Convolution

A **convolution** operation is a cross-correlation where the filter is flipped both horizontally and vertically before being applied to the image:

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]$$

It is written:

$$G = H \star F$$

Suppose H is a Gaussian or mean kernel. How does convolution differ from cross-correlation?

Continuous filtering

We can also apply *continuous* filters to *continuous* images. In the case of cross correlation: $g = h \otimes f$

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(u,v) f(x+u,y+v) du dv$$

In the case of convolution: $g = h \star f$

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(u,v) f(x-u,y-v) du dv$$

Note that the image and filter are infinite.

