3D Sensing

- Camera Model and 3D Transformations
- Camera Calibration (Tsai’s Method)
- Depth from General Stereo (overview)
- Pose Estimation from 2D Images (skip)
- 3D Reconstruction

Camera Model: Recall there are 5 Different Frames of Reference

- Object
- World
- Camera
- Real Image
- Pixel Image

Rigid Body Transformations in 3D

Translation and Scaling in 3D
Rotation in 3D is about an axis

\[
\begin{bmatrix}
\text{Px}' \\
\text{Py}' \\
\text{Pz}' \\
1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\text{Px} \\
\text{Py} \\
\text{Pz} \\
1
\end{bmatrix}
\]

Rotation about Arbitrary Axis

One translation and two rotations to line it up with a major axis. Now rotate it about that axis. Then apply the reverse transformations (R2, R1, T) to move it back.

\[
\begin{bmatrix}
\text{Px}' \\
\text{Py}' \\
\text{Pz}' \\
1
\end{bmatrix} = \begin{bmatrix}
r_{11} & r_{12} & r_{13} & 0 \\
r_{21} & r_{22} & r_{23} & 0 \\
r_{31} & r_{32} & r_{33} & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\text{Px} \\
\text{Py} \\
\text{Pz} \\
1
\end{bmatrix}
\]

The Camera Model

How do we get an image point IP from a world point P?

\[
\begin{bmatrix}
\text{s Ipr} \\
\text{s Ipc} \\
\text{s}
\end{bmatrix} = \begin{bmatrix}
c_{11} & c_{12} & c_{13} & c_{14} \\
c_{21} & c_{22} & c_{23} & c_{24} \\
c_{31} & c_{32} & c_{33} & 1
\end{bmatrix}
\begin{bmatrix}
\text{Px} \\
\text{Py} \\
\text{Pz} \\
1
\end{bmatrix}
\]

What’s in C?

The camera model handles the rigid body transformation from world coordinates to camera coordinates plus the perspective transformation to image coordinates.

1. \(\text{CP} = \text{T R W P} \)
2. \(\text{IP} = \pi(f) \text{ CP} \)
Camera Calibration

- In order work in 3D, we need to know the parameters of the particular camera setup.
- Solving for the camera parameters is called calibration.

Intrinsic Parameters

- principal point \((u_0,v_0)\)
- scale factors \((dx,dy)\)
- aspect ratio distortion factor \(\gamma\)
- focal length \(f\)
- lens distortion factor \(\kappa\) (models radial lens distortion)

Extrinsic Parameters

- translation parameters \(t = [tx \ ty \ tz]\)
- rotation matrix

\[
R = \begin{bmatrix}
 r_{11} & r_{12} & r_{13} & 0 \\
 r_{21} & r_{22} & r_{23} & 0 \\
 r_{31} & r_{32} & r_{33} & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

Calibration Object

The idea is to snap images at different depths and get a lot of 2D-3D point correspondences.
The Tsai Procedure

- The Tsai procedure was developed by Roger Tsai at IBM Research and is most widely used.
- Several images are taken of the calibration object yielding point correspondences at different distances.
- Tsai’s algorithm requires \(n > 5 \) correspondences \(\{(x_i, y_i, z_i), (u_i, v_i)\} \mid i = 1, \ldots, n \) between (real) image points and 3D points.

In this* version of Tsai’s algorithm,

- The real-valued \((u,v)\) are computed from their pixel positions \((r,c)\):
 \[
 u = \gamma dx (c-u_0) \quad v = -dy (r - v_0)
 \]
 where
 - \((u_0,v_0)\) is the center of the image
 - \(dx\) and \(dy\) are the center-to-center (real) distances between pixels and come from the camera’s specs
 - \(\gamma\) is a scale factor learned from previous trials

* This version is for single-plane calibration.

Tsai’s Geometric Setup

Tsai’s Procedure

1. Given the \(n \) point correspondences \(\{(x_i,y_i,z_i), (u_i,v_i)\} \)

 Compute matrix \(A \) with rows \(a_i \)
 \[
 a_i = (v_i*x_i, v_i*y_i, -u_i*x_i, -u_i*y_i, v_i)
 \]
 These are known quantities which will be used to solve for intermediate values, which will then be used to solve for the parameters sought.
Intermediate Unknowns

2. The vector of unknowns is \(\mu = (\mu_1, \mu_2, \mu_3, \mu_4, \mu_5) \):

\[
\begin{align*}
\mu_1 &= r_{11}/ty \\
\mu_2 &= r_{12}/ty \\
\mu_3 &= r_{21}/ty \\
\mu_4 &= r_{22}/ty \\
\mu_5 &= tx/ty
\end{align*}
\]

where the \(r \)'s and \(t \)'s are unknown rotation and translation parameters.

3. Let vector \(b = (u_1, u_2, \ldots, u_n) \) contain the \(u \) image coordinates.

4. Solve the system of linear equations

\[
A \mu = b
\]

for unknown parameter vector \(\mu \).

Use \(\mu \) to solve for \(ty \), \(tx \), and 4 rotation parameters

5. Let \(U = \mu_1^2 + \mu_2^2 + \mu_3^2 + \mu_4^2 \). Use \(U \) to calculate \(ty \). (see text)

6. Try the positive square root \(ty = (ty^{21/2}) \) and use it to compute translation and rotation parameters.

\[
\begin{align*}
\begin{bmatrix}
1 & 1 \\
1 & 2 \\
2 & 1 \\
2 & 2 \\
1 & 5
\end{bmatrix}
\end{align*}
\]

Now we know

2 translation parameters and

4 rotation parameters.

except…

Determine true sign of \(ty \) and compute remaining rotation parameters.

7. Select an object point \(P \) whose image coordinates \((u,v) \) are far from the image center.

8. Use \(P \)'s coordinates and the translation and rotation parameters so far to estimate the image point that corresponds to \(P \).

 If its coordinates have the same signs as \((u,v) \), then keep \(ty \), else negate it.

9. Use the first 4 rotation parameters to calculate the remaining 5.

Solve another linear system.

10. We have \(tx \) and \(ty \) and the 9 rotation parameters. Next step is to find \(tz \) and \(f \).

 Form a matrix \(A' \) whose rows are:

 \[
 a_i' = (r_{21}x_i + r_{22}y_i + ty, \ v_i)
 \]

 and a vector \(b' \) whose rows are:

 \[
 b_i' = (r_{31}x_i + r_{32}y_i) + vi
 \]

11. Solve \(A'^*v = b' \) for \(v = (f, tz) \).
Almost there

12. If f is negative, change signs (see text).

13. Compute the lens distortion factor κ and improve the estimates for f and t_z by solving a nonlinear system of equations by a nonlinear regression.

14. All parameters have been computed. Use them in 3D data acquisition systems.

For a correspondence (r_1, c_1) in image 1 to (r_2, c_2) in image 2:

1. Both cameras were calibrated. Both camera matrices are then known. From the two camera equations we get 4 linear equations in 3 unknowns.

 \begin{align*}
 r_1 &= (b_{11} - b_{31}r_1)x + (b_{12} - b_{32}r_1)y + (b_{13} - b_{33}r_1)z \\
 c_1 &= (b_{21} - b_{31}c_1)x + (b_{22} - b_{32}c_1)y + (b_{23} - b_{33}c_1)z \\
 r_2 &= (c_{11} - c_{31}r_2)x + (c_{12} - c_{32}r_2)y + (c_{13} - c_{33}r_2)z \\
 c_2 &= (c_{21} - c_{31}c_2)x + (c_{22} - c_{32}c_2)y + (c_{23} - c_{33}c_2)z
 \end{align*}

 Direct solution uses 3 equations, won’t give reliable results.

Solve by computing the closest approach of the two skew rays.

If the rays intersected perfectly in 3D, the intersection would be P. Instead, we solve for the shortest line segment connecting the two rays and let P be its midpoint.
Application: Kari Pulli’s Reconstruction of 3D Objects from light-striping stereo.

Application: Zhenrong Qian’s 3D Blood Vessel Reconstruction from Visible Human Data