R’s coordinates x forwards into I’s natural coordinate system, i.e., I is effectively
being pulled back (warped backwards) into R’s frame before being compared. The motion
model t is controlled by a vector of motion parameters µ (2D translation, perhaps
rotation, scaling, affine deformation. . .). Before being compared, I may also undergo an
optional appearance correction controlled by a vector of appearance parameters λ (e.g.,
luminance or colour shifts/rescalings/normalizations, corrections for local illumination
gradients . . .). Note that we think of the input patch I as an ad hoc function I(x,λ) of
both the position and appearance parameters, rather than as a fixed image I(x) to which
separate appearance corrections are applied. This allows the corrections to be image-
content dependent and nonlocal within the patch (e.g. subtracting the mean in Zero Mean
Cross Correlation). We assume that µ = 0 represents a neutral position or reference
transformation for the patch (e.g. no motion, t(x, 0) = x). Similarly, λ = 0 represents a
default or reference appearance setting (e.g. the unchanged input, I(x, 0) = I(x)).
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The patch comparison integral is over a spatial window centred on R, but for com-
pactness we encode this in the pixel comparison metric c. So c usually has the form:

c(I(x), R(x), x) ≡ w(x) · ρ(I(x), R(x)) (2)

where w(x) is a spatial windowing function (rectangular, Gaussian. . .) that defines the
extent of the relevant patch of R, and ρ(I(x), R(x)) is a spatially-invariant image pixel
comparison metric, e.g., the squared pixel difference ‖I(x) − R(x)‖2 for traditional un-
weighted least squares matching. The “pixels” here may be greyscale, colour, multi-band,
or even pre-extracted edge, feature or texture maps, so ρ() can be quite complicated in
general, e.g. involving nonlinear changes of luminance or colour space, perceptual or
sensitivity-based comparison metrics, robust tailing-off at large pixel differences to re-
duce the influence of outliers, etc. Ideally, ρ() should return the negative log likelihood
for the pixels to correspond, so that (assuming independent noise in each pixel) Q be-
comes the total negative log likelihood for the patchwise match. For practical inter-image
template matching, the reliability depends critically on the robustness (large difference
behaviour) of ρ(). But for keypoint detection, we always start from the self-matching
case I=R, so only the local behaviour of ρ() near I=R is relevant: keypoint detectors
are oblivious to large-difference robustification of ρ(). We will assume that ρ() has least-
squares-like behaviour for small pixel differences, i.e. that it is locally differentiable with
zero gradient and positive semi-definite Hessian at I=R, so that:

δc
δI(x)

∣
∣
∣
I=R

= 0, δ2c
δI(x)2

∣
∣
∣
I=R

≥ 0 (3)

Our derivations will be based on 2nd order Taylor expansion at I=R, so they exclude
both non-differentiable L1 matching metrics like Sum of Absolute Differences (SAD)
and discontinuous L0 (on-off) style ones. Our overall approach probably extends to such
metrics, at least when used within a suitable interpolation model, but their abrupt changes
and weak resampling behaviour make general derivations difficult.

Finally, we allow c to be a functional, not just a function, of I, R. (I.e. a function of the
local patches, not just their pointwise pixel values). In particular, c may run I, R through
convolutional filters (‘prefilters’) before comparing them, e.g. to restrict attention to a
given frequency band in scale-space matching, or simply to suppress high frequencies
for reduced aliasing and/or low frequencies for better resistance to global illumination
changes. In general, the resampling implied by t() could significantly change I’s spatial
frequency content, so prefiltering only makes sense if we do it after warping. We will thus
assume that prefilters run in x-space, i.e. they are defined relative to the coordinates of
the reference image R. For example, for affine-invariant keypoint detection [32,24,25],
keypoint comparison should typically be done, and in particular prefiltering should be
applied, in the characteristic affine-normalized frame of the reference keypoint, so x
would typically be taken to be the affine-normalized coordinates for R. For any t(),
derivatives of the unwarped input image I can always be converted to derivatives of its
prefilter using integration by parts, so the effective scale of derivative masks always ends
up being the x-space scale of the prefilter.

Matching Precision: Now suppose that we have already found a locally optimal template
match. Consider the behaviour of the matching quality metric Q under small perturbations
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I → I+δI . Under 2nd order Taylor expansion:

δQ ≈
∫ (

δc
δI

δI + 1
2 δI� δ2c

δI2 δI
)

x′=t(x)
dx (4)

For any perturbation of an exact match, I(t(x)) = R(x), the first order (δI) term vanishes
identically by (3). More generally, if we are already at a local optimum of Q under some
class of perturbations δI , the integrated first order term vanishes for this class. Both hold
for keypoints, so we will ignore the δI term from now on.

Using the parametric model I(t(x,µ),λ), the image I changes as follows under first
order changes of the motion and appearance parameters µ,λ:

δI ≈ L δλ + M δµ , where L ≡ ∂I
∂λ

, M ≡ ∇I · T, T ≡ ∂t
∂µ (5)

Here,∇I ≡ ∂I
∂t (t(x)) is the standard gradient of the original unwarped image I , evaluated

in I’s own frame at t(x). The columns of the Jacobians L and M can be thought of as
appearance and motion basis images, characterizing the linearized first-order changes in
I as the parameters are varied. Putting (4, 5) together gives a quadratic local cost model
for perturbations of the match around the optimum, based on a positive semidefinite
generalized scatter matrix S :1

δQ(δλ, δµ) ≈ 1
2 ( δλ� δµ� )S

(
δλ
δµ

)
(6)

S ≡
(

A B
B� C

)
≡
∫ (

L�
M�
)

δ2c
δI2 ( L M ) dx (7)

S generalizes the matrix
∫ ∇I � ∇I dx that appears in the Förstner-Harris keypoint

detector (which assumes pure translation, T = I, M = ∇I , quadratic pixel difference

metric δ2c
δI2 = I, and empty illumination model L). To the extent that c gives the negative

log likelihood for the match, S is the maximum likelihood saddle point approximation to
the Fisher information matrix for estimating λ,µ from the match. I.e., S−1 approximates
the covariance with which the parameters λ,µ can be estimated from the given image
data: the larger S, the stabler the match, in the sense that the matching error δQ increases
more rapidly under given perturbations δλ, δµ.

Now suppose that we want to ensure that the two patches match stably irrespec-
tive of appearance changes. For a given perturbation δµ, the appearance change that
gives the best match to the original patch — and hence that masks the effect of the
motion as well as possible, thus creating the greatest matching uncertainty — can be
found by minimizing δQ(δµ, δλ) w.r.t. δλ. By inspection from (6), this is δλ(δµ) =
−A−1 B δµ. Back-substituting into (6) gives an effective quadratic reduced penalty func-

1 Strictly, to be correct to O(
(δµ, δλ)2

)
we should also expand (5) to 2nd order, which introduces

a 2nd order ‘tensor’ correction in the δI term of (4). But, as above by (3), the latter term vanishes
identically for keypoint detection. Even for more general matching, the correction is usually
negligible unless the match is poor and the motion / appearance models are very nonlinear. One
can think of (7) as a Gauss-Newton approximation to the true S. It guarantees that S is at least
positive semidefinite (as it must be at a locally optimal match). We will adopt it from now on.
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tion δQred(δµ) ≡ δQ(δµ, δλ(δµ)) ≈ 1
2 δµ� Cred δµ characterizing motion-with-best-

appearance-adaptation, where the reduced scatter matrix is

Cred ≡ C − B�A−1B (8)

with A, B, C as in (7). Cred and C quantify the precision of motion estimation respectively
with and without appearance adaptation. Some precision is always lost by factoring out
appearance, so Cred is always smaller than C. To the extent that the matching error metric
c is a statistically valid log likelihood model for image noise, C−1 and C−1

red estimate the
covariances of the corresponding motion parameter estimates under trials with indepen-
dent noise samples. More generally, if we also have prior information that appearance
variations are not arbitrary, but have zero mean and covariance D−1, the optimal δλ(δµ)
becomes −(A + D)−1 B δµ and Cred is replaced by the less strongly reduced covariance
C′

red ≡ C − B�(A + D)−1B.

Keypoint Detection: Ideally, we want to find keypoints that can be stably and reliably
re-detected under arbitrary motions from the given transformation family t(x,µ), de-
spite arbitrary changes of appearance from the appearance family I(x,λ). We focus on
the ‘stability’ aspect2, which we characterize in terms of the precision of self-matching
under our robust template matching model. The idea is that the patch itself is its own
best template — if it can not be matched stably even against itself, it is unlikely to be
stably matchable against other patches. We are interested in stability despite appearance
changes, so we use the reduced scatter matrix Cred (8) to quantify geometric precision.

The amount of precision that is needed depends on the task, and we adopt the design
philosophy that visual routines should be explicitly parametrized in terms of objective
performance criteria such as output accuracy. To achieve this we require keypoints to
meet a lower bound on matching precision (equivalently, an upper bound on match-
ing uncertainty). We quantify this by introducing a user-specified criterion matrix C0
and requiring keypoints to have reduced precisions Cred greater than C0 (i.e. Cred − C0
must be positive semidefinite). Intuitively, this means that for a keypoint candidate to
be accepted, its transformation-space motion-estimation uncertainty ellipse C−1

red must be
strictly contained within the criterion ellipse C−1

0 .
In textured images there may be whole regions where this precision criterion is

met, so for isolated keypoint detection we must also specify a means of selecting ‘the
best’ keypoint(s) within these regions. This requires some kind of ‘saliency’ or ‘interest’
metric, ideally an index of perceptual distinctiveness / reliable matchability modulo our
appearance model. But here, following the Förstner-Harris philosophy, we simply use
an index of overall matching precision as a crude substitute for this. In the translation-
only case, Förstner [7,9] and Harris & Stephens [15] discuss several suitable precision
indices, based on the determinant, trace and eigenvalues of the scatter matrix. In our case,
there may be several (more than 2) motion parameters, and eigenvalue based criteria
seem more appropriate than determinant based ones, owing to their clear links with

2 We do not consider other matchability properties [7] such distinctiveness here, as this is more
a matter for the descriptors calculated once the keypoint is found. Distinctiveness is usually
characterized by probability of mismatch within a population of extracted keypoints (e.g. [33]).
For a recent entropic approach to image-wide distinctiveness, see [36].
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uncertainty analysis. Different motion parameters also have different units (translations
in pixels, rotations in radians, dilations in log units), and we need to normalize for this.
The criterion matrix C0 provides a natural scaling, so as our final saliency criterion we
will take the minimum eigenvalue of the normalized reduced motion precision matrix
C−1/2

0 Cred C−1/2
0 . Intuitively, this requires the longest axis of the motion-estimation

covariance ellipse, as measured in a frame in which C0 becomes spherical, to be as
small as possible. With this normalization, the keypoint-acceptability criterion Cred > C0
simplifies to the requirement that the saliency (the minimum eigenvalue) must be greater
than one. Typically, C0 is diagonal, in which case the normalization matrix C−1/2

0 is the
diagonal matrix of maximum user-permissible standard errors in translation, rotation and
scale.

As usual, pixel sampling effects introduce a small amount of aliasing or jitter in the
image derivative estimates, which has the effect of spreading gradient energy across the
various eigenvalues of S even when the underlying image signal is varies only in one
dimension (e.g. a straight edge). As in the Förstner-Harris case, we compensate for this
heuristically by subtracting a small user-specified multiple α of the maximum eigenvalue
of C−1/2

0 Cred C−1/2
0 (the 1-D ‘straight edge’ signal) before testing for threshold and

saliency, so our final keypoint saliency measure is λmin − α λmax.
In practice, the Schur complement in Cred = C − B�A−1B is calculated simply and

efficiently by outer-product based partial Cholesky decomposition.A standard symmetric
eigendecomposition method is then used to calculate the minimum eigenvalue, except
that 2D eigenproblems are handled as a special case for speed.

2 Examples of Keypoint Detectors

Given the above framework, it is straightforward to derive keypoint detectors for specific
pixel types and motion and appearance models. Here we only consider the simplest few
motion and appearance models, and we assume greyscale images.

Comparison Function: As in the traditional Harris detector, we will use simple squared
pixel difference to compare pixels, and a circular Gaussian spatial integration window.

So modulo prefiltering, δ2c
δI2 in (7) reduces to simple weighting by the window function.

Affine Deformations: For keypoints, only local deformations are relevant, so the most
general motion model that is useful is probably the affine one. We will use various subsets
of this, parametrizing affine motions linearly as x′ = x + T µ where:

T µ =
(

1 0 −y x x y
0 1 x y −y x

)
( u

v
r
s
a
b

)

=
(

s+a −r+b
r+b s−a

)(
x
y

)

+
(

u
v

)

(9)

Here, (x, y) are window-centred pixel coordinates, (u, v) is the translation, s the scale,
and for small motions, r is the rotation and a, b are axis- and 45◦-aligned quadrupole
deformations. The resulting M matrix is as follows, where ∇I = (Ix, Iy):

M =
(
Ix Iy −yIx+xIy xIx+yIy xIx−yIy yIx+xIy

)
(10)
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If the input image is being prefiltered (which, as discussed, must happen after warping,
i.e. after (10)), we can integrate by parts to reduce the prefiltered M vector to the form:

Mp =
(
Ip
x , Ip

y , −(yI)p
x+(xI)p

y, (xI)p
x+(yI)p

y−2Ip, (xI)p
x−(yI)p

y, (yI)p
x+(xI)p

y

)

(11)

where Ip ≡ p ∗ I , (xI)p
y ≡ py ∗ (xI), etc., denote convolutions of I , xI , etc., against

the prefilter p and its derivatives px, py . The −2Ip term in the s entry corrects for the
fact that prefiltering should happen after any infinitessimal scale change coded by M :
without this, we would effectively be comparing patches taken at different derivative
scales, and would thus overestimate the scale localization accuracy. If p is a Gaussian of
width σ, we can use (10) or (11) and the corresponding identities (xI)p = xIp + σ2Ip

x

or (xI)p
x = x Ip

x + σ2Ip
xx + Ip (from (x−x′)g(x−x′) = −σ2gx(x−x′), etc.) to move

x, y outside the convolutions, reducing Mp to:
(
Ip
x , Ip

y , −yIp
x+xIp

y , xIp
x+yIp

y+σ2Ip
xx+yy, xIp

x−yIp
y+σ2Ip

xx−yy, yIp
x+xIp

y + 2σ2Ip
xy

)

(12)

Appearance model: Class-specific appearance models like [1,13] can include elaborate
models of appearance variation, but for generic keypoint detection we can only use simple
generic models designed to improve resistance to common types of local illumination
variations. Here, we allow for (at most) a scalar illumination shift, addition of a constant
spatial illumination gradient, and illumination rescaling. So our linear appearance model
is I+L λ where L(x) is a subset of:

L(x) =
(
1 x y I(x)

)
(13)

As with M, the elements of L must be prefiltered, but I is just smoothed to Ip and 1, x, y
typically have trivial convolutions (e.g., they are unchanged under Gaussian smoothing,
and hence generate a constant diagonal block diag(1, σ2

w, σ2
w) in S).

Putting It All Together: The main stages of keypoint detection are: (i) prefilter the input
image to produce the smoothed image and derivative estimates Ip, Ip

x , Ip
y , Ip

xx, Ip
xy, Ip

yy

needed for (12, 13); (ii) for each keypoint location x, form the outer product matrix of the
(desired components of the) combined L/M vector at all pixels in its window, and sum over
the window to produce the scatter matrix S(x) (7) (use window-centred coordinates for
x, y in (12Examples of Keypoint Detectorsequation.12, 13); (iii) at each x, reduce S(x)
to find Cred(x), normalize by C0, and find the smallest eigenvalue (saliency). Keypoints
are declared at points where the saliency has a dominant local maximum, i.e. is above
threshold and larger than at all other points within a suitable non-maximum-suppression
radius. For multiscale detection, processing is done within a pyramid and keypoints must
be maxima in both position and scale. As usual, one can estimate subpixel keypoint
location and scale by quadratic interpolation of the saliency field near its maximum.
But note that, as in the standard Förstner-Harris approach, keypoints do not necessarily
contain nameable features (corners, spots) that clearly mark their centres — they may
just be unstructured patches with locally maximal matching stability3.

3 If well-localized centres are needed, specialized locators exist for specific image structures such
as spots and corners (e.g. [8]), or more generally one could search for sharp (high-curvature)
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(a) translation (b) translation + scale (c) translation + rotation (d) similarity

(e) translation / offset (f) translation / offset + gain (g) translation / full (h) similarity / full

Fig. 1. Minimum-eigenvalue strength maps for a popular test image under various motion and
illumination models. The saliency differences are much larger than they seem: the maps have been
very strongly gamma compressed, normalized and inverted for better visibility. The prefilter and
integration windows had σ=1 pixel, and α = 0. Criterion standard deviations were 1 pixel in
translation, 1 radian in rotation,

√
2 in scale, but these values are not critical.

When calculating S, instead of separate ab initio summation over each integration
window, one can also use image-wide convolution of quadratic ‘energies’ as in the stan-
dard Förstner-Harris detector, but for the more complicated detectors there are many such
maps to be calculated (76 for the full 10-entry L/M model). See the extended version of
this paper for details.

In our current implementation, run times for the full 10-L/M-variable detector (which
is more than one would normally use in practice) are a factor of about 10 larger than for
the original two variable Förstner-Harris detector.

Relation to Zero Mean Matching: This common matching method compares two im-
age patches by first subtracting each patches mean intensity, then summing the resulting
squared pixel differences. We can relate this to the simplest nonempty illumination cor-
rection model, L=

(
1
)
, whose reduced scatter matrix over window w(x) is:

Cred =
∫

w M�M dx − M
�

M =
∫

w (M−M)�(M−M) dx

M ≡ ∫
w (M) dx

/ (∫
w dx

)1/2
(14)

For the translation-only model, T is trivial, so the illumination correction simply has the
effect of subtracting from each image gradient its patch mean (c.f . (10)). If w changes
much more slowly than I , ∇I ≈ ∇I and hence ∇I − ∇I ≈ ∇(I − I), so this is
approximately the same as using the gradient of the bandpassed image I−I . The standard
Förstner-Harris detector embodies least squares matching, not zero mean matching. It
is invariant to constant illumination shifts, but it does not subtract the gradient of the
mean ∇I (or more correctly, the mean of the gradient ∇I) to discount the effects of
smooth local illumination gradients superimposed on the pattern being matched. It thus

and preferably isolated maxima of the minimum eigenvalue field or local saliency measure,
not just for high (but possibly broad) ones. For example, a minimum acceptable peak curvature
could be specified via a second criterion matrix.
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Fig. 2. Mean predicted standard error (inverse square root of saliency / minimum eigenvalue in
normalized units) for template matching of keypoints under our motion and lighting models, for
the model’s top 100 keypoints on the Summer Palace image in Fig. 3.

systematically overestimates the geometric strength of keypoints in regions with strong
illumination gradients, e.g. near the borders of smoothly shaded objects, or at the edges
of shadows.

3 Experiments

Fig. 1 shows that the saliency (minimum eigenvalue) map emphasizes different kinds
of image structures as the motion and illumination models are changed. Image (a) is
the original Förstner-Harris detector. Images (b), (c), (d) successively add scale, rotation
and scale + rotation motions, while images (e), (f), (g) adjust for illumination offset,
offset + gain, and offset + gain + spatial gradients. Note the dramatic extent to which
enforcing rotational stability in (a)→(c) and (b)→(d) eliminates the circular dots of
the calibration pattern. In comparison, enforcing scale stability in (a)→(b) and (c)→(d)
has more subtle effects, but note the general relative weakening of the points at the
summits of the towers between (a) and (b): straight-edged ‘corners’ are scale invariant,
and are therefore suppressed. Unfortunately, although ideal axis- and 45◦-aligned corners
are strongly suppressed, it seems that aliasing and blurring effects destroy much of the
notional scale invariance of most other rectilinear corners, both in real images and in non-
axis-aligned ideal ones. We are currently working on this problem, which also reduces
the cross-scale performance of the standard Förstner-Harris detector.

Adding illumination invariance seems to have a relatively small effect in this example,
but note the general relative sharpening caused by includingx andy illumination gradients
in (a), (e), (f)→(g). Points on the borders of intensity edges have enhanced gradients
owing to the slope alone, and this tends to make them fire preferentially despite the use of
the minimum-eigenvalue (most uncertain direction) criterion. Subtracting the mean local
intensity gradient reduces this and hence sharpens the results. However a negative side
effect of including x, y gradients is that locally quadratic image patches — in particular
small dots and ridge edges — become much less well localized, as adding a slope to a
quadratic is equivalent to translating it.
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(i) translation (j) similarity (k) affine

(a) translation (b) translation + rotation (c) translation + scale (d) similarity

(e) translation / offset (f) translation / offset + xy (g) translation / full (h) affine

Fig. 3. Examples of keypoints from the CMU and Summer Palace (Beijing) test images, under
various motion and illumination models. The prefilter and integration windows had σ=2 pixels,
α = 0, and non-maximum suppression within 4 pixels radius and scale factor 1.8 was applied.
Note that, e.g., ‘affine’ means ‘resistant to small affine deformations’, not affine invariant in the
sense of [32,24,25].

Allowing more general motions and/or quotienting out illumination variations always
reduces the precision of template matching. Fig. 2 shows the extent of this effect by
plotting the relative standard errors of template matching for our complete set of motion
and lighting models, where the matching for each model is performed on the model’s own
keypoints. There is a gradual increase in uncertainty as parameters are added, the final
uncertainty for a similarity transform modulo the full illumination model being about 2.5
times that of the original translation-only detector with no illumination correction.

Fig. 3 shows some examples of keypoints selected using the various different mo-
tion/lighting models. The main observation is that different models often select different
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keypoints, and more invariant models generate fewer of them, but beyond this it is difficult
to find easily interpretable systematic trends. As in the Förstner-Harris case, keypoints
are optimized for matching precision, not for easy interpretability in terms of idealized
image events.

4 Summary and Conclusions

Summary: We have generalized the Förstner-Harris detector [7,9,15] to select key-
points that provide repeatable scale and orientation, as well as repeatable position, over
re-detections, even in the face of simple local illumination changes. Keypoints are se-
lected to maximize a minimum-eigenvalue-based local stability criterion obtained from a
second order analysis of patch self-matching precision under affine image deformations,
compensated for linear illumination changes.

Future Work: The approach given here ensures accurate re-localizability (by inter-
image template matching) of keypoint image patches under various transformations, but
it does not always provide accurate ‘centres’ for them. To improve this, we would like to
characterize the stability and localization accuracy of the local maxima of the saliency
measure (minimum eigenvalue) under the given transformations. In other words, just
as we derived the local transformational-stability matrix Cred(x) for matching from the
scalar matching metric Q(x), we need to derive a local transformational-stability matrix
for saliency from the scalar saliency metric. Only here, the saliency measure is already
based on matching stability, so a second level of analysis will be needed.
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