## Image filtering



1

3



## Reading

Forsyth & Ponce, chapter 7



### Images as functions

We can think of an **image** as a function, f, from  $R^2$  to R:

- *f*(*x*, *y*) gives the **intensity** at position (*x*, *y*)
- Realistically, we expect the image only to be defined over a rectangle, with a finite range:
  *f*: [*a*,*b*]x[*c*,*d*] → [0,1]

A color image is just three functions pasted together. We can write this as a "vector-valued" function:

$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

#### Images as functions





### What is a digital image?

We usually work with digital (discrete) images:

- Sample the 2D space on a regular grid
- Quantize each sample (round to nearest integer)

If our samples are  $\Delta$  apart, we can write this as:

$$f[i, j] = \text{Quantize} \{ f(i \Delta, j \Delta) \}$$

The image can now be represented as a matrix of integer values



### **Filtering noise**

How can we "smooth" away noise in an image?

| 0 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0 | 0 |
|---|---|---|-----|-----|-----|-----|-----|---|---|
| 0 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0 | 0 |
| 0 | 0 | 0 | 100 | 130 | 110 | 120 | 110 | 0 | 0 |
| 0 | 0 | 0 | 110 | 90  | 100 | 90  | 100 | 0 | 0 |
| 0 | 0 | 0 | 130 | 100 | 90  | 130 | 110 | 0 | 0 |
| 0 | 0 | 0 | 120 | 100 | 130 | 110 | 120 | 0 | 0 |
| 0 | 0 | 0 | 90  | 110 | 80  | 120 | 100 | 0 | 0 |
| 0 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0 | 0 |
| 0 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0 | 0 |
| 0 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0 | 0 |



| Mean filtering |   |    |    |    |    |    |    |    |    |   |
|----------------|---|----|----|----|----|----|----|----|----|---|
|                | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0 |
|                | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0 |
|                | 0 | 0  | 0  | 90 | 90 | 90 | 90 | 90 | 0  | 0 |
|                | 0 | 0  | 0  | 90 | 90 | 90 | 90 | 90 | 0  | 0 |
| F[x, y]        | 0 | 0  | 0  | 90 | 90 | 90 | 90 | 90 | 0  | 0 |
| 1 [20,9]       | 0 | 0  | 0  | 90 | 0  | 90 | 90 | 90 | 0  | 0 |
|                | 0 | 0  | 0  | 90 | 90 | 90 | 90 | 90 | 0  | 0 |
|                | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0 |
|                | 0 | 0  | 90 | 0  | 0  | 0  | 0  | 0  | 0  | 0 |
|                | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0 |
|                |   |    |    |    |    |    |    |    |    |   |
|                |   | 0  | 10 | 20 | 30 | 30 | 30 | 20 | 10 |   |
|                |   | 0  | 20 | 40 | 60 | 60 | 60 | 40 | 20 |   |
|                |   | 0  | 30 | 60 | 90 | 90 | 90 | 60 | 30 |   |
| G[r, u]        |   | 0  | 30 | 50 | 80 | 80 | 90 | 60 | 30 |   |
| G[x, y]        |   | 0  | 30 | 50 | 80 | 80 | 90 | 60 | 30 |   |
|                |   | 0  | 20 | 30 | 50 | 50 | 60 | 40 | 20 |   |
|                |   | 10 | 20 | 30 | 30 | 30 | 30 | 20 | 10 |   |
|                |   | 10 | 10 | 10 | 0  | 0  | 0  | 0  | 0  |   |
|                |   |    |    |    |    |    |    |    |    |   |
|                |   |    |    |    | 11 |    |    |    |    |   |



#### **Cross-correlation filtering**

Let's write this down as an equation. Assume the averaging window is (2k+1)x(2k+1):

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$

We can generalize this idea by allowing different weights for different neighboring pixels:

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i+u, j+v]$$

This is called a **cross-correlation** operation and written:

$$G = H \otimes F$$

H is called the "filter," "kernel," or "mask."

The above allows negative filter indices. When you implement need to use: H[u+k,v+k] instead of H[u,v]







# Image gradient

How can we differentiate a *digital* image F[x,y]?

- Option 1: reconstruct a continuous image, *f*, then take gradient
- Option 2: take discrete derivative (finite difference)

$$rac{\partial f}{\partial x}[x,y] pprox F[x+1,y] - F[x,y]$$

How would you implement this as a cross-correlation?





The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

17









### Convolution

A **convolution** operation is a cross-correlation where the filter is flipped both horizontally and vertically before being applied to the image:

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]$$

It is written:  $G = H \star F$ 

Suppose H is a Gaussian or mean kernel. How does convolution differ from cross-correlation?

Suppose F is an impulse function (previous slide) What will G look like?

22

#### **Continuous Filters**

We can also apply filters to continuous images.

In the case of cross correlation:  $g = h \otimes f$ 

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(u,v) f(x+u,y+v) du dv$$

In the case of convolution:  $g = h \star f$ 

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(u,v) f(x-u,y-v) du dv$$

Note that the image and filter are infinite.

23