Announcements

Recognition

* Project 2 due today
« Project 3 out today
— help session today

The “Margaret Thatcher lllusion”, by Peter Thompson

Readings
« C. Bishop, “Neural Networks for Pattern Recognition”, Oxford University
Press, 1998, Chapter 1.
« Forsyth and Ponce, 22.3 (eigenfaces)

Recognition

Recognition problems

The “Margaret Thatcher lllusion”, by Peter Thompson

Readings
C. Bishop, “Neural Networks for Pattern Recognition”, Oxford University
Press, 1998, Chapter 1.
Forsyth and Ponce, 22.3 (eigenfaces)

What is it?
« Object detection

Who is it?
« Recognizing identity

What are they doing?
+ Activities

All of these are classification problems
« Choose one class from a list of possible candidates




Face detection

How to tell if a face is present?

One simple method: skin detection

G

R

Skin pixels have a distinctive range of colors
« Corresponds to region(s) in RGB color space
— for visualization, only R and G components are shown above
Skin classifier
« Apixel X = (R,G,B) is skin if it is in the skin region
« But how to find this region?

Skin detection

G

Learn the skin region from examples
« Manually label pixels in one or more “training images” as skin or not skin
» Plot the training data in RGB space
— skin pixels shown in orange, non-skin pixels shown in blue
— some skin pixels may be outside the region, non-skin pixels inside. Why?
Skin classifier
+ Given X = (R,G,B): how to determine if it is skin or not?

Skin classification techniques

G

Skin classifier
« Given X = (R,G,B): how to determine if it is skin or not?
« Nearest neighbor
— find labeled pixel closest to X
— choose the label for that pixel
« Data modeling
— fita model (curve, surface, or volume) to each class
« Probabilistic data modeling
— fit a probability model to each class




Probability

Basic probability
+ Xis arandom variable
* P(X) is the probability that X achieves a certain value
P(X) called a PDF

-probability distribution/density function
-a 2D PDF is a surface, 3D PDF is a volume

X
. 0<P(X)<

. /'°° P(X)X =1 o S P(X)=1

continuous X discrete X

« Conditional probability: P(X|Y)
— probability of X given that we already know Y

Probabilistic skin classification

P(skin|R)
I's

P(~ skin|R)

Ry Rz R
Now we can model uncertainty
« Each pixel has a probability of being skin or not skin
- P{~skin|R) =1 — P(skin|R)
Skin classifier
* Given X = (R,G,B): how to determine if it is skin or not?
« Choose interpretation of highest probability
— set X to be a skin pixel if and only if ] << X < Ro
Where do we get P(skin|R) and P(~ skin|R) ?

Learning conditional PDF’s

P(R|skin) = #skin pixels with color R
Fskin pixels

We can calculate P(R | skin) from a set of training images
« ltis simply a histogram over the pixels in the training images
— each bin R; contains the proportion of skin pixels with color R;

This doesn’t work as well in higher-dimensional spaces. Why not?

Approach: fit parametric PDF functions
« common choice is rotated Gaussian

— center c = X
~ covariance (X — X)(X — 7
X

» orientation, size defined by eigenvecs, eigenvals

Learning conditional PDF’s

P(R|skin) = #skin pixels with color R
Fskin pixels

We can calculate P(R | skin) from a set of training images
« ltis simply a histogram over the pixels in the training images
— each bin R; contains the proportion of skin pixels with color R;
But this isn’t quite what we want
« Why not? How to determine if a pixel is skin?
« We want P(skin | R) not P(R | skin)
* How can we get it?




Bayes rule
P(YIX)P(X
Pex|y) = YR
P(Y)
In terms of our problem: .
what we measure  domain knowledge

(Iikeli\hnod) /prior)

what we want normalization term

(posterior) PLR) = P(R|skin} P(skin)+ P(R| ~ skin) P(~ skin®

The prior: P(skin)
+ Could use domain knowledge
— P(skin) may be larger if we know the image contains a person
— for a portrait, P(skin) may be higher for pixels in the center
+ Could learn the prior from the training set. How?
— P(skin) may be proportion of skin pixels in training set

Bayesian estimation

P(skin) = 0.75
P(~skin) = 025

7
P(R| ~ skin)

mo Ry R n, r R
likelihood posterior (unnormalized)

Bayesian estimation = minimize probability of misclassification
Goal is to choose the label (skin or ~skin) that maximizes the posterior
— this is called Maximum A Posteriori (MAP) estimation
« Suppose the prior is uniform: P(skin) = P(~skin) = 0.5
— inthis case P(skin|R) = c¢P(R|skin), P{~ skin|R) = ¢P(R] ~ skin)
— maximizing the posterior is equivalent to maximizing the likelihood
» P{sKkin[Ry > P(~ skin[R?) if and only if P(F[skin) > P(R[~ skin)

— this is called Maximum Likelihood (ML) estimation

Skin detection results
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General classification

This same procedure applies in more general circumstances
« More than two classes ¥
* More than one dimension

—_—

Example: face detection
« Here, X is an image region
— dimension = # pixels
— each face can be thought
of as a point in a high
dimensional space
H. Schneiderman, T. Kanade. "A Statistical Method for 3D

Object Detection Applied to Faces and Cars". IEEE Conference

on Computer Vision and Pattern Recognition (CVPR 2000)
VPROO.pdf

H. Schneiderman and T.Kanade
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Linear subspaces

&

T is the mean
of the orange
points

Classification can be expensive

convert x into vy, v, coordinates
x = ((x = F) - vi. (x —F) - v2)

What does the v, coordinate measure?
- distance to line
- use it for classification—near 0 for orange pts

What does the v, coordinate measure?
- position along line
- use it to specify which orange point it is

« Must either search (e.g., nearest neighbors) or store large PDF’s
Suppose the data points are arranged as above
» Idea—fit a line, classifier measures distance to line

Dimensionality reduction

G

T is the mean o °
of the orange
points

How to find v, and v, ?
- work out on board

R

Dimensionality reduction
« We can represent the orange points with only their v, coordinates
— since v, coordinates are all essentially 0
« This makes it much cheaper to store and compare points
« A bigger deal for higher dimensional problems

Linear subspaces

&

T is the mean
of the orange
points

Consider the variation along direction v
among all of the orange points:

var(v) = Y Ix BT v|?
orange point X
What unit vector v minimizes var?
vy = miny {var(v)}
What unit vector v maximizes var?
v = maxy {var(v)}

var(v) = S (x-x)T v

= VT -0x-0Ty

=T Z(x—i)(x—i)T v

= vTAv where A=Y (x - %)(x—
X

Solution: v, is eigenvector of A with /argest eigenvalue
v, is eigenvector of A with smallest eigenvalue

Principal component analysis

Suppose each data point is N-dimensional
« Same procedure applies:

var(v) = Llx=%T- vl
= vTAv where A=Y (x—x)(x - x)T
X

« The eigenvectors of A define a new coordinate system
— eigenvector with largest eigenvalue captures the most variation among
training vectors x
— eigenvector with smallest eigenvalue has least variation
« We can compress the data by only using the top few eigenvectors
— corresponds to choosing a “linear subspace”
» represent points on a line, plane, or “hyper-plane”
— these eigenvectors are known as the principal components




The space of faces

&
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An image is a point in a high dimensional space
* An N Xx M image is a point in R\M
« We can define vectors in this space as we did in the 2D case

Dimensionality reduction

¥

The set of faces is a “subspace” of the set of images
« Suppose it is K dimensional
« We can find the best subspace using PCA
« This is like fitting a “hyper-plane” to the set of faces
— spanned by vectors vy, Vy, ..., Vg
- anyface x ® X+ a1vy +azve + ...+ apvy

Eigenfaces

PCA extracts the eigenvectors of A
+ Gives a set of vectors v,, v,, vs, ...
« Each one of these vectors is a direction in face space
— what do these look like?

Projecting onto the eigenfaces

The eigenfaces v, ..., vk span the space of faces
« Aface is converted to eigenface coordinates by

X ((x—%X) vy, x—X)-va..... (x—X)-vK)
a1 a2 ar

xxX+tayvy taxva+ ... +agvk \

< a1vVy apVy a3vVz aavyq G5V GgVe G7VT agvg




Recognition with eigenfaces

Algorithm
1. Process the image database (set of images with labels)
* Run PCA—compute eigenfaces
Calculate the K coefficients for each image
2. Given a new image (to be recognized) x, calculate K coefficients

x = (a1,a2,. .., aK)

3. Detectif x is a face
ix — (X4 a1vi1 + aova + ... + agvi )il < threshold

4. Ifitis a face, who is it?
Find closest labeled face in database
nearest-neighbor in K-dimensional space

Choosing the dimension K

eigenvalues X;

i= K NM

How many eigenfaces to use?

Look at the decay of the eigenvalues
« the eigenvalue tells you the amount of variance “in the
direction” of that eigenface
« ignore eigenfaces with low variance

Issues: metrics

What's the best way to compare images?
« need to define appropriate features
» depends on goal of recognition task
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exact matching classification/detection
complex features work well simple features work well
(SIFT, MOPS, etc.) (Viola/Jones, etc.)

Metrics

Lots more feature types that we haven’t mentioned
* moments, statistics
— metrics: Earth mover’s distance, ...
« edges, curves
— metrics: Hausdorff, shape context, ...
« 3D: surfaces, spin images
— metrics: chamfer (ICP)




Issues: feature selection

If all you have is one image:
non-maximum suppression, etc.

If you have a training set of images:
AdaBoost, etc.

Issues: data modeling

Generative methods
« model the “shape” of each class
— histograms, PCA, mixtures of Gaussians
— graphical models (HMM's, belief networks, etc.)

Discriminative methods
« model boundaries between classes
— perceptrons, neural networks
— support vector machines (SVM’s)

Generative vs. Discriminative
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Generative Approach
model individual classes, priors

Discriminative Approach
model posterior directly

from Chris Bishop
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Issues: dimensionality

What if your space isn’t flat?
« PCA may not help

Nonlinear methods
LLE, MDS, etc.




Other Issues

Some other factors
« Prior information, context
« Classification vs. inference
* Representation
« Other recognition problems
— individuals
— classes
— activities
— low-level properties

» materials, super-resolution, edges, circles, etc...

Issues: speed

Case study: Viola Jones face detector
Exploits three key strategies:

« simple, super-efficient features

« image pyramids

« pruning (cascaded classifiers)

Viola/Jones: features

“Rectangle filters”

Similar to Haar wavelets
Papageorgiou, et al.

Differences between
sums of pixels in
adjacent rectangles

hx) = { +1 iff(x)> 0,

-1 otherwise

60,000x 100 = 6,000,000
Unique Features

Integral Image (aka. summed area table)

Define the Integral Image

I'x3)= YY)

V'<sy

Any rectangular sum can be computed in
constant time:

D=1+4-(2+3)
=A+(A+B+C+D)-(A+C+A+B)
=D

Rectangle features can be computed as
differences between rectangles

X,y)




Viola/Jones: handling scale

Viola/Jones: cascaded classifiers

Given a nested set of classifier

hypothesis classes % False Pos

100
\\

% Detection

50

Computational Risk Minimization

ROC curves
IMAGE T T T FACE
SUB-WINDOW
1 F l F F
NON-FACE NON-FACE NON-FACE

Cascaded Classifier

50%, 20%, 2%
IMAGE
SUB-WINDOW @ > FACE
i F l F l F

NON-FACE NON-FACE NON-FACE

first classifier: 100% detection, 50% false positives.

second classifier: 100% detection, 40% false positives
(20% cumulative)
« using data from previous stage.

third classifier: 100% detection,10% false positive rate
(2% cumulative)

Put cheaper classifiers up front

Viola/Jones results:

JUDYBATS
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Run-time: 15fps (384x288 pixel image on a 700 Mhz Pentium Ill)




